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Natural Language Processing

Tasks:

● question answering (QA)
● language translation
● sentiment analysis
● completing a sentence
● reading comprehension
● picking the best ending to a story
● and many others
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Data representation: Sequence 

How to express words with numbers?
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Tokenization and Embedding

● Tokenization is to divide text into smallest units for processing
○ In English, tokens are usually words or roots (i.e -ing, -ment)
○ Some special tokens:

■ [PAD], [UNK], [CLS], [SEP]

● Static vocabulary  → Only process a fixed number of token
○ Each token is indexed in the vocabulary

● Embedding or word2vec → represent words as dense vectors in a continuous space
○ It should capture semantic relationships between tokens and beyond. e.g.

■ BERT: Bidirectional Encoder Representations from Transformers
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Natural Language Processing Models
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RNN 1

LSTM 2

Transformers 3

Tasks:

● reading comprehension
● question answering (QA)
● language translation
● sentiment analysis
● completing a sentence
● picking the best ending to a story
● and many others

Benchmark 
Datasets

Leader Boards,
Competitions, 

● For each task, one can beat another by creating a new model or new 
training strategies or other techniques. 

● Creating tasks-specific, high-quality datasets is tedious and time 
consuming; It basically prevents the scaling
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BERT: Pre-training of Bidirectional Transformers for Language Understanding
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A new paradigm for language understanding: Pretraining + Fine Tuning

Pretraining with large general dataset
● Train a Transformer-based encoder on 

surrogate tasks 
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BERT: Pre-training of Bidirectional Transformers for Language Understanding
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A new paradigm for language understanding: Pretraining + Fine Tuning

Pretraining with large unlabeled dataset
● Train a Transformer-based encoder on 

surrogate tasks 
● Each word (token) is then encoded in a 

dense representation

The new representation can be used in 
multiple tasks
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BERT: Pre-training of Bidirectional Transformers for Language Understanding
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A new paradigm for language understanding: Pretraining + Fine Tuning

Pretraining with large unlabeled dataset
● Train a Transformer-based encoder on 

surrogate tasks 
● Each word (token) is then encoded in a 

dense representation

The new representation can be used in 
multiple tasks

Fine Tuning on a smaller labeled dataset
● Either train a new model for the target task
● Or continue train the same model with very 

small LR.
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The Scaling Law for Language Models

● Performance depends strongly on scale, weakly 
on model shape
○ Three factors: model size, dataset size, and 

the amount of compute used for training
● Universality of overfitting:

○ Performance scales as N0.74 / D, meaning 
every time we increase model size, N, by 8x, 
we only need to increase the data, D, by 5x 
to avoid a performance penalty

● Universality of training:
○ Training curves follow power-laws whose 

parameters are roughly independent of the 
model size.
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https://arxiv.org/abs/2001.08361
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GPT3: Language Models are Few-Shot Learners

Why not “pretraining + fine tuning”?

● Creating labeled data for fine tuning is tedious
● Fine tuning may potentially pick up spurious correlations, thus 

could not generalize for out-of-distribution data
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Say no to “pretraining + fine tuning”, say yes to “meta-learning”

https://arxiv.org/pdf/2005.14165.pdf
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GPT3: Language Models are Few-Shot Learners

Meta-learning is that LLM is trained with a broad set of tasks and can “adapt to” or  “recognize” the 
desired task. 
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Say no to “pretraining + fine tuning”, say yes to “meta-learning”
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GPT3: Language Models are Few-Shot Learners

● Say no to fine tuning, but yes to “Reinforcement Learning Human Feedback (arxiv:1706.03741)” 
or “follow instructions with human feedback (arxiv:2203.02155)”

● The idea is to train a NN with labeled data. OpenAI hired 40 contractors to label the data. 
● The trained NN served as a reward function in the reinforcement learning. 
● The LLM has to adapt their outputs to get the maximum reward

● The reward can also serve as a test of the goodness of the output
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Say no to “pretraining + fine tuning”, say yes to “meta-learning”

https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/2203.02155
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Training data and Benchmarks
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Following are used in GPT3
Common Crawl datasets have trillion, unfiltered, 
low quality, duplicated words

HellaSwag Benchmark uses 
adversarial machine-generated 
wrong answers
GPT-3: 79.3% accuracy with a 
few-shot setting

https://arxiv.org/abs/2005.14165
https://arxiv.org/pdf/1905.07830.pdf
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Some interesting models
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Model Name Model Size Functionality Architecture Reference

GPT-3 175B Task-agnostic NLP 
(translation, cloze tasks, 
Q&A, etc.)

Pre-trained on 45 TB of texts, 
downstream tasks perform well with 
few-shot learning.

Paper
Code

Bert 340M Downstream task-specific 
NLP (translation, 
prediction, etc.)

Bidirectional model pre-trained on 
masked input sequences (800M + 
2500M words), fine-tuned on 
downstream tasks.

Paper
Code

Roberta 355M Word prediction Randomly mask 15% of words and 
predict the masked words to learn inner 
representation

Paper
Code

T5 60M-11B Text-to-text translation Used a unified framework that converts 
all NP into text-to-text format

Paper
Code

Thanks to A. Huang.

https://arxiv.org/pdf/2005.14165.pdf
https://github.com/openai/gpt-3
https://arxiv.org/pdf/1810.04805.pdf
https://github.com/google-research/bert
https://arxiv.org/abs/1907.11692
https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints
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How do we use LLM?
AI-assistant programming, bugging, summarization, Q&A on twikis
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Document Q&A 

● Learned through the deeplearning.ai open course for LangChain.
● The idea is 

○ 1) build a embedded database; 
○ 2) embed the question; 
○ 3) retrieve relevant information by querying the embedded question from the database

● It avoids the “Hallucination” and can even provides a reference
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https://www.deeplearning.ai/short-courses/langchain-chat-with-your-data/?_hsmi=265152429&_hsenc=p2ANqtz--sjZl7gb_qFx8dig-Oqcq2ODS6sWGUv07ePbXldt_BCRY2f6CRl8BM2Le2wuqgth4aGIjsOhRgp_pTe2sZ2l5cAwCkKQ
https://python.langchain.com/docs/get_started/introduction.html
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https://indico.cern.ch/event/1267282/contributions/5357958/attachments/2628647/4546260/tr230412_davidRousseau_ChatGPT_AML.pdf
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ATLAS GPT, from Daniel
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Uses MarkPrompt

https://indico.cern.ch/event/1294451/contributions/5440164/attachments/2671482/4631099/Demo%20Overview.pdf
https://markprompt.com/
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chATLAS, Gabriel 
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Uses LangChain.

https://indico.cern.ch/event/1294451/contributions/5462238/attachments/2671801/4632005/20230622_MLFourm_vDev.pdf
https://python.langchain.com/docs/get_started/introduction.html
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A Large Model for ATLAS?
For detector simulation, particle reconstruction, or physics analysis
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NLP vs ATLAS detector
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Analogy between NLP and ATLAS

Detector elements Words

All detector elements Vocabulary

Particle trajectories or 
showers

Sentences

Collision Events Paragraphs

Events from the same 
physics process

Sections
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Deep detector representation for particle tracking
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ATLAS IBL Detector

● The detector provides a vocabulary and the recorded spacepoints 
are the words. 

● The task of particle tracking reconstruction is to form sentences from 
those words.
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Deep detector representation for particle tracking
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● In ITk, the Pixel system contains ~9400 modules, ~1.4x10^9 pixels; Strip system 
contains >20,000 modules

● At HL-LHC, the ITk records about 300,000 hits

How would you tackle this problem in the context of Large Language Models?
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A sorting algorithm for particle tracking

● Input is a sequence of space points ordered by their distance away from the collision point

● The Model is trained to sort the input sequence in a way space points from the same tracks 
are together

23
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Deep detector representation for particle 
reconstruction
● Train a Transformer to encode detector 

elements with a surrogate tasks: predicting 
missing space points in a track

● Use the detector encoder for different 
downstream tasks, such as b-tagging

24
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Conclusion

● NLP models have found a way to scale their training data and the language model and 
achieved impressive performance
○ We have a huge scale real data and simulated data

● Looking back the history of how NLP comes up with LLMs can be inspiring
● People in ATLAS already starts to use LLMs such as chatGPT for programming, Q&A, 

summarizing twiki pages, and so on

● Do we need a large model for ATLAS? What if you have unlimited resources to build a large 
model, which type of large model you would like to build to solve which problem?
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