Physics drives for vertexing & tracking at future electron positron Higgs factories

Manqi Ruan

Electron Positron Higgs factories

High-priority future initiatives

An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

ILC (a): TDR @ 2013 FCC (b): CDR @ 2019 CEPC (c): CDR @ 2018 CLIC (d): CDR @ 2013

Yields ~ Xsec * Lumi

5/30/2023 ECFA WG3 3

Key figures of the CEPC-SPPC

- **Tunnel ~ 100 km**
- **CEPC (90 240 GeV)**
	- Higgs factory: **4M** Higgs boson
		- Absolute measurements of Higgs boson width and couplings
		- Searching for exotic Higgs decay modes (New Physics)
	- Z & W factory: **~ 4 Tera** Z boson
		- Precision test of the SM
		- Rare decay
		- \bullet Flavor factory: b, c, tau
		- **QCD** studies
- **Upgradable to ttbar threshold (360 GeV)** : **1 M t/t-bar**
- **SPPC (~ 100 TeV)**
	- Direct search for new physics
	- Complementary Higgs measurements to CEPC g(HHH), g(Htt)

– ...

• Heavy ion, e-p collision...

Detector & Software

Full simulation reconstruction Chain with Arbor, iterating/validation with hardware studies

Reconstructed Higgs Signatures

Clear Higgs Signature in all SM decay modes

Massive production of the SM background (2 fermion and 4 fermions) at the full Simulation level

5/30/2023 ECFA WG3 7 *Right corner: di-tau mass distribution at qqH events using collinear approximation*

Excellent physics potential

Tera, Z sensitivity

70 OVERVIEW OF THE PHYSICS CASE FOR CEPC

Particle	Tera- Z	Belle II	LHCb
<i>b</i> hadrons			
B^+	6×10^{10}	3×10^{10} (50 ab ⁻¹ on $\Upsilon(4S)$)	3×10^{13}
B^0	6×10^{10}	3×10^{10} (50 ab ⁻¹ on $\Upsilon(4S)$)	3×10^{13}
B_{s}	2×10^{10}	3×10^8 (5 ab ⁻¹ on $\Upsilon(5S)$)	8×10^{12}
b baryons	1×10^{10}		1×10^{13}
Λ_b	1×10^{10}		1×10^{13}
c hadrons			
D^0	2×10^{11}		
D^+	6×10^{10}		
D_s^+	3×10^{10}		
Λ_c^+	2×10^{10}		
τ^+	3×10^{10}	5×10^{10} (50 ab ⁻¹ on $\Upsilon(4S)$)	

Future concitivity

Current concitivity

Table 2.5: Order of magnitude estimates of the sensitivity to a number of key observables for which the tera-Z factory at CEPC might have interesting capabilities. The expected future sensitivities assume luminosities of 50 fb^{-1} at LHCb, 50 ab^{-1} at Belle II, and 3 ab⁻¹ at ATLAS and CMS. For the tera-Z factory of CEPC we have assumed the production of $10^{12} Z$ bosons.

Observable

Performance requirements

- A clear separation of the final state particles
	- Identification of Physics Objects, isolated & inside jet
		- Single final state particle object, i.e., Leptons
		- Composited objects:
			- Two/three final state particles: Pi-0, K-short, Lambda, Phi,Tau, D meson...
			- Jets
	- Improving the E/P resolution for composited objects, especially jets
- BMR (Boson Mass Resolution)
	- < 4% for Higgs measurements
	- Much demanding for Flavor/New Physics Measurements
- Pid: Pion & Kaon separation $>$ 3 σ
- Jet: Flavor Tagging & Charge Reconstruction
- Flavor Physics: EM resolution, momentum resolution...

Key requirement: BMR

- Boson Mass Resolution: relative mass \bullet resolution of vvH, H→gg events
	- Free of Jet Clustering
	- Be applied directly to the Higgs analyses
- The CEPC baseline reaches 3.8%

CEPC Baseline: BMR ~ 3.8%

Fig. 7 Distribution of the recoil mass of the *qq, M*^{recoil} for $Z \rightarrow$ $qq, H \rightarrow \tau \tau$ and each background at $\sqrt{s} = 240 \,\text{GeV}$ after the previous cuts

Vertex

Track momentum resolution...

Impact Para. Reconstruction: Tau finding, exotic signals...

Jet: Flavor Tagging & Charge measurements...

Vertex

Table 2. Reference geometries.

