
• • • • • • • • • • •

DRD1 (gaseous detectors) status and plans

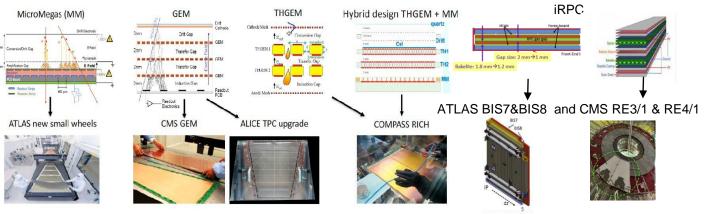
Anna Colaleo (University and INFN Bari), Leszek Ropelewski (CERN)

ECFA WG3: Topical workshop on tracking and vertexing

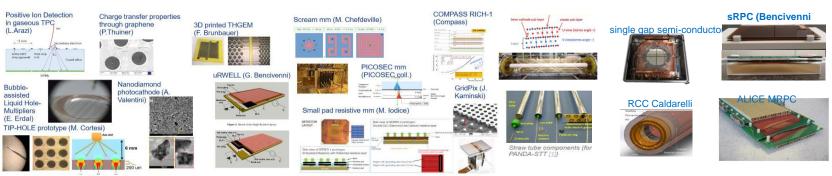
Detector Roadmap TF1 organization

ECFA

European Committee for


Conveners: Anna Colaleo (University and INFN Bari), Leszek Ropelewski (CERN)

Experts: Klaus Dehmelt (SUNY), Barbara Liberti (INFN - Tor Vergata), Maxim Titov (CEA Paris-Saclay), Joao Veloso (University of Aveiro)


Link to the coordination team : Silvia Dalla Torre (INFN Trieste)

The wide family of gaseous detectors: technologies

- Upgrades at the LHC for tracking, muon spectroscopy and triggering have taken advantage of the renaissance in gaseous detectors (*ex.* MPGDs, RPC.)
- New generation of TPCs use MPGD-based readout: e.g. ALICE Upgrade, T2K, ILC CepC

- Gaseous detectors offer very competitive timing through e.g.
 - Multi-gap Resistive Plate Chambers (down to 60 ps time resolution) (Alice TOF)
 - An enabling emerging R&D: Micromegas with timing (PICOSEC concept)

