Physics drives for vertexing & tracking at future electron positron Higgs factories

5/30/2023

Manqi Ruan

Electron Positron Higgs factories

High-priority future initiatives

An electron-positron Higgs factory is the **highest-priority** next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

ILC (a):TDR @ 2013FCC (b):CDR @ 2019CEPC (c):CDR @ 2018CLIC (d):CDR @ 2013

Yields ~ Xsec * Lumi

Key figures of the CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 240 GeV)
 - Higgs factory: 4M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: ~ 4 Tera Z boson
 - Precision test of the SM
 - Rare decay
 - Flavor factory: b, c, tau
 - QCD studies
- Upgradable to ttbar threshold (360 GeV) : 1 M t/t-bar
- SPPC (~ 100 TeV)
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)

- ...

Heavy ion, e-p collision...

5/30/2023

ECFA WG3

Detector & Software

Full simulation reconstruction Chain with Arbor, iterating/validation with hardware studies

Z→2 jet, \checkmark H→2 tau ~5%

ZH \rightarrow 4 jets ~50%

Z→2 muon H→WW*→eevv ~1%

Reconstructed Higgs Signatures

Clear Higgs Signature in all SM decay modes

Massive production of the SM background (2 fermion and 4 fermions) at the full Simulation level

Right corner: di-tau mass distribution at qqH events using collinear approximation 5/30/2023 ECFA WG3

Excellent physics potential

Tera-Z sensitivity

70 OVERVIEW OF THE PHYSICS CASE FOR CEPC

Particle	Tera-Z	Belle II	LHCb
b hadrons			
B^+	$6 imes 10^{10}$	$3 imes 10^{10} (50 \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(4S))$	$3 imes 10^{13}$
B^0	$6 imes 10^{10}$	$3 imes 10^{10} (50 \mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$	$3 imes 10^{13}$
B_s	2×10^{10}	$3 imes 10^8~(5\mathrm{ab^{-1}}~\mathrm{on}~\Upsilon(5S))$	$8 imes 10^{12}$
b baryons	1×10^{10}		1×10^{13}
Λ_b	1×10^{10}		$1 imes 10^{13}$
c hadrons			
D^0	2×10^{11}		
D^+	$6 imes 10^{10}$		
D_s^+	3×10^{10}		
Λ_c^+	2×10^{10}		
$ au^+$	$3 imes 10^{10}$	$5\times 10^{10}(50\mathrm{ab^{-1}}$ on $\Upsilon(4S))$	

 2.8×10^{-7} (CDF) [438] $\sim 7 \times 10^{-10}$ (LHCb) [435] $\sim {\rm few} \times 10^{-10}$ $BR(B_s \rightarrow ee)$ $\sim 1.6 \times 10^{-10}$ (LHCb) [435] $\sim {\rm few} imes 10^{-10}$ $BR(B_s \to \mu\mu)$ 0.7×10^{-9} (LHCb) [437] $\sim 10^{-5}$ $BR(B_s \to \tau \tau)$ 5.2×10^{-3} (LHCb) [441] $\sim 5 \times 10^{-4}$ (LHCb) [435] R_K, R_{K^*} $\sim 10\%$ (LHCb) [443, 444] \sim few% (LHCb/Belle II) [435, 442] ~few % $BR(B \to K^* \tau \tau)$ $\sim 10^{-5}$ (Belle II) [442] $\sim 10^{-8}$ $\sim 10^{-6}$ (Belle II) [442] $\sim 10^{-6}$ $BR(B \to K^* \nu \nu)$ 4.0×10^{-5} (Belle) [449] 1.0×10^{-3} (LEP) [452] $\sim 10^{-6}$ $BR(B_s \to \phi \nu \bar{\nu})$ $\sim 10^{-6}$ $BR(\Lambda_b \to \Lambda \nu \bar{\nu})$ 4.4×10^{-8} (BaBar) [475] $\sim 10^{-9}$ (Belle II) [442] $\sim 10^{-9}$ $BR(\tau \rightarrow \mu \gamma)$ 2.1×10^{-8} (Belle) [476] $\sim \text{few} \times 10^{-10}$ (Belle II) [442] $\sim {\rm few} imes 10^{-10}$ $BR(\tau \rightarrow 3\mu)$ $\frac{\mathrm{BR}(\tau \rightarrow \mu \nu \bar{\nu})}{\mathrm{BR}(\tau \rightarrow e \nu \bar{\nu})}$ 3.9×10^{-3} (BaBar) [464] $\sim 10^{-3}$ (Belle II) [442] $\sim 10^{-4}$ 7.5×10^{-7} (ATLAS) [471] $\sim 10^{-8}$ (ATLAS/CMS) $\sim 10^{-9} - 10^{-11}$ $BR(Z \rightarrow \mu e)$ $BR(Z \to \tau e)$ 9.8×10^{-6} (LEP) [469] $\sim 10^{-6}$ (ATLAS/CMS) $\sim 10^{-8} - 10^{-11}$ 1.2×10^{-5} (LEP) [470] $\sim 10^{-6}$ (ATLAS/CMS) $\sim 10^{-8} - 10^{-10}$ $BR(Z \to \tau \mu)$