Flavor Tagging

- **LCFIPlus Package**
- **Typical Performance at** Z pole sample:
	- *B-tagging: eff/purity = 80%/90%*
	- *C-tagging: eff/purity = 60%/60%*
- **Geometry Dependence** of the Performance evaluated

5/30/2023 ECFA WG3 14 *https://agenda.linearcollider.org/event/7645/contributions/40124/*

$H\rightarrow bb$, cc, gg

- Core physics measurements, benchmarks for BMR, Flavor Tagging & Color Singlet Identification
- Tactic
	- Analysis
		- Concentrate Higgs to di-jet event using Cut Chain + BDT
		- Using Flavor Tagging to disentangle different decay modes, and extract/resolve the relevant signal strengths
	- Optimization
		- Modeling the different Flavor tagging performance using interpolation method, and resolve the corresponding accuracies
- \cdot Ref:
	- *JINST 13 T09002 (2018)*
	- *JHEP 11 (2022) 100*

vvH, H→bb, cc, gg

Thanks to BMR \sim 3.8%!

Flavor tagging @ vvH

Flavor tagging V.S VTX geometry

$$
\epsilon \cdot p = 0.095(1 - 0.14 \frac{\Delta x_{\text{material}}}{x_{\text{material}}})(1 - 0.09 \frac{\Delta x_{\text{resolution}}}{x_{\text{resolution}}})(1 - 0.23 \frac{\Delta x_{\text{radius}}}{x_{\text{radius}}})
$$

Table 2. Reference geometries.

	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/ μ m	$1.4 - 3$	$2.8 - 6$	$5 - 10.7$
R_{in}/mm		16	23
trace	2.3		1 Q

$$
Tr_{\rm mig}=2.35+0.05\cdot log_2\frac{R_{\rm material}^0}{R_{\rm material}}+0.04\cdot log_2\frac{R_{\rm resolution}^0}{R_{\rm resolution}}+0.10\cdot log_2\frac{R_{\rm radius}^0}{R_{\rm radius}}
$$

Vertex

- Vertex: track impact para $\& 2^{nd}$ vertex reconstruction: Flavor Tagging, etc
	- As close to the IP as possible

 $5/30/2023$ 19 - Limited by the beam induced background (~ beam energy & B-Field)

qqH, H→bb, cc, gg

Relative accuracies on signal strength: 0.35%/7.7%/4.0%, for bb/cc/gg respectively. 20

Interpolation

• Compared to baseline, perfect Flavor tagging improves the accuracy by 2%/63%/13% for vvH and 35%/120%/180% for qqH channels (bb, cc, gg)

Vcb from W decay

5/30/2023 ECFA WG3 22

Vertex

Similar performance dependence on CKM measurements at 240 GeV using semi-leptonic WW events

...ALICE ITS3...

Vin

- $Tr(MM)$ in the barrel
	- 2.45 for baseline (?)
	- 2.55 for 8 mm inner radius (9 mm)
- Compared to Baseline:
	- 10 mm beam pipe with silicon outside/inside improves the accuracy of g(Hcc) and |Vcb| measurement by ~20%
- Vin:
	- Pro:
		- Closer to the IP with same beam pipe radius
		- No multiple scattering to the $1st$ layer
		- Loose the material constrain of beam pipe: more efficient cooling, etc
	- Challenges:
		- Vacuum level
		- Radiation tolerance
		- Power & Signal \rightarrow Wireless?

5/30/2023 ECFA WG3 25

Perspective to the far future

Much intelligent algorithm...: \sim 50% improvements

Tracker

Tracking & Pid

Requirement

- Acceptance $|cos(theta)| < 0.99 0.995...$
- Momentum threshold: \sim o(0.1 GeV) for Flavor Program (D^{*} \rightarrow D + pi)
- Efficiency: should \sim 100% within the energy & solid angle acceptance
- Momentum resolution:
	- δ (m)/m ~ 0.1% for Higgs with di-muon final state
	- δ (m)/m < 0.1% for narrow hadrons in the flavor program
		- Heavy flavor Hadron: D, B, \ldots
		- Lambda, Ks, Phi...
		- J/psi, Upsilon, ...
- Pid:
	- 3 sigma pi-kaon separation
	- 3% dE/dx (dN/dx) resolution
	- > 95% efficiency/purity for charged Kaon id in hadronic Z sample

Tracking performance at baseline

Bs→Phi vv

PHYSICAL REVIEW D 105, 114036 (2022)

https://arxiv.org/pdf/2201.07374.pdf

 $FIG. 1.$ The penguin and box diagrams of $b \to s \nu \bar{\nu}$ transition at the leading order.

