Constraints from accelerators to future e+e-factory experiments

Giovanni Marchiori (APC-Paris CNRS/IN2P3)

ECFA PED study WG3 workshop on calorimetry and photodetectors/PID (03 May 2023) ECFA PED study WG3 workshop on vertexing and tracking (30 May 2023)

Many thanks to M. Boscolo, A. Ciarma, M.-C. Fouz, A. Robson, F. Sefkow

Consolidated e+e-factory proposals (and experiments)

Linear

ILC => **ILD** and **SiD**: √s: 250 – 500 GeV (1 TeV)

Circular

Constraints from accelerators to future e+e--factory experiments - Giovanni Marchiori - 2

References

- Numbers in the following taken from e+e- factories **CDRs** + **recent updates** such as
 - **FCC**: MDI presentations in FCC-US workshop (agenda, 04/2023)
 - **CEPC**: beam parameters from 50 MW upgrade in TDR (slides at eeFact2022, 09/2022) ٠
 - ILC: MDI sessions at ILCX 2021 (agenda, 10/2021) and talk on TPC@tera-Z @ ILD s/w meeting (slides, 12/2022)
 - **CLIC**: post-CDR CLICdp studies (link1, link2) •

Caveat:

- For circular colliders, some studies are still preliminary and some smaller bkg are not computed yet •
 - ٠

Latest updates = big step forward in realism of IR design wrt CDS but numbers can still evolve as design itself evolves

Beam parameters: *linear* colliders (ILC/CLIC)

	IL	<u>_C</u>	CLIC			
	ILC250	ILC500	CLIC380	CLIC1500	CLIC3000	
√s [GeV]	250	500	380	1500	3000	
Luminosity/IP (10 ³⁴ /cm ² s)	1.35	1.8	1.5	3.7	5.9	
Train collision frequency (Hz)	5	5	50	50	50	
Bunches/train	1312	1312	352	312	312	
Bunch separation (ns)	554	554	0.5	0.5	0.5	
Train length (µs)	730	730	0.176	0.156	0.156	
Beam size at IP σ _x /σ _y (nm)	515/7.7	474/5.9	150/2.9	~60/1.5	~40/1	
Crossing angle	14 mrad	14mrad	16.5 mrad	20 mrad	20 mrad	

- 1 IP / collider
- Large x-ing angle needed to avoid parasitic interactions away from IP

\frown

Multiple detectors possible, alternating with push-pull scheme (abandoned in latest baseline CLICdp working scenario)

Very low duty cycle (train separation ~20 ms @ CLIC, ~200 ms @ ILC) allows for power-pulsing (beneficial for cooling)

Beam parameters: *circular* colliders (FCC-ee and CEPC)

FCC-ee

	Z	Η	Тор	Z	Higgs	Тор
√s [GeV]	91.2	240	365	91.0	240	360
Luminosity/IP (10 ³⁴ /cm ² s)	182	7.3	1.33	192	8.3	0.8
Bunches/beam	10000	248	36	19918	415	58
Bunch separation (ns)	30	1200	8400	15	385	2640
Beam size at IP σ _x /σ _y (μm/nm)	8 / 34	14 / 36	39 / 69	6/35	15/36	39 / 113
Crossing angle	30 mrad	30 mrad	30 mrad	33 mrad	33 mrad	33 mrad

- 2-4 IP / collider (CEPC FCC-ee)
- Even larger x-ing angle needed

CEPC

"Continuous" beams with high collision frequency (up to \sim 33 MHz at Z peak at FCC-ee) \Rightarrow no power pulsing possible (cooling)

Interaction regions

Constraints from accelerators to future e+e-factory experiments - Giovanni Marchiori - 6

Physics rates

In central detector

- At Z resonance:
 - ~80 kHz for L = $180*10^{34}$ /cm²s (FCC-ee, CEPC)
 - includes O(10) kHz from ee \rightarrow ee and O(100 Hz) from $ee \rightarrow \gamma\gamma$ in detector acceptance ($\theta \sim 9-171^{\circ}$)
 - fast **detector response** to minimise dead time
 - **zero-suppression** to reduce data transfer/output rate
 - trigger-less design (preferable to avoid trigger efficiency) systematic uncertainties) could be challenging
- At $\sqrt{s} \ge 160$ MeV: L<10³⁵/cm²s, $\sigma \le 1$ nb \implies rate ≤ 100 Hz