Future sensitivity

Current sensitivity

Table 2.5: Order of magnitude estimates of the sensitivity to a number of key observables for which the tera-Z factory at CEPC might have interesting capabilities. The expected future sensitivities assume luminosities of 50 fb^{-1} at LHCb, 50 ab^{-1} at Belle II, and 3 ab^{-1} at ATLAS and CMS. For the tera-Z factory of CEPC we have assumed the production of $10^{12} Z$ bosons.

Observable

Performance requirements

- A clear separation of the final state particles
 - Identification of Physics Objects, isolated & inside jet
 - Single final state particle object, i.e., Leptons
 - Composited objects:
 - Two/three final state particles: Pi-0, K-short, Lambda, Phi,Tau, D meson...
 - Jets
 - Improving the E/P resolution for composited objects, especially jets
- BMR (Boson Mass Resolution)
 - < 4% for Higgs measurements</p>
 - Much demanding for Flavor/New Physics Measurements
- Pid: Pion & Kaon separation > 3 σ
- Jet: Flavor Tagging & Charge Reconstruction
- Flavor Physics: EM resolution, momentum resolution...

Key requirement: BMR

- Boson Mass Resolution: relative mass resolution of vvH, H→gg events
 - Free of Jet Clustering
 - Be applied directly to the Higgs analyses
- The CEPC baseline reaches 3.8%

	BMR = 2%	4%	6%	8%
$\sigma(vvH,H{\rightarrow}bb)$	2.3%	2.6%	3.0%	3.4%
$\sigma(vvH,H{\rightarrow}inv)$	0.38%	0.4%	0.5%	0.6%
σ(qqH, H→ττ)	0.85%	0.9%	1.0%	1.1%

CEPC Baseline: BMR ~ 3.8%

Fig. 7 Distribution of the recoil mass of the qq, M_{qq}^{recoil} for $Z \rightarrow qq$, $H \rightarrow \tau \tau$ and each background at $\sqrt{s} = 240$ GeV after the previous cuts

Vertex

Track momentum resolution...

Impact Para. Reconstruction: Tau finding, exotic signals...

Jet: Flavor Tagging & Charge measurements...

Vertex

	R(mm)	Z(mm)	single-point	material
			resolution(µm)	budget
Layer 1	16	62.5	2.8	0.15%/X ₀
Layer 2	18	62.5	6	0.15%/X ₀
Layer 3	37	125.0	4	0.15%/X ₀
Layer 4	39	125.0	4	0.15%/X ₀
Layer 5	58	125.0	4	0.15%/X ₀
Layer 6	60	125.0	4	0.15%/X ₀

 Table 2. Reference geometries.

