

ECFA PED study on future e+e- EW/Higgs/Top/Flavour factories ECFA WG3: Topical workshop on tracking and vertexing

Conceptual designs and R&D challenges for vertex detectors and silicon trackers

"how the detectors in the concepts would fit within the constraints and deliver the needed performance, and what are the R&D challenges towards making the concept a reality"

 \Rightarrow Not a technology R&D overview

I want the ideal detector, just make it !

Physicists doing physics studies

A matter of priority ?

Give me space and materials for my cables and mechanical supports. Can I add some concrete to make it stiffer ?

Integration experts

I can design a wonderful chip with smart pixels that can make coffee. Do you really need that resolution ?

Chip designers

We decided to build a beam pipe with Lead. Beam background is an unvoidable collateral damage

Machine detector interface experts

Tracking/vertexing detectors in future e⁺e⁻ colliders

CLICdet

(From D. Dannheim)

Large similarities between the concepts but also significant differences

Tracker requirements

- Material budget vs intrinsic resolution
	- \checkmark Typically σ_{sp} ~5-10 µm/layer ; material ~1-2% X₀/layer ; Power ~< 100 mW/cm²
	- \checkmark Low momentum vs high momentum

Vertex/tracking detector comments

- Particle ID has to be included in the tracker concept
	- \checkmark dEdx and/or dNdx and/or fast timing
- Inner and outer radius are key factors
- Forward acceptance (e.g. asymmetry measurements)
	- \checkmark Limited by MDI constraints, beam pipe, luminosity measurements, etc.
		- 30 mrad acceptance (FCCee)
- B-field
	- \checkmark Limited to 2 T in circular machine ($\mathcal Q$ Z-pole)
- Beam structure
	- \checkmark Power pulsing only for linears
- **Background**
	- \checkmark Beamstrahlung (incoherent e+e- pairs)
		- Occupancy driver for linears
		- Less severe for circular (\Rightarrow Rmin reduction ~10mm))
	- \checkmark Synchrotron radiation (mainly circulars)
		- Possible shielding (increase beampipe material budget)
- **Geometry**
	- Probably 5-6 layers VTX (R < 60 mm)
		- Robustness (standalone tracking)
		- low momentum tracking
		- Track seeding @ different radii
		- e.g. FIPs, highly ionizining particles, LLPs, etc.
	- \checkmark « long barrel » (sticking the first measurement point to the beam pipe)
		- Minimize « Rmin » w.r.t. to « short barrel+disk » approach.
- Trigger-less

Silicon detectors

Silicon tracking detector figure of merit

- Ultimate performances look like the ideal tracking or vertexing detector. However
	- \checkmark Very precise \Rightarrow not that fast
	- \checkmark Very fast \Rightarrow large pitch and/or large Power
- Need a **hierarchy** or **specialized** layers
	- \checkmark Governed by physics requirements and experimental conditions
	- Fast timing and small granularity/low material budget are very antagonist
	- R&D needed to improve the parameter space

Silicon detectors landscape

• A very active area. e.g. see

- [2021: ECFA Detector R&D Roadmap Symposium of Task Force 3 Solid State Detectors](https://indico.cern.ch/event/1044975/contributions/?config=0d068a40-df13-42c0-b415-7cf8db16ac6c)
- 2022: VCI 16th Vienna [conference](https://indico.cern.ch/event/1044975/contributions/?config=0d068a40-df13-42c0-b415-7cf8db16ac6c)
- [2022: 15th Pisa Meeting on Advanced Detectors](https://agenda.infn.it/event/22092/timetable/?view=standard#b-26804-solid-state-detectors)
- [2022: AIDAInnova](https://indico.cern.ch/event/1104064/timetable/20220329.detailed) [Kick-off meeting](https://indico.cern.ch/event/1104064/timetable/20220329.detailed)
- [2022: Vertex2022](https://indico.cern.ch/event/1140707/)
- [2022: PIXEL2022](http://physics.unm.edu/Pixel2022/)
- [ALICE ITS-3 CERN Detector seminar](https://indico.cern.ch/event/1071914/) [\(M. Mager\)](https://indico.cern.ch/event/1071914/)
- [2023: Implementation of TF3 Solid State Detectors](https://indico.cern.ch/event/1214410/)