- Key ingredient to understand FCNC anomaly...
- Critical Physics Objects: Phi (and charged Kaon), 2nd VTX, Missing E/P, b-jet at opposite side
- Percentage level accuracy anticipated at Tera-Z

Bs→Phi vv

Bs→Jpsi/Phi

 3.5

 $3E$

 $2.5E$

 2ξ

 $1.5\frac{1}{5}$

1 F

 $0.5E$

 $\boldsymbol{0}$

 10

20

 σ / σ (baseline)

https://arxiv.org/abs/2205.10565

0.06

Time resolution [ps]

 0.08

 0.02

0.04

 \mathbf{r}

2.5

 $\overline{2}$

 1.5

 0.5

 0_0

 σ / σ (baseline)

 30

40

Tagging power [%]

ΛI

Theory predictio

Kaon 10_{II} $10\square$ K/π K/π dE/dx $\boldsymbol{9}$ $\boldsymbol{0}$ $\begin{array}{c} 8 \\ 7 \end{array}$ μ/π K/π TOF $8\square$ separation / σ separation / σ 7 K/p K/π dE/dx+TOF $6E$ 6 5 4 $\overline{2}$ $\overline{2}$ $\mathbf{0}$ $\mathbf{0}$ $10²$ $10²$ 10 10 1 1 $p(GeV/c)$ $p(GeV/c)$

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF)

Dedx at truth level: Differential

Pid performance

Nuclear Inst. and Methods in Physics Research, A 1047 (2023) 167835

5/30/2023 ECFA WG3 36

IDEA Pid based on dN/dx

Particle Separation (dE/dx vs dN/dx)

Convention difference case 40% difference in separation power counting

2.5 Tracker Scenarios

- Our understanding to Beam background & MDI design not fully converged
	- Beamstrahlung background seems to be very challenge to gaseous tracker
- I will discuss mainly the $1st$ scenario (Left) :
	- Tracker inner radius of 25 cm to have good Pid in fwd region
- The 2.5 scenario: Silicon Tracker with Pid (like AMS, with much better precision...)

BMR VS upstream material

- Baseline: 10% X0 material in the barrel region.
- Would be great to half the upstream material.

Summary

- Future electron positron Higgs factory requires outstanding vertex & tracking
- Vertex: critical to tau finding, flavor tagging, etc.
	- From CEPC baseline: go closer, lighter & thinner
	- Propose **Vin**: to have inner most silicon layer inside beam pipe which could enhance the H->cc measurements by at least 20% compared to baseline
	- **Advanced algorithms** could significant boost the performance: need more study
- Track: Pid & Tracking
	- Verify the compatibility to the beam background & event rate with increasing luminosity: especially for large volume gaseous detector
	- \sim o(100 MeV) Pt threshold, \sim o(0.1%) relative momentum resolution, material < 0.1 X0
	- Pid:
		- Essential for the flavor physics: i.e. time-dependent CP measurements as it has significant impact on jet charge determination.
		- Via dE/dx (dN/dx) + ToF: 3% relative accuracy required for the barrel region
		- Geo. Acceptance is crucial, especially for Z factory modes. **Smaller inner radius, or dedicated Pid** device in the fwd!

Backup

Pid: Identify charged hadrons with energy up to 20 GeV...

Fig. 3 Kinematic distribution of kaons in $e^+e^- \to Z \to q\bar{q}$ MC events as a function of $log(p)$ and $cos \theta$ (a), p (b), and $cos \theta$ (c)

Pid & dEdx

Fenfen, Taifan, Zhiyang, etc

MC result of single-particle events with the theoretical prediction by the Bethe equation [16] overlaid. In the right plot the dots are from simulation of $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ events

Fig. 6 The scaled spectra of $(I - I_K)/\sigma_I$ using dE/dx measurements alone for particles with a momentum of 5 GeV/c, assuming a 20% degradation. The relative populations are N_{π} = 4.4 N_K and N_K = $2.3N_p$ according to MC simulation. The intersections marked by the arrows are chosen as the cut points

MumuH, H->tautau measurements

Efficiencies of signal and background in the model-independent analysis Table 2.

MumuH, H->tautau measurements

Figure 6. The Λ distribution of the signal (a) and background (b) for τ -tagging in baseline design.

Table 5. Maximum $\epsilon \cdot p$ value comparison for the $Br(H \to \tau^+\tau^-)$ measurement.

	Scenario A	Scenario B	Scenario C
	\mathbf{z} ± 0.01	9.71 ± 0.01	0.68 ± 0.01
5/30/2023	1.1111100		

Eur. Phys. J. Plus (2020) 135:274 https://doi.org/10.1140/epjp/s13360-020-00272-4

Regular Article

THE EUROPEAN PHYSICAL JOURNAL PLUS

Reconstructing K_S^0 and Λ in the CEPC baseline detector

Taifan Zheng¹, Jike Wang², Yuqiao Shen³, Yeuk-Kwan E. Cheung¹, Manqi Ruan^{4,a}

¹ School of Physics, Nanjing University, Nanjing, China
² The Institute for Advanced Studies, Wuhan University, Wuhan, China

³ Changzhou Institute of Technology, Changzhou, Jiangsu, China

⁴ Institute of High Energy Physics, Beijing, China

Fig. 7 All reconstructed mass distributions of K_S^0 and Λ . They are fitted with double-sided crystal ball functions

Fig. 9 Energy dependence of ϵ_R and P

5/30/2023 ECFA WG3 49

 \overline{a}