	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/µm	1.4 - 3	2.8 - 6	5 - 10.7
R _{in} /mm	8	16	23

Flavor Tagging

- LCFIPlus Package
- Typical Performance at Z pole sample:
 - B-tagging: eff/purity = 80%/90%
 - C-tagging: eff/purity = 60%/60%
- Geometry Dependence of the Performance evaluated

https://agenda.linearcollider.org/event/7645/contributions/40124/ ECFA WG3

H→bb, cc, gg

- Core physics measurements, benchmarks for BMR, Flavor Tagging & Color Singlet Identification
- Tactic
 - Analysis
 - Concentrate Higgs to di-jet event using Cut Chain + BDT
 - Using Flavor Tagging to disentangle different decay modes, and extract/resolve the relevant signal strengths
 - Optimization
 - Modeling the different Flavor tagging performance using interpolation method, and resolve the corresponding accuracies
- Ref:
 - JINST 13 T09002 (2018)
 - JHEP 11 (2022) 100

vvH, H→bb, cc, gg

	vvHqq̄/gg	2f	SW	SZ	WW	ZZ	Mixed	ZH	$\frac{\sqrt{S+B}}{S}$ (%)
total	178890	8.01 <i>E</i> 8	1.95E7	9.07E6	5.08E7	6.39E6	2.18E7	961606	16.86
recoilMass (GeV) $\in (74, 131)$	157822	5.11 <i>E</i> 7	2.17E6	1.38E6	4.78E6	1.30 <i>E</i> 6	1.08E6	74991	4.99
<i>visEn</i> (GeV) ∈ (109, 143)	142918	2.37E7	1.35E6	8.81 <i>E</i> 5	3.60E6	1.03 <i>E</i> 6	6.29E5	50989	3.92
<i>leadLepEn</i> (GeV) ∈ (0, 42)	141926	2.08E7	3.65E5	7.24E5	2.81 <i>E</i> 6	9.72 <i>E</i> 5	1.34 <i>E</i> 5	46963	3.59
multiplicity ∈ (40, 130)	139545	1.66E7	2.36E5	5.24E5	2.62E6	9.07 <i>E</i> 5	4977	42751	3.29
$leadNeuEn (GeV) \\ \in (0, 41)$	138653	1.46E7	2.24E5	4.72E5	2.49E6	8.69 <i>E</i> 5	4552	42303	3.12
<i>Pt</i> (GeV) ∈ (20, 60)	121212	248715	1.56E5	2.48E5	1.51 <i>E</i> 6	4.31 <i>E</i> 5	999	35453	1.37
<i>PI</i> (GeV) € (0, 50)	118109	52784	1.05 <i>E</i> 5	74936	7.30E5	1.13 <i>E</i> 5	847	34279	0.94
-log10(Y23) ∈ (3.375, +∞)	96156	40861	26088	60349	2.25E5	82560	640	10691	0.76
InvMass (GeV) ∈ (116, 134)	71758	22200	11059	6308	77912	13680	248	6915	0.64
BDT ∈ (−0.02, 1)	60887	9140	266	2521	3761	3916	58	1897	0.47

Thanks to BMR ~ 3.8%!

10

Flavor tagging @ vvH

g

b

С

С

ECFA WG3

Flavor tagging V.S VTX geometry

$$\epsilon \cdot p = 0.095(1 - 0.14 \frac{\Delta x_{\text{material}}}{x_{\text{material}}})(1 - 0.09 \frac{\Delta x_{\text{resolution}}}{x_{\text{resolution}}})(1 - 0.23 \frac{\Delta x_{\text{radius}}}{x_{\text{radius}}})(1 - 0.23 \frac{\Delta x_{\text{radius}}}{x_{\text{radiu$$

Table 2. Reference geometries.