TF3 Symposium: Solid State Detectors

D. Bortoletto, N. Cartiglia, D. Contardo, I. Gregor, G. Kramberger, G. Pellegrini, H. Pernegger.

ECFA Detector R&D Roadmap

Also for trackingSolid state detectors for future (4D) trackers

Si-Strips Without With avalanche gain avalanche gain Also for vertexing Low-gain mode **High and Geiger mode Hybrid Monolithic** (LGADs) (APD, SPADs) DEPFET, FPCCD, **BiCMOS** DC-AC-**BiCMOS** Planar 3D **Passive CMOS Si/Diamond Si/Diamond** coupled coupled $(SiGe)$ **CMOS** $(SiGe)$ SOI Fast timing, radiation hardness Granularity, low power, low material budget

Plenty of R&Ds to follow carefully…

An example of R&D: TPSCo 65 nm CMOS technology

- 65 nm feature size technology
	- \checkmark Main driver: CERN EP R&D WP 1.2 & ALICE ITS-3 upgrades
		- **Privileged relation between CERN with the** foundry
- Added values
	- \checkmark Larger wafers (\Rightarrow 30 cm)
	- \checkmark More functionalities inside the pixel
	- \checkmark Keeps pixel dimensions small \Rightarrow spatial res.
	- Potentially faster read-out
	- Lower Power consumption
	- \checkmark Synergy with Higgs factories requirements
- First submission: MLR1 (2020)
	- \checkmark Validated the technology for HEP
- 2nd Submission ER1 (2022-23)
	- Dedicated to ITS3 (MOSS/MOST; stitching)

Challenge 1: the spatial resolution

Spatial resolution in Higgs factories

• Typical targets:

- $\sqrt{\sigma_{sp}}$ ~3 µm for the vertex layers
- $\frac{1}{\sigma_{\rm SD}}$ -5-10 µm for the outer tracker layers
- Resolution in each layer depends on

\checkmark Pitch

- In conflict with the functionnalities inside the pixel
- Favored by small feature size technology
- \checkmark Charge deposition
	- **Sensitive layer thickness**
- \checkmark Charge sharing (SNR vs resolution)
	- **Depletion:**
	- Staggered pixels
- Charge encoding

Elongated clusters: low pT tagging

Challenge 2: time resolution

Timing & 4-D tracking

- Time resolution Δt
	- \checkmark Bunch separation (3 μ s / 1 μ s / 20 ns @ FCCee)
	- \checkmark Background rejection ? (1-10 ns range)
	- \checkmark Particle ID (10-100 ps)
- Usual drawbacks to go faster
	- \checkmark Power consumption
	- \checkmark Active Cooling & geometrical acceptance due to services
	- \checkmark In pixel circuitry \Leftrightarrow larger pixels (or multipixels)
	- \checkmark Fill factor, dead time
	- \checkmark PID Restricted to low momentum particles (\checkmark few GeV/c)
- Still
	- Forward region not covered by a central gazeous detector
	- \checkmark Added value for intermediate radii (e.g. LLPs ?)

Power vs fast timing vs pixel size

a.

Nicolo Cartiglia, INFN, Torino, VCI2022, 25/02/22

 λ

Price to pay: additionnal cooling system (addtionnal material)

Fast timing

- Extremely active domain
	- \checkmark Interest to push beyond 10 ps resolution
- PID not discussed here (covered by TF4)
	- \checkmark dE/dX ; dN_c/dx and timing for PID
	- Fast timing not proper to silicon (also scintillation, gazeous, Cerenkov)

- Specialized layers
	- Doesn't compromise the other requirements (material budget and granularity)
		- **Probably not in the most inner layers**
	- \checkmark Dedicated studies needed for design optimization