New Technologies, New architectures and Hybridization of technologies

ECFA

The wide family of gaseous detectors: applications

Summary of R&D Challenges for the different applications

Muon System	Inner and Central tracking	Calorimetry	Photon detection	TOF	Rare decays
• Radiation hardness and stability of	Drift chambers	• Uniformity of the response of	• Preserve the photocathode	• Uniform rate capability	• Radio-purity of the
large area up to integrated charges of	• High rate, unique volume, high granularity, low	the large area and dynamic	efficiency by IBF and more robust	and time resolution over	materials
hundreds of C/cm2:	mass	energy range;	photoconverters;	large detector area;	 Low background
 aging issues and discharges; 	 Hydrocarbon-free mixture for long-term and 	 Optimization of weights for 	• Gas radiator: alternative to CF4	• New material for high rate	 High granularity
• Operation in a stable and efficient	high-rate operation	different thresholds in digital	Gas tightness	(low resistivity, radiation	 For large volume
manner with incident particle flows	• Prove the cluster counting principle with the related	calorimeters	 Very low noise when coupling 	hardness);	detectors: transparency over
up to ~ 10 MHz/cm2:	electronics	 Rate capability in detectors 	large capacitance;	- uniform gas distribution;	large distance
- miniaturization of readout	 Mechanics: new wiring procedure, new wire 	based on resistive materials:	• Large dynamic range of the FEE;	 thinner structures: 	 Pressure stability and
elements needed to keep occupancy	materials	resistivity uniformity, discharge	• Separate the TR radiation and the	mechanical stability and	control
low;	• Integration: accessibility for repairing.	issue at high rate and in large	ionization process	uniformity;	• Electronics with large
 Manufacturing, on an industrial 		area detector;	• InTDD use of cluster counting	 Eco-gas mixture; 	dynamic range and flexible
scale, large detectors at low cost, by	TPC	• R&D on sub-ns in active	technique and improve it by means	• Electronics: Low noise,	configuration.
means of a process of technological	• R&D on detector sensors to suppress the IBF ratio	elements: resolution stables over		fast rise time, sensitive to	• Self-trigger capability
transfer to the industry and identifies	• Optimize IBF together with energy resolution	wide range of fluxes;	_	small charge;	 Low noise electronics
processes transferable to industries	• Gain optimization: IBF, discharge stability	• Gas homogeneity and stable		 Possibly optical readout; 	• Fast electronics
• Identification of eco-friendly gas	• Uniformity of the response of the sensors	over time.		 Precise clock distribution 	 Optical readout
mixture and mitigation of the issue	• Gas mixture: stability, drift velocity, ion mobility,	• Eco-friendly gas mixture for		and synchronization over	-
related to the operation with high	aging	RPC;		large area.	
WGP gas mixture:	• Influence of Magnetic field on IBF)	• Stability of the gas gain: fast		_	
- gas tightness; gas recuperation	• High spatial resolution	monitoring of gas mixture and			
system; accessibility for repairing.	• Very low material budget (few %)	environmental conditions;			
• Study of resistive materials (RPC	• Mechanics: thickness minimization but robust for	Mechanics:			
and MPGD):	precise electrical properties for stable drift velocity.	- large area needed to avoid			
- higher gain in a single	• Integration: cooling of electronics.	dead zone: limitation on size and			
multiplication layer, with a		planarity of PCB is an issue.			
remarkable advantage for assembly,	Straw chambers	- multi-gap with ultra-thin			
mass production and cost.	• Ultra-long and thin film tubes;	modules: very thin layer of glass			
- new material and production	• "Smart" designs: self-stabilized straw module,	and HPL electrodes, gas gap			
techniques for resistive layers for	compensating relaxation;	thickness uniformity few micron			
increasing the rate capability	• Small diameter for faster timing, less occupancy,				
• Thinner layers and mechanical	high rate capability;				FOR FARTHE ELPROPE
precision over large area	• Reduced drift time, hit leading times and trailing				and the openin Strategy Group
	time resolutions, with dedicated R&D on the				
	electronics;				
	• PID by dE/dx with "standard" time readout and				European Straten
	time-over-threshold;				
	• 4D-measurement: 3D-space and (offline) track time;				
	• Over-pressurized tubes in vacuum: control the			Figure 1.8	R .
	leakage rate to maintain the shape.				/ •

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

DRDT 1.1 - Improve time and spatial resolution for gaseous detectors with long-term stability Future experiments require large areas to be instrumented with unprecedented timing capabilities both for time of fight particle identification and to aid track association to the correct event. Their physics programmes demand an improved momentum resolution and performance needs to be maintained over decades with minimal intervention.

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

DRDT 1.1 - Improve time and spatial resolution for gaseous detectors with long-term stability Future experiments require large areas to be instrumented with unprecedented timing capabilities both for time of fight particle identification and to aid track association to the correct event. Their physics programmes demand an improved momentum resolution and performance needs to be maintained over decades with minimal intervention.

DRDT 1.2 - Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material Different readout methodologies are required for large volume tracking detectors including micro-pattern gas detector systems, optical readout and direct interfacing to ASICs. Low multiple scattering is essential as is enhanced particle identification through accurate determination of ionisation (either deposited energy or number of clusters) per unit length.

ECFA

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

DRDT 1.1 - Improve time and spatial resolution for gaseous detectors with long-term stability Future experiments require large areas to be instrumented with unprecedented timing capabilities both for time of fight particle identification and to aid track association to the correct event. Their physics programmes demand an improved momentum resolution and performance needs to be maintained over decades with minimal intervention.

DRDT 1.2 - Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material Different readout methodologies are required for large volume tracking detectors including micro-pattern gas detector systems, optical readout and direct interfacing to ASICs. Low multiple scattering is essential as is enhanced particle identification through accurate determination of ionisation (either deposited energy or number of clusters) per unit length.