In forward luminosity calorimeters

- sustained rate due to large Bhabha xsections at small angles: ~80 kHz for L = $180*10^{34}$ /cm²s (FCC-ee, CEPC)
 - radiation hardness in very forward region

Backgrounds at e⁺e⁻-factories

All projects: very small beams \Rightarrow high EM fields \Rightarrow bend the trajectories of the opposite bunch particles

- **beamstrahlung** \Rightarrow photons
- incoherent pair creation (IPC) $\Rightarrow \Theta^{\pm}$
- $\gamma\gamma \rightarrow qqbar \Rightarrow hadrons$ (jets)

Synchrotron radiation \Rightarrow photons

Increase with energy: most significant at 365 GeV (FCC-ee) / 500 GeV (ILC) / 3 TeV (CLIC)

Mitigated through machine-detector-interface (MDI) design, but pose constraints on detector design too

Beamstrahlung

Backgrounds at e⁺e⁻-factories

All projects: very small beams \Rightarrow high EM fields \Rightarrow bend the trajectories of the opposite bunch particles

Circular colliders: bending of charged beam particles in dipole magnetic field

Increase with energy: most significant at 365 GeV (FCC-ee) / 500 GeV (ILC) / 3 TeV (CLIC)

Mitigated through machine-detector-interface (MDI) design, but pose constraints on detector design too

 \Rightarrow increase of IP size / center-of-mass energy spread. Impact on physics but not on detector (but requires measurement in situ of luminosity profile vs \sqrt{s})

 \Rightarrow can lead to large occupancy and energy deposited in detector

 \Rightarrow space granularity / time resolution for use of timing in offline reconstruction

 \Rightarrow very large e[±] rate at low p_T => impact on design of inner region and on forward region (envelope around IR limits beam pipe and inner detector radii)

 \Rightarrow can lead to energy deposited in the detector if unshielded

 \Rightarrow SR in solenoid due to x-ing angle limits B field to minimise impact on luminosity

Additional backgrounds

•

- Additional sources of backgrounds that have been studied and found to be negligible in CLIC:
 - - occupancy => should be easy to identify and reject by reconstruction algorithms)
 - detector yoke => negligible

Additional sources of background **under study at FCC-ee**:

- negligible impact
- **Beam-gas scattering**: preliminary studies exist, but need to be replicated for new beam parameters
- From top-up injection: study ongoing, no results yet

Beam halo muons from inelastic collisions of beam halo (inelastic beam collisions with gas in beampipe) with collimators

can be suppressed with proper design of collimators and spoilers in BDS: 1 muon/BX with x20 safety factor, small

Backscattering from downstream beam elements / beam dump: $\sim 20\gamma$ (E<0.5 MeV) + 4n (E<1 MeV)/cm², absorbed by

Beam-halo diffused by collimators: some preliminary results available, shown later (muons from inel. collisions: to be studied)

Synchrotron radiation at FCC-ee

- Synchrotron-radiation **mask tips** @ z=2.1m intercept most SR scattered particles
- 5 um gold **coating** of beam pipe partially absorbs scattered photons from the mask tips
- Cu beam **pipe** (outside central region) + high-Z **shields** (W) absorb most of remaining photons.
- With shielding proposed in CDR:
 - **CLD**: < 1 hit/BX @ \sqrt{s} up to Higgs, few hundred hits / BX @ top, mainly in first 2 layers of tracker (R ~2.5 cm, 25 um pitch) \Rightarrow negligible occupancy ~10⁻⁴
 - ٠ (maximum drift time) \Rightarrow need to exploit timing (y: localised depositions) to reduce to O(.1%)

Beam optics around IP \Rightarrow critical energy of $\gamma < 100$ keV from upstream dipoles up to ~480 m (most power emitted @E<E_c)