Timing Landscape in semi-conductor technologies

Challenge 3: material budget

May 30th 2023 **A.Besson, Université de Strasbourg A.Besson, Université de Strasbourg A.Besson**, Université de Strasbourg **21**

ALICE ITS3: Bent sensors & stitching

- ALICE-ITS3/CERN drives the R&D on Stitching + bent sensors:
	- \checkmark Sensor part ~15% of total material budget
	- \checkmark Sensors thinned down to 50 μ m
	- \checkmark Minimizing overlapping regions, minimizing minimal radius around the beam pipe
	- Challenges and caveats (for e+e- colliders)
		- \checkmark Mechanics ? Bonding ? Air cooling only ?
		- \checkmark Design: Minimizing peripheral circuits (Fill factor ~90%)
		- \checkmark Bent sensor performances ? Yield
		- \Rightarrow design rules constraints the minimal pitch (~22 μ m)
		- \checkmark ITS-3 do not have disk (chip periphery adds Z position constraint)
		- Approach validated in a limited radius range (R> 18mm)

ALICE ITS3 tests

A. Kluge on behalf of the ALICE collaboration 22 February, 2022 **VCI**

ERG DUOCEL_AR 0.06 kg/dm³ $0.033 W/m·K$

Layers 2+1

logarithmic scale $(10^{-1}$ to $10^{-5})$ to show fully efficient rows. Each data point corresponds to at least 8k tracks.

Carbon fiber foam spacer **Integation and cooling studies**

Bent sensors in test beam Inteconnexion tests (superALPIDE)

On going experiments pave the road for Higgs factory detectors

May 30th 2023 A.Besson, University Contract (many other examples) and the Strasbow and the Strasbow and the St

Challenge 4: Time scale

Challenge: the time scale

- Vertex detectors are small and relatively fast to build
	- $\sqrt{2}$ ~ 4-5 years projects
- Complete Silicon trackers need more time
- Avoid the Never Ending R&D syndrom
- Do not be too conservative
- Right balance to find between
	- \checkmark Exploring technologies
	- Focusing on the most promising ones
- Mid-term applications provides invaluable milestones
	- \checkmark CBM, ALICE ITS-3, Belle-2 upgrade, LHCb, EIC, etc.
	- e.g. OBELIX for Belle-2 inherited from TJ-Monopix-2

Must happen or main physics goals cannot be met **O** Important to meet several physics goals **O** Desirable to enhance physics reach **O** R&D needs being met

Challenge 5: Detector optimization and simulations

Challenge: optimization of the detector

- Example: Shall we target 18 or 22 μ m pitch?
- Caveat: One can not decouple detector optimization and algorithm optimization

Optimization of the detector: pragmatic approach

- One does not need to target the best performances from the beginning
- Added value of mockups / demonstrators / engineering designs
	- \checkmark Relatively cheap but realistic enough
	- Study conflicting requirements (material, cooling, services, mechanics, etc.)
	- Check issues difficult to anticipate (e.g. available space for services, etc.)
	- \checkmark Reinforce the cooperation between different expertises (e.g. chip design/mechanics/DAQ)
	- \checkmark Integrated test beams possible
	- \Rightarrow DRDs should be the place to do it !