DRDT 1.3 - Develop environmentally friendly gaseous detectors for very large areas with high-rate capability

The largest area detector systems in an experiment are typically gaseous detectors, often as part of an outer muon spectrometer. Ease of maintenance, stable operation and, for some applications, the ability to cope with very large fluxes of charged particles are required. Key to future applications is the development of more ecologically friendly gas mixtures for gaseous detectors and mitigation procedures for use of greenhouse gases when this is unavoidable.

ECFA

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

DRDT 1.1 - Improve time and spatial resolution for gaseous detectors with long-term stability Future experiments require large areas to be instrumented with unprecedented timing capabilities both for time of fight particle identification and to aid track association to the correct event. Their physics programmes demand an improved momentum resolution and performance needs to be maintained over decades with minimal intervention.

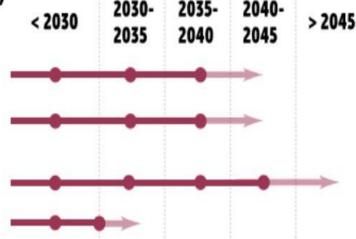
DRDT 1.2 - Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material Different readout methodologies are required for large volume tracking detectors including micro-pattern gas detector systems, optical readout and direct interfacing to ASICs. Low multiple scattering is essential as is enhanced particle identification through accurate determination of ionisation (either deposited energy or number of clusters) per unit length.

DRDT 1.3 - Develop environmentally friendly gaseous detectors for very large areas with high-rate capability

The largest area detector systems in an experiment are typically gaseous detectors, often as part of an outer muon spectrometer. Ease of maintenance, stable operation and, for some applications, the ability to cope with very large fluxes of charged particles are required. Key to future applications is the development of more ecologically friendly gas mixtures for gaseous detectors and mitigation procedures for use of greenhouse gases when this is unavoidable.

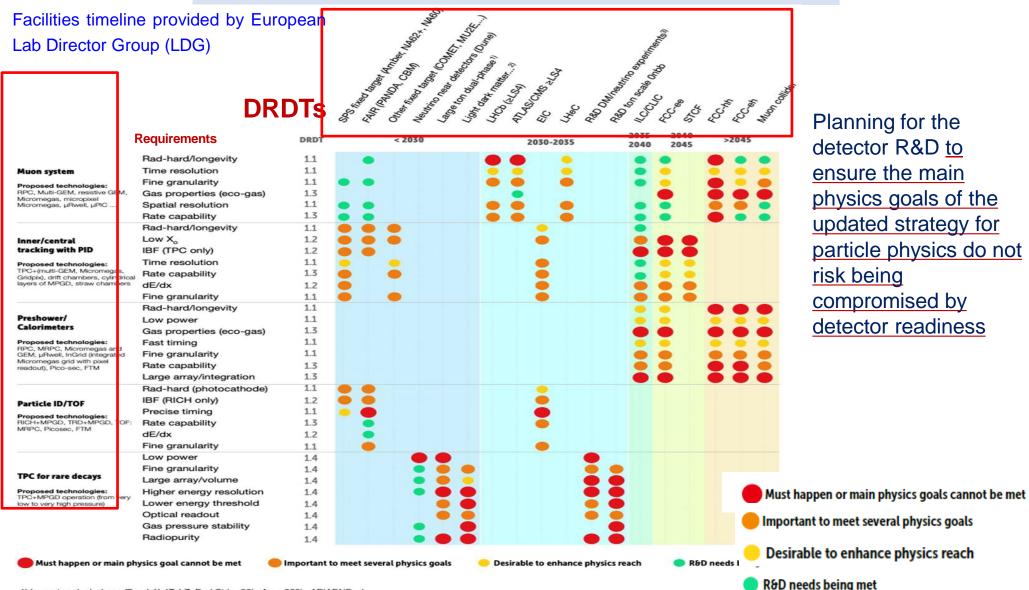
DRTD1.4: Achieve high sensitivity in both low and high-pressure TPCs

ECFA


Committee for 511

Large volume gaseous detectors provide a key technology for high efficiency searches for rare events with differing readout for optimizing the signal-to-noise ratio and reducing detector backgrounds

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)


Gaseous		Improve time and spatial resolution for gaseous detectors with long-term stability Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out
		schemes Develop environmentally friendly gaseous detectors for very large areas with high-rate capability
	DRDT 1.4	Achieve high sensitivity in both low and high-pressure TPCs

ECFA

- The faded region acknowledges the typical time needed between the completion of the R&D phase and the readiness of an experiment at a given facility.
- Stepping stones are shown to represent the R&D needs of facilities intermediate in time.
- It should be emphasised that the future beyond the end of the arrows is simply not yet defined, <u>not that there is an expectation that R&D for the further future beyond that point will</u> <u>not be needed</u>.