	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/ μm	1.4 - 3	2.8 - 6	5 - 10.7
R _{in} /mm	8	16	23
trace	2.3	2.1	1.9

$$Tr_{\rm mig} = 2.35 + 0.05 \cdot \log_2 \frac{R_{\rm material}^0}{R_{\rm material}} + 0.04 \cdot \log_2 \frac{R_{\rm resolution}^0}{R_{\rm resolution}} + 0.10 \cdot \log_2 \frac{R_{\rm radius}^0}{R_{\rm radius}}$$

5/30/2023

Vertex

- Vertex: track impact para & 2nd vertex reconstruction: Flavor Tagging, etc
 - As close to the IP as possible

- Limited by the beam induced background (~ beam energy & B-Field) $_{5/30/2023}$

qqH, H→bb, cc, gg

	qqHqq	2f	SW	SZ	WW	ZZ	Mixed	ZH	$\frac{\sqrt{S+B}}{S}(\%)$
total	527488	8.01 <i>E</i> 8	1.95E7	9.07E6	5.08E7	6.39E6	2.18 E 7	613008	5.71
multiplicity ∈ (27, +∞)	527488	3.04 E 8	1.46E7	3.37E6	4.85E7	6.00 <i>E</i> 6	1.81 <i>E</i> 7	577930	3.77
<i>leadLepEn</i> ∈ (0, 59)	527036	2, 98E8	6.76E6	2.44 E 6	3.93E7	5.40 E 6	1.79 E 7	531411	3.65
visEn ∈ (199, 278)	510731	1.21 <i>E</i> 8	1.29 E 6	551105	2.14E7	3.06 E 6	1.71E7	180571	2.52
leadNeuEn ∈ $(0, 57)$	509623	5.68E7	716161	168030	2.04E7	2.93 <i>E</i> 6	1.65E7	176387	1.94
thrust ∈ (0, 0.86)	460535	7.81 <i>E</i> 6	473732	132126	1.88E7	2.60E6	1.54 E 7	167863	1.47
$-log(Y_{34}) \in (0, 5.8875)$	451468	4.90 <i>E</i> 6	181432	119836	1.74E7	2.40 <i>E</i> 6	1.45 E 7	165961	1.40
HiggsJetsA $\in (2.18, 2\pi)$	326207	2.83E6	110156	58613	4.54E6	870276	3.74E6	96560	1.08
ZJetsA $\in (1.97, 2\pi)$	279030	1.37 <i>E</i> 6	33491	37101	2.39 E 6	496611	2.00E6	74005	0.93
ŻHiggsA ⊂ ∈ (2.32, 2π)	274530	1.32 <i>E</i> 6	17026	33847	2.28E6	468340	1.91E6	69620	0.92
circle	268271	1.20E6	10193	31567	2.13E6	424514	1.79E6	65434	0.90
BDT = (0.02, 1)	192278	378300	40	307	271436	141446	244126	30022	0.57

Relative accuracies on signal strength: 0.35%/7.7%/4.0%, for bb/cc/gg respectively. ²⁰

Interpolation

 Compared to baseline, perfect Flavor tagging improves the accuracy by 2%/63%/13% for vvH and 35%/120%/180% for qqH channels (bb, cc, gg)

Vcb from W decay

5/30/2023

ECFA WG3

Vertex

Similar performance dependence on CKM measurements at 240 GeV using semi-leptonic WW events

...ALICE ITS3...

Vin

- Tr(MM) in the barrel
 - 2.45 for baseline (?)
 - 2.55 for 8 mm inner radius (9 mm)
- Compared to Baseline:
 - 10 mm beam pipe with silicon outside/inside improves the accuracy of g(Hcc) and |Vcb| measurement by ~20%
- Vin:
 - Pro:
 - Closer to the IP with same beam pipe radius
 - No multiple scattering to the 1st layer
 - Loose the material constrain of beam pipe: more efficient cooling, etc
 - Challenges:
 - Vacuum level
 - Radiation tolerance
 - Power & Signal → Wireless?

Perspective to the far future

• Much intelligent algorithm...: ~ 50% improvements

Tracker

Tracking & Pid

Requirement

- Acceptance |cos(theta)| < 0.99 0.995...
- Momentum threshold: $\sim o(0.1 \text{ GeV})$ for Flavor Program (D* \rightarrow D + pi)
- Efficiency: should ~ 100% within the energy & solid angle acceptance
- Momentum resolution:
 - $\delta(m)/m \sim 0.1\%$ for Higgs with di-muon final state
 - $\delta(m)/m < 0.1\%$ for narrow hadrons in the flavor program
 - Heavy flavor Hadron: D, B, ...
 - Lambda, Ks, Phi...
 - J/psi, Upsilon, ...
- Pid:
 - 3 sigma pi-kaon separation
 - 3% dE/dx (dN/dx) resolution
 - > 95% efficiency/purity for charged Kaon id in hadronic Z sample

Tracking performance at baseline

Bs→Phi vv

PHYSICAL REVIEW D 105, 114036 (2022)

https://arxiv.org/pdf/2201.07374.pdf

FIG. 1. The penguin and box diagrams of $b \to s \nu \bar{\nu}$ transition at the leading order.