IDEA: average occupancy O(%) in drift chamber (R=35–200cm, z=±200 cm, ~1.4cm cells) with 400 ns integration time

Synchrotron radiation at FCC-ee

- **Updated** studies of SR with new lattice and detector layout and latest software in progress
- Preliminary study to replicate CDR results using tracking in Key4HEP, for the CLD detector \Rightarrow overall good agreement
 - **CLD tracker**: without shielding, SR photons scattered by mask tip lead to occupancy<0.1%, except tracker endcaps (1%)
 - For trackers with limited z segmentation (eg drift chambers) effect could be significantly higher (\Rightarrow use timing) •

$$occupancy = hits/mm^2/BX \cdot size_{sensor} \cdot size_{cluster} \cdot safety$$

 $25\mu m \times 25\mu m$ (pixel) $size_{sensor} =$ $1mm \times 0.05mm$ (strip)

5 (pixel) size_{cluster}

safety = 3

Adding the **Tungsten shieldings** of course reduces by a lot the background in particular in the trackers, and with a smaller effect on the vertex detector.

Constraints from accelerators to future e+e-factory experiments - Giovanni Marchiori - 12

Electron-positron pair production and hadron production

e+e- production: emitted photons interact coherently/incoherently with opposing bunch particles and convert to ee most pairs from **coherent** production are produced along outgoing beam direction and **remain in beampipe** pairs from incoherent production have flatter θ spectrum \Rightarrow can reach detector, though typical energy small **Hadron** production: mainly in **central region** and at **low p_T**. High p_T tail can produce **jets** in calorimeters

Electron-positron pair production and beam pipe radius

- component)
 - **CLIC** (B=4T, $\sqrt{s} = 3$ TeV) : 30 mm •
 - **ILC** (B=3.5-5T, $\sqrt{s} = 500$ GeV) : 16 mm ٠
 - **FCC-ee** (B=2T, √s = 365 GeV) : 10 mm ٠

Large flux of scattered ee pairs spiralling in main solenoid's field **determines radius of beam pipe** (envelope of high-pt

Electron-positron pair production and hadron production @ FCC-ee

- **Incoherent e+e- pair production:** •

\sqrt{s} [GeV]	91.2	365	
Total particles	800	6200	
Total E (GeV)	500	9250	
Particles with $p_{\mathrm{T}} \geq 5 \mathrm{MeV}$ and $\theta \geq 8^\circ$	6	290	

- Peak occupancy in CLD tracker 10⁻⁴/BX (inner radii of first disk: $R \sim 70$ cm, pixelated, pitch = 25um)
- Average occupancy in IDEA drift chamber 2.9%

 $\gamma\gamma \rightarrow hadrons$: < 0.01 events/BX @top with $m_{\gamma\gamma} > 2$ GeV

Negligible occupancy both for CLD and IDEA trackers •

Average occupancy						
$\overline{s} = 91.2 \text{ GeV}$	$\sqrt{s} = 365~{ m GeV}$					
1.1%	2.9%					
0.001%	0.035%					
-	0.2%					

IDEA, timing information used for photon signal suppression (ee bkg mostly due to secondary photons from scattering off upstream material)

Electron-positron pair production @ FCC-ee - latest updates

compensating solenoids), updated CLD detector design (new VXD radii: L1 = 13 mm, L2=35 mm (L3=57mm)

- No big impact from new lattice+anti-solenoids
- Occupancy <% everywhere, even with long 10us readout window, except VXDB @Z
- Non negligible fraction from backscattering, out of time - could be exploited offline for further bkg suppression

Updated studies of IPC with **new layout** (smaller-R beam pipe and vertex, 4 IP lattice, realistic field map including screening and

Bkg @ FCC-ee: impact on calorimeters and luminometers

- **Luminometers** in forward region:
- **Synchrotron radiation**: @top (where highest) proposed beam-pipe shielding leads to 7 MeV/BX
- **Incoherent pair production**: @Z 350 MeV/BX in each calo, mostly outside fiducial volume •
 - Could be eliminated with thin layer of W **shielding** at inner radius of luminometers ٠
- Potential additional background from off-momentum particles from **beam-gas scattering** deflected by the quadrupoles •
 - vacuum + shielding + coincidence => negligible rate compared to Bhabha •