Gaseous detectors R&Ds timeline

1) Large ton dual-phase (PandaX-4T, LZ, DarkSide -20k, Argo 200k, ARIADNE ...)

2) Light dark matter, solar axion, 0nbb, rare nuclei&ions and astroparticle reactions, Ba tagging)

3) R&D for 100-ton scale dual-phase DM/neutrino experiments

ECFA

European Committee for

DRD1 A. Colaleo

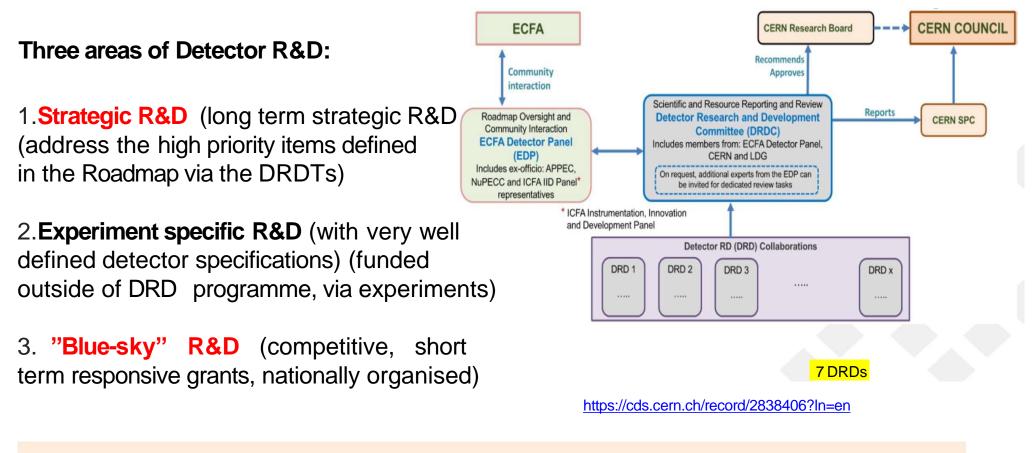
General Strategic recommendations

In addition to the Detector R&D Themes described above the following General Strategic Recommendations are made under the following headings.

- **GSR1** Supporting R&D facilities
- GSR 2 Engineering support for detector R&D
- **GSR 3** Specific software for instrumentation
- **GSR 4** International coordination and organisation of R&D activities
- GSR 5 Distributed R&D activities with centralised facilities
- GSR 6 Establish long-term strategic funding programmes
- GSR 7 Blue-sky R&D
- GSR 8 Attract, nurture, recognise and sustain the careers of R&D experts
- GSR 9 Industrial partnerships
- GSR 10 Open Science

ECFA

European Committee for


Implementation started through the setting up of DRD collaboration

"Implementation roadmap"

See description in backup slides

DRD Implementation plan

Requested by the CERN Council ECFA Roadmap Coordination Group worked out a proposal to organize long-term R&D effort into: new established **Detector R&D Collaboration anchored at CERN**

DRD9 is taken care of by a new ECFA Training Panel **DRD8** felt their area is too experiment specific to be the topic of a "Strategic R&D" bid.

ECFA

European Committee for

DRD1 Implementation timeline - 2023

Q4-2022/Q1-2023	Q2-2023	Q3-2023	Q4-2023
 Formation of the DRD1 proposal team Collection of interest from the institutes (survey) 1st Workshop and shaping the direction of RD. 	 Writing the proposal (scientific and organization) that includes conclusion and feedback from the workshop and survey Collect feedback by institutes in contact with their funding agencies about the best funding schema 2nd Community Workshop 	 resources needed resources already available 	 Establishing continuation of existing RD51 projects and carrying resources Follow the review
		tasks	revisions and upon green light from DRDC, CERN
 DRDC mandate reviewed and agreed with CERN management and EDP 	 Mechanisms agreed with funding agencies for country specific DRD funding request. 	 DRDC review (scientific, milestones, feasibility, financials) 	research board approves the formation of the collaboration