A pragmatic approach: mechanical/simulation studies for the IDEA vertex detector

Starts from a detector concept and chip modules

Challenge 6: understanding beam related background

Challenge: understand beam related backgrounds

- Sources:
	- \checkmark Incoherent pairs (« beamstrahlung »)
	- Synchrotron
	- \checkmark Beam loss (circular machines)
	- Radiative bhabha
	- Beam gas, etc.
- Usually one considers that occupancy \sim 10⁻²-10⁻³ is safe for tracking/vertexing purposes
- Experience from ILC studies over 20 years
	- Any modification in the Interaction region (beam scheme, beam pipe design, B field) might bring surprises
	- One should not consider that a 10⁻⁴ occupancy estimation means that there is no issue.
		- The robustness is questionnable
		- Large possible variations in some acceptance corners (asymmetries in φ or z)
		- Safety factor absolutely mandatory
		- **2** independant simulation tools would be welcome (GuineaPig, Fluka, etc.)
- Experience from Belle-2
	- Discrepancies observed between simulations and first collisions
- Direct beam background vs backscattered background
	- Generally the backscattered ones are more sensitive to any MDI change.
- What about timing information to reject background ?
	- \checkmark Need ~ 5 ns to reject backscattered particles
	- \checkmark Is it worth paying the price in terms of additionnal power?
- What about cluster shape to reject background ?
	- \checkmark Need very good sensitive thickness/pitch ratio (> 2).
	- \checkmark Charge information helps.
	- (you actually reject very low pT particles)

Example of background study: ILD, from linear to circular

- at FCCee, MDI extends to \sim 1m from IP \rightarrow 6 times more beamstrahlung background hits in TPC

May 30th 2023 **A.Besson, Université de Strasbourg** 32

Example of study in CLD

[US FCC workshop 25/04/2023 Ciarma](https://indico.cern.ch/event/1244371/contributions/5312693/attachments/2635216/4558781/MDI_backgrounds_ciarma.pdf)

Challenge 7: The Power

Power challenges

- Power is in conflict with all other parameters
- Baseline:
	- \checkmark Air flow cooling only to minimize material budget
	- \checkmark Up to ~ 20 mW/cm²
		- what is the limit ? \approx 50 mW/cm² or even more ?
- Driving parameters:
	- \checkmark # channels, Time resolution / data flux
	- \checkmark Surface (VXD ~ 3500 cm²; tracker O(10 m²)
	- \checkmark Power Pulsing (ILC/CLIC) \Rightarrow Constraints more relaxed w.r.t. FCCee
- The « Power paradox »
	- \checkmark Small radius \Rightarrow Higher hit density and Power/cm² but small fraction of total power
	- \checkmark Higher radius \Rightarrow less hit density but higher total power/layer
- Power sharing
	- Analog part: $O(25-50%)$ \Rightarrow density of pixels, charge collection speed
	- \checkmark Digital part: $O(25-50\%) \Rightarrow$ data flux, freq.
	- \checkmark Output \rightarrow DAQ: maximum flux. (25%)
- Architecture optimization is important
	- \checkmark Priority encoder (limited by flux)
	- \checkmark Asynchronous might be adapted (tot, etc.)
	- \checkmark Etc.
- Technology feature size
	- \sqrt{e} .g. 180nm to 65 nm: ~50% Power reduction
- Air extraction:
	- \checkmark In conflict with disks and forward acceptance
		- $(\neq$ ALICE ITS2/3, Belle-2, STAR-HFT)

MIMOSIS like architecture, 180 nm

Challenge 8: Chip design

Design challenges: From new ideas to real chips

- How to really make it ?
	- \checkmark R&D prototypes \neq final production chip installed in real experiment
	- \checkmark Submission cost issue for R&D
		- Trade-off between new (expensive) technologies and older (cheaper) technologies
- The complexity is growing
	- \checkmark New read-out architecture, etc.
	- \checkmark Work flow inspired from successfull chips installed in experiments (e.g. ALPIDE for ALICE-ITS2)
		- \Rightarrow push to concentrate on few technologies
	- \checkmark Verification tools are absolutely crucial
		- « Digital on top »
		- Global support on tools DRD3/ DRD7 connexion !
- Connexion with foundries absolutely crucial
	- \checkmark Contracts, confidentiality, etc.
	- \checkmark Long term plans to maintain interest from fourndries (HEP is a small player)
	- \checkmark Access to technology options to optimize it for HEP applications

Example: MIMOSIS (CBM-MVD) & Decision on options for sensing elements

W. Snoeys et al., NIM-A Vol.871 (2017) 90-96. Munker, Vertex 2018, Status of silicon detector R&D at CLIC

May 30th 2023 **A.Besson, Université de Strasbourg** 38 A.Besson, Université de Strasbourg 38

Mimosis-1 Verification tools example

- Large and complex designs need
	- \checkmark A hierarchy in the work flow to keep submission on schedule
	- \checkmark Verification tools that can be run in a reasonnable time
	- \checkmark Knowledge of these tools is crucial
- Example Power-grid problem observed in MIMOSIS-1
	- \checkmark Threshold shifts
	- \checkmark Problem fixed quickly

[F. Morel DRD7 kick-off meeting](https://indico.cern.ch/event/1214423/contributions/5285755/attachments/2611768/4512681/ALICE_ITS3_DRD7.pdf)

May 30th 2023 A.Besson, Université de Strasbourg 39

Summary

- Apologies for not covering
	- \checkmark Many technologies and on going R&D
		- (FPCCD, SOI, DEPFET, BiCMOS (SiGe), etc.
	- Cooling R&D (MCC, etc.)
	- $\sqrt{}$ Read-out
	- Operation and monitoring (Built-in Self Test (BIST) approach ?)
	- \checkmark Alignment
- The physics requirements impose a hierarchy between the conflicting parameters
	- \checkmark Granularity and material budget first !
	- \checkmark CMOS/MAPS Pixel sensors offer the best compromise for the inner vertexing/tracking layers
	- \checkmark Specialized timing layers
- Integration R&D is a final performances driver !
	- \checkmark Fill the gap between nice ideas and real detectors
		- e.g. Stitching & bent sensors developed in ALICE-ITS3 context
- **Strategy**
	- \checkmark The right balance has to be found inside DRDs between defining priorities and allowing new ideas to emerge
	- \checkmark Given the complex parameter space of R&D and detector design, a pragmatic approach should be privileged
		- **Increasing complexity step by step, demonstrators, mock-ups, experience from mid-term experiments,** etc.

backup

e⁺e⁻collider beam parameters

Mogens Dam / NBI Copenhagen

AIDA++ Open Meeting, CERN

4 September, 2019

Modified from Lucie Linssen, ESPPU, 2019

(slide from Mogens Dam/Lucie Linssen)

200 or 100 ms (5 or 10 Hz)

train duration = 727 (baseline) or 961 (L upgrade) us

Bunch spacing = 554 (baseline) or 366 (L upgrade) ris

Beam transverse polarisation

 \Rightarrow beam energy can be measured to very high accuracy (\sim 50 keV)

At Z-peak, very high luminosities and very high eter cross section (40 nb)

- \Rightarrow Statistical accuracies at 10⁻⁴-10⁻⁵ level \Rightarrow drives detector performance requirements
- \Rightarrow Small systematic errors required to match
- \Rightarrow This also drives requirement on data rates (physics rates 100 kHz)
- \Rightarrow Triggerless readout likely still possible

Beam-induced background, from beamstrahlung + synchrotron radiation

- Most significant at 365 GeV
- Mitigated through MDI design and detector design

6

Collider parameters

FCC-ee collider parameters

30/11/2021

Detector concepts for FCC-ee - Paolo Giacomelli

28

May 30th 2023 **A.Besson, Université de Strasbourg A.Besson, Université de Strasbourg A.Besson**, Université de Strasbourg **13**

PARTICLE IDENTIFICATION CAPABILITIES (PID)

Detector R&D Roadmap: themes (DRDTs)

lithic CMOS pixel sensors.

Developments of Monolithic Active Pixel Sensors (MAPS) should achieve very high spatial resolution and very low mass aiming to also perform in high fluence environments. To achieve low mass in vertex and tracking detectors, thin and large area sensors will be crucial. For tracking and calorimetry applications MAPS arrays of very large areas. but reduced granularity are required for which cost and power aspects are critical R&D drivers. Passive CMOS designs are to be explored, as a complement to standard sensors

> DRDT 3.2 - Develop solid state sensors with 4D-capabilities for tracking and بعفود شملوه

Understanding of the ultimate limit of precision timing in sensors, with and without internal multiplication, requires extensive research together with the developments to increase radiation tolerance and achieve 100%-fill factors. New semiconductor and technology processes with faster signal development and low noise readout properties should May 30th 2023 A.Besson, Université de Strasbourg 45

Synergies

s-tagging

Mighty Tracker Ryunosuke O'Neil The University of Edinburgh r.oneil@cern.ch on behalf of the LHCb Collaboration and Mighty Tracker Group 25th October 2022 VERTEX 2022, Tateyama, Japan

HV-MAPS for the LHCb Upgrade-II

Programme dedicated to developing a HV-CMOS sensor that meets the following requirements for the Mighty Tracker:

N.B. Studies are ongoing, and these requirements may evolve.

 \overline{m} is

 101

つくい

MuPix sensors

- Monolithic HV-CMOS
	- \circ Can be thinned while maintaining high performance
- 180 nm H18 technology derived from IBM
	- AMS until 2018 \circ
	- **TSI** afterwards \circ
- Long R&D campaign
	- Mupix7 first fully monolithic \circ
	- Mupix8 first large area \circ
	- Mupix9 implemented slow control \circ
	- Mupix10 with final size \circ
		- Used for prototyping
	- Mupix11 final chip \circ
		- Characterization ongoing

Example of trade off: MIMOSIS

• MIMOSIS-1 chip for CBM-MVD @ FAIR

\checkmark Based on ALPIDE architecture

- **Multiple data concentration steps**
- **Elastic output buffer**
- 8 x 320 Mbps links (switchable)
- Triple redundant electronics
- \checkmark Pixel variants: DC/AC (top bias up to >20V)
- \checkmark Different epitaxial variants tested

Pic from: Munker, Vertex 2018, Status of silicon detector R&D at CLIC
Carlos, TREDI 2019, Results of the Malta CMOS pixel detector prototype for the ATLAS Pixel ITK

- Intense test beam campaign(2021-22)
	- \checkmark Mimosis-2 submission these weeks
		- Thicker epi layer tests
		- \blacksquare Test prototype for 1 μ s readout time

 $\text{May} \frac{1}{\text{My}} \frac{1}{\text{My}} \frac{1}{\text{My}}$ 51 MIMOSIS = a milestone for Higgs factories (5 μ m / \leq 5 μ s)

Current large CMOS Monolithic Active Pixel Sensors

J. BQUQOT. - MAPS QCIMITIES QT IPHC-SITQSDOUTQ - KEK, 2022/11/29

Depleted MAPS: small and large collection electrodes

- Stronger electric field results in less trapping and higher radiation tolerance
- Larger electric field comes at a cost: more capacitance, power and more noise

5

From E. Vilella, Vertex2018

Mechanics

Going into the future of mechanics

Identified by DOE BRN effort & CPAD

 \bullet Scaling of low-mass detector system towards irreducible support structures with integrated services. Includes: integrated services, power management, cooling, data flow, and multiplexing.

nposites Manufacturing & Simulation Center

 M_2 M_3 M_4 M_5 M_6 M_7 M_8 M_7 M_8 M_8 M_9 M_8 M_9 M_9 M_9 M_9

Hybrid strip detectors

Hybrid strip detectors:

- baseline for ILC trackers (also suitable for CLIC outer layers)
- Well-established technology (e.g. HL-LHC)
	- low material + power (sparse readout)
	- large and fast signals (dE/dx)
	- high spatial resolution (charge interpolation) in R/phi direction
	- Allows for testing of advanced sensor concepts (e.g. stitched passive CMOS strip sensors)
	- Challenges: not for high occupancy regions; complex interconnect \bullet

- 320 um thick SiD strip sensors, 25 um pitch
- KPIX r/o ASIC
- Chip bump-bonded on-sensor \rightarrow high fill factor
- 7 um single-point resolution achieved in test beam

Particle

 $-V$

Track

· Test-case: beam telescope for PCMAG@DESY

October 6, 2022

Tracking and Vertexing for Higgs Factories

$M_{\text{av 30th 2023}}$ and $M_{\text{av 30th 2023}}$ and M_{55}

 17

Ē