Central calorimeters: not studied yet, as supposedly not impacted as significantly as vertex detector or very forward regions

FCC-ee - other beam backgrounds

Beam losses on the horizontal primary collimator and the off-momentum collimators

- Dedicated halo collimation system in PF (two-stage betatron and off-momentum) collimation in one insertion)
- Bkg from halo losses at horizontal primary collimator mostly affects tracker endcaps •

Background @Z from losses at off-momentum collimator

	Losses per second (10^9)	Highest occupancy
IPA	0.15	< 0.01% (ITE)
IPD	0.24	0.01% (ITE)
IPG	182.10	14.54% (ITE)
IPJ	37.24	2.86% (ITE)

Studies on bkg from top-up injections are starting

Constraints from accelerators to future e+e--factory experiments - Giovanni Marchiori - 18

(Secondary experiment

CLIC beam-related background (e⁺e⁻, $\gamma\gamma$ \rightarrow hadrons): impact on tracker

Inner detectors are **shielded** from back-scattered particles originating in forward region by 4.8 mm thick steel walls of conical beam pipe sections. The walls point to the IP at an angle $\sim 7^{\circ}$, which defines the forward acceptance of the tracking system.

Flux in trackers, with safety factors $5^*e^+e^-$, $2^*\gamma\gamma \rightarrow$ had:

	380	GeV	3 TeV		
	Minimum Hits[1/mm ² /train]	Maximum Hits[1/mm ² /train]	Minimum Hits[1/mm ² /train]	Maximum Hits[1/mm ² /tr	
	0.2	3.2	0.6	8.8	
OS	0.1	2.7	0.2	8.8	
1	0.0003	0.03	0.002	0.1	
aps	0.0004	0.1	0.002	0.6	

= occupancy for vertex (25x25 um² pixels) : < 2.8%/pixel/train tracker (30x300 um² pixels) : < 0.6%/pixel/train

Radiation damage @ 3TeV:

NIEL damage: 1MeV n_{eq} fluence at most 6e10 n/cm²yr (inner layers) TID: up to 9 Gy/yr in inner layers

In general, fluences and doses much smaller than at LHC

CLIC: impacts of e⁺e⁻ and $\gamma\gamma \rightarrow$ hadrons bkg on calorimeters

- $\gamma\gamma \rightarrow had$ dominates bkg energy in ECAL, IPC (backscattered n from e[±] on BeamCal) in HCAL
- **Occupancy/train** (post-CDR, w/safety factors):
- **Barrel** (no time slicing): ECAL < 1.8% (5x5 mm² cells), HCAL < 0.8% (3x3 cm² cells)

Endcap (assuming 25ns slicing):		38	0 GeV
		max [%]	average [%
	ECal	1.7	0.1
	HCal	100	1.6

- ECAL barrel max occupancy ~30% at lowest R with 200 ns • readout \Rightarrow timestamping
- HCAL: reduction of occupancy from back-scattered neutrons possible from redesign of fwd region (shielding) / detector (more granularity in space / timestamping)

Energy/train (post-CDR, no safety factors)

•

	380) GeV	
-	pairs [TeV]	$\gamma\gamma \rightarrow hadrons \ [TeV]$	pairs [TeV]
ECal barrel	0.1	0.1	0.4
ECal endcap	0.2	0.2	0.7
HCal barrel	1.6×10^{-3}	$6.8 imes 10^{-3}$	7.5×10^{-5}
HCal endcap	75.3	0.1	310.4
Total calorimeter	75.6	0.4	311.5

Constraints from accelerators to future e+e-factory experiments - Giovanni Marchiori - 20

CLIC: impacts of bkg on very forward calorimeters

- Direct hits from **coherent pair production** (CPC) avoided by adopting conical vacuum pipe with half opening angle of 10 mrad for outgoing beam pipe (coherent pair production) very focused around beam direction)
 - Very high rates from **incoherent pair production** (IPC) that are less focused

Energy stage	380 0	380 GeV			
Subdetector	Incoherent pairs [GeV/train]	$\gamma\gamma \rightarrow hadrons$ [GeV/train]	Incohere [GeV/		
LumiCal	68.5	4.5	283		
BeamCal	54730	5.6	270 600		

- **Occupancy:** very large in both LumiCal (~90%/pad/train with pads of 3.75 mm x 13-44 mm) and BeamCal (100%/pad/train with pads of 8x8 mm²) \Rightarrow granularity (pixels?), timing (fast readout)
- **Dose**: max in BeamCal: TID 7 MGy/yr, NIEL up to 1.4e14 $n_{eq}/cm^2yr \rightarrow rad$ hardness
- Side-effect: IPC impact on BeamCal produce **backscattering into inner detectors** e.g. vertex \Rightarrow optimise geometry to reduce amount of backscattered particles to **negligible** compared to bkg from IP:
 - low-Z absorber coating on IP side of BeamCal
 - Increase diameter of vacuum pipe wherever possible •
 - Increase mask of conical part of vacuum pipe on IP side of LumiCal •

CLIC: impacts of bkg on muon system

- Muons from inelastic collisions of beam halo with collimators also included in calculations/simulations
- With pad readout of (RPCs) of 30x30 mm², no time slicing:
 - **Occupancy/train in barrel** < 1% ۲
 - **Occupancy/train in endcap** as high as 100%

in inner radius of endcap yoke

•

	380 GeV		3	_		
	max [%]	average [%]	max [%]	average [%]		
Layer 1	100	1.05	100	1.65		100
Layer 2	100	1.06	100	1.67	rai	100
Layer 3	100	1.00	100	1.63	Ľ,	<u>م</u>
Layer 4	100	0.93	100	1.51	6	00
Layer 5	100	0.93	100	1.52	С С	60
Layer 6	100	1.14	100	2.06	Ipar	00
) C C	40

Can be mitigated with shielding (and further with more granularity)

Backgrounds in ILD-like TPC @ Z-pole

- ILC sits in a "sweet spot" (250-500 GeV) where bkg are not as demanding as @ Z-pole or at 3 TeV •
 - Si tracking / muon detector / sandwich calorimeter technologies for CLIC also well adapted to ILC
- "Relaxed" constraints of ILC environment also favourable for use of a TPC for tracking
- - charge that accumulates and gives rise to space charge that distorts E field

Recent study uses e+e- beamstrahlung pairs from FCC-ee simulations (100 BX @Z) to assess impact on TPC with Geant4

		primary ions / "event"	event rate	primary ions / 0.44 s "TPC frame*"	* maximum ion drift time in TPC = 0.44s
- ILD_I5_v02 with 2T field	Z_had ILD_I5_v02 @ 2T	1.27M	54 kHz	30 x10 ⁹	distortions in r-phi due to ions from hadronic Z decays can be up to O(100) µm, but are stable to O(1) µm [studied
- FCCee_o1_v04 with silicon tracking replaced by TPC	pairs ILD_I5_v02 @ 2T	75 k	33 MHz	1100 x10 ⁹	beamstrahlung gives ~200x more TPC primary ions than hadroni
- ILD TPC only in 2T field	pairs ILD TPC only @ 2T	15 k	33 MHz	220 x10 ⁹	forward region plays a very important role
	pairs FCCee w/ TPC	0.43 M	33 MHz	6200 x10 ⁹	room for optimisation ?

However, ILC detector concepts are being evaluated for use @FCC-ee => severe constraints on TPC due to lon-BackFlow:

lons produced copiously in amplification device, a fraction flows back to drift space and drifts very slowly, leading to positive

Conclusions

- Careful accelerator design reduces the constraints on detectors
- Remaining constraints exist in terms of granularity / time stamping / read-out ... but no showstopper so far
- Radiation hardness should not be an (or a big) issue, at least for the sensors
 - Detailed radiation maps are / will be available = feasibility of using COTS electronic equipment can also • be assessed
- Numbers evolve in parallel with updates of accelerator (& detector) designs as well as with improvements in reconstruction software
 - Particularly for less mature projects such as the circular e+e- machines •