ECFA

European Committee for

DRD1 Implementation timeline and approval

- New structures operational and new R&D programmes underway from beginning 2024.
- Through 2024, collection of MoU signatures with defined contribution areas per institute.
- Ramp up of new strategic funding and R&D activities 2024-2026

ECFA

Furonean

DRD1 implementation

The DRD1 should establish a programme and a collaborative framework to achieve the ECFA roadmap TF1 Detector R&D Themes (DRDTs)

The collaborative structure of DRD1 would allow:

- facilitating joined efforts along common goals defined by the ECFA roadmap document
- the development of common tools (detector physics simulation software, electronics)
- accessing, being anchored at CERN, the facilities for detector evaluation (such as test beams and irradiation source), and the infrastructures facilitating detector developments (such as workshops and laboratories).
- helping in the education and training, for cross-fertilization among different particle physics (and neighboring discipline) detector development programs.
- promoting the visibility and prospects of young researchers in detector technologies.

Towards a DRD1 Collaboration: team

Q4-2022/Q1-2023

ECFA

- Taking advantage of existing RD51 experience and organization (AIDAinnova. CERN EPR&D)
- Through the organizer committee of major detector workshop/conferences (RD51, RPC, TPC)
- Through TF1 Members (experts) and speakers of the TF1 symposium.

the following team of coordinators has been put in place

- ECFA TF1 Conveners: Anna Colaleo (Univ. and INFN-Bari), Leszek Ropelewski (CERN);
- Other TF1 Members: Klaus Dehmelt (Stony Brook Univ.-SUNY), João Veloso (Univ. of Aveiro)
- ECFA Coordinators Group Member: Silvia Dalla Torre (INFN Trieste)
- MPGDs: Eraldo Oliveri (CERN), Fulvio Tessarotto (INFN-Trieste), Maxim Titov (CEA Paris-Saclay)
- RPCs: Ingo Deppner (Univ. Heidelberg), Giuseppe Iaselli (Politecnico & INFN-Ba), Barbara Liberti (INFN – RM 2)
- TPCs: Esther Ferrer Ribas (IRFU/CEA), Jochen Kaminski (University of Bonn)
- Large volume detectors: Marco Panareo (Univ. and INFN-Lecce), Francesco Renga (INFN-Roma I)
- Straw tubes, TGC, CSC, drift chambers, and other wire detectors: Peter Wintz (IKP, FZ Jülich)
- Infrastructure, R&D programs (CERN EPR&D, AIDAinnova): Roberto Guida (CERN), Beatrice Mandelli (CERN)
- Administrative support: Hans Taureg (University of Bonn), Florian Brunbauer (CERN)

Q4-2022/Q1-2023

DRD1 Implementation process

- From January 2023: Through the coordinators we collected a preliminary list of contact person(s) for each institution interested in joining the collaboration, set up a proposal-writing group with the goal of preparing the DRD1 proposal
- 23 January: Survey organized in 8 main sections addressing specific topics of research
 - 1. Technologies
 - 2. Applications
 - 3. Gas and material studies
 - 4. Detector physics, simulation and software tools
 - 5. Electronics for gaseous detectors
 - 6. Detector development manufacturing and production
 - 7. Common test facilities
 - 8. Training and dissemination

\rightarrow Survey sent to contact persons to get the first feedback

• End of January: proposal writing group organised in corresponding 8 Working groups,

each steered by conveners

ECFA

Committee for E

Survey topics WG1-2

1. Technologies of interest

Please select one or more technologies of interest for your group and add in the comment section more information or remarks and notes if needed.

Technologies of interest*

- MPGD
- RPC and MRPC
- └── Wire chambers (incl. Straws, TGC, CSC...)
- Large Volume Detectors (drift chambers, TPCs)
- New amplifying structures
- Other

FCFA

2. Applications

Provide general research topics and when possible more specific lines carried out by your group of planned for future activities. If not included in the list, please add them in the comment/notes section.