- Key ingredient to understand FCNC anomaly...
- Critical Physics Objects: Phi (and charged Kaon), 2nd VTX, Missing E/P, b-jet at opposite side
- Percentage level accuracy anticipated at Tera-Z

Bs→Phi vv

Bs→Jpsi/Phi

	LHCb(HL-LHC)	CEPC(Tera-Z)	CEPC/LHCb
$b\overline{b}$ statics	43.2×10^{12}	0.152×10^{12}	1/284
Acceptance×efficiency	7%	75%	10.7
Br	6×10^{-6}	12×10^{-6}	2
Flavour tagging	4.7%	20%	4.3
Time resolution $(\exp(-\frac{1}{2}\Delta m_s^2 {\sigma_t^2}^2))$	0.52	1	1.92
scaling factor $ar{\xi}$	0.0014	0.0019	0.8
$\sigma(\phi_s)$	$3.3 \mathrm{\ mrad}$	$4.3 \mathrm{mrad}$	

3.5

3

2.5 E

2 F

1.5 E

0.5 E

0

10

20

o/σ(baseline)

0.06

Time resolution [ps]

0.08

0.02

0.04

3

2.5

2

1.5

0.5

00

 σ/σ (baseline)

30

40

Tagging power [%]

ΔI

https://arxiv.org/abs/2205.10565

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF)

Eur. Phys. J. C (2018) 78:464

Dedx at truth level: Differential

5/30/2023

ECFA WG3

Pid performance

Nuclear Inst. and Methods in Physics Research, A 1047 (2023) 167835

ECFA WG3

5/30/2023

37

IDEA Pid based on dN/dx

Particle Separation (dE/dx vs dN/dx)

Convention difference case 40% difference in separation power counting

2.5 Tracker Scenarios

- Our understanding to Beam background & MDI design not fully converged
 - Beamstrahlung background seems to be very challenge to gaseous tracker
- I will discuss mainly the 1st scenario (Left) :
 - Tracker inner radius of 25 cm to have good Pid in fwd region
- The 2.5 scenario: Silicon Tracker with Pid (like AMS, with much better precision...)

BMR VS upstream material

- Baseline: 10% X0 material in the barrel region.
- Would be great to half the upstream material.

ECFA WG3

Summary

- Future electron positron Higgs factory requires outstanding vertex & tracking
- Vertex: critical to tau finding, flavor tagging, etc.
 - From CEPC baseline: go closer, lighter & thinner
 - Propose Vin: to have inner most silicon layer inside beam pipe which could enhance the H->cc measurements by at least 20% compared to baseline
 - Advanced algorithms could significant boost the performance: need more study
- Track: Pid & Tracking
 - Verify the compatibility to the beam background & event rate with increasing luminosity: especially for large volume gaseous detector
 - ~o(100 MeV) Pt threshold, ~o(0.1%) relative momentum resolution, material < 0.1 X0
 - Pid:
 - Essential for the flavor physics: i.e. time-dependent CP measurements as it has significant impact on jet charge determination.
 - Via dE/dx (dN/dx) + ToF: 3% relative accuracy required for the barrel region
 - Geo. Acceptance is crucial, especially for Z factory modes. Smaller inner radius, or dedicated Pid device in the fwd!

Backup

Pid: Identify charged hadrons with energy up to 20 GeV...

Fig. 3 Kinematic distribution of kaons in $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ MC events as a function of log(p) and cos θ (a), p (b), and cos θ (c)

Pid & dEdx

Fenfen, Taifan, Zhiyang, etc

MC result of single-particle events with the theoretical prediction by the Bethe equation [16] overlaid. In the right plot the dots are from simulation of $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ events

Fig. 6 The scaled spectra of $(I - I_K)/\sigma_I$ using dE/dx measurements alone for particles with a momentum of 5 GeV/c, assuming a 20% degradation. The relative populations are $N_{\pi} = 4.4N_K$ and $N_K = 2.3N_p$ according to MC simulation. The intersections marked by the arrows are chosen as the cut points

ECFA WG3

MumuH, H->tautau measurements

Table 2. Efficiencies of signal and background in the model-independent analysis

	${\rm Z}(\mu^+\mu^-){\rm H}$	ZZ	WW	ZZ or WW	single Z	Z(2f)	$\gamma\gamma$
total generated	35247	5347053	44180832	17801222	7809747	418595861	161925000
$N_{\mu^+} \ge 1, N_{\mu^-} \ge 1$	95.7%	11.95%	0.65%	3.92%	9.75%	1.64%	17.31%
$120 \text{ GeV} < M_{\text{recoil}} < 150 \text{ GeV}$	93.2%	1.71%	0.23%	0.70%	1.93%	0.17%	3.06%
$80 \text{ GeV} < M_{\mu^+\mu^-} < 100 \text{ GeV}$	85.5%	0.68%	0.06%	0.22%	0.22%	0.10%	0.11%
$p_{\mathrm{T}\mu^+\mu^-} > 20 \mathrm{GeV}$	80.2%	0.57%	0.06%	0.17%	0.16%	0.02%	0.04%
$\Delta \phi < 175^{\circ}$	77.8%	0.51%	0.05%	0.17%	0.15%	0.01%	0.04%
BDT cut	63.0%	0.25%	0.01%	0.05%	0.06%	0.01%	0.01%
fit window	62.8%	0.25%	0.01%	0.05%	0.05%	0.01%	0.01%

MumuH, H->tautau measurements

Figure 6. The Λ distribution of the signal (a) and background (b) for τ -tagging in baseline design.

Table 5. Maximum $\epsilon \cdot p$ value comparison for the $Br(H \to \tau^+ \tau^-)$ measurement.

	Scenario A	Scenario B	Scenario C
$\epsilon \cdot p$	0.77 ± 0.01	0.71 ± 0.01	0.68 ± 0.01

5/30/2023

Eur. Phys. J. Plus (2020) 135:274 https://doi.org/10.1140/epjp/s13360-020-00272-4

Regular Article

THE EUROPEAN PHYSICAL JOURNAL PLUS

Reconstructing K_S^0 and Λ in the CEPC baseline detector

Taifan Zheng¹, Jike Wang², Yuqiao Shen³, Yeuk-Kwan E. Cheung¹, Manqi Ruan^{4,a}

¹ School of Physics, Nanjing University, Nanjing, China
 ² The Institute for Advanced Studies, Wuhan University, Wuhan, China

³ Changzhou Institute of Technology, Changzhou, Jiangsu, China

⁴ Institute of High Energy Physics, Beijing, China

Fig. 7 All reconstructed mass distributions of K_S^0 and Λ . They are fitted with double-sided crystal ball functions

ECFA WG3

Fig. 9 Energy dependence of $\epsilon_{\rm R}$ and *P*

ECFA WG3

Л (%)
70.1
27.3
86.4%
0.606
0.236

Table 3	K_S^0 and Λ	reconstruction	performance
---------	-----------------------	----------------	-------------

Table 4	Estimation of K_S^0	and Λ	reconstruction	performance	assuming ideal I	PID
---------	-----------------------	---------------	----------------	-------------	------------------	-----

Particle	K_S^0		Λ
ε _R	82.4%		89.1%
ϵ_{T}	41.2%		34.7%
Р	97.2%		94.6%
$\epsilon_{\mathbf{R}} \cdot P$	0.801	eff_T = eff_R*Br(X->all tracks)	0.843
$\epsilon_{\mathrm{T}} \cdot P$	0.400		0.327