Select application areas connected to the research activity of your group*

(Muon) Tracking and Triggering Systems

- Radiation hardness and stability (aging, discharges) of large area up to hundreds of C/cm2 of integrated charge.
- \square Stable and efficient operation (rate, occupancy) up to ~10 MHz/cm2.
- □ Manufacturing or large detectors and large systems at low cost. Technological transfer to the industry.
- Eco-friendly gas mixture and optimized operation with high WGP gas mixture (tightness, recuperation, accessibility)
- Study of resistive materials (RPC and MPGD): high gain in a single multiplication stage (beneficial for assembly, production and costs)
- \square New material and production techniques for resistive layers for increasing the rate capability
- Thinner layers and mechanical precision over large area

Other

Other Comments/Notes

lications)

Survey topics WG3-4

3. Gas and material studies

Please select relevant topics for your current and future research activities

Select relevant topics for your group on gas and material studies

- Gas Properties (e.g. cross-section, chemical characterization, measurements)
- Eco-gases studies
- Light emission in gases
- Gas recuperation and recirculation systems
- Gas systems
- Sealed detectors and systems
- Resistive electrodes
- Solid converters
- Photocathodes (novel, ageing, protection)
- Novel materials (e.g. nanomaterials)
- Material properties for detector and infrastructures
- Light (low material budget) materials
- Precise mechanics
- Ageing

Other

Outgassing

R&D equipment, Infrastructures and service for Gas and material studies at your Institute

- Radiation hardn 1. Existing
 - Planned via new strategic R&D programs at your institute
 Needed but not available or foreseen in future at your institute
 Please specify if external groups can access them at your institute.

Would you be willing to contribute or support common developments in the context of the DRD1 collaboration?*

If the answer is yes, please add more information in the Comments/Notes section if your team can take charge of specific tasks, or if member of your team are willing to supervise common developments or if member of your team are willing to take part of ongoing efforts or if you can financially support common developments of interest for your work.

4. Detector physics, simulations, and software tools

Research interests and activities

- Detector Physics (modelling and simulations)
- Detector Performance Studies (modelling and simulations)
- Software development and maintenance
- Gas Properties Databases (e.g. cross-sections) Use and/or Maintenance
- Detector design
- Other

Please select the activities of interest for your group and specify in the comments if the interest is as user and/or developer

Relevant simulation and software

Which software/simulation development do you consider necessary on a term of 5-10 years to improve your work or, as users, to make progress in the field?

Development of and access to simulation and software

List, if any, relevant problems you experienced or you would expect on doing software work with your team, both as developers and as users...

Software Development*

Is your team involved in software development? If the answer is yes, please specify in the comments section the activity and the number of involved people.

Would you be willing to contribute or support common developments in the context of the DRD1 collaboration?*

If the answer is yes, please add more information in the comments section if your team can take charge of specific tasks, or if members of your team are willing to supervise common developments or if members of your team are willing to take part in ongoing efforts.

FCFA

DRD1 Survey topics WG5-6

5. Electronics for gaseou	s detectors	6. Detector Development, Manufacturing and Production				
Research interests, activities and r	needs	Provide your interest in facilities for prototype production and/or contribution to new production				
Analog Electronics		methods and/or industrialization aspects. If not included in the list, please add them.				
Digital Electronics						
Discrete Readout Front End Ele	ctronics	Do you have production capabilities at your institute?*				
Multichannel Integrated (ASIC)	Readout Front End Electronics	If yes, please list them in the facility section at the beginning of the survey and specify if they are				
Pixels		accessible to external users.				
FE input protection		Is your group planning to produce detectors (components) or to support facilities (in your institute				
Spark Quenching		or external) that can do it?*				
Charge readout						
Photon readout	Relevant electronics	If yes, please add in the comment section more information				
Waveforms and Digitizer	What development in electronics do you consider necessary over a term of 5-10 years to improve					
Cluster Counting	your work or, as users, to make progress in the field? Development, use and access to electronics	Interest in existing or potential production and facilities * —				
Signal Processing	Development, use and access to electronics	CERN EP-DT Micro Pattern Technology (MPT) Workshop				
Timing	List, if any, relevant problems you experienced with electronics, both as developers and as users.	Saclay MPGD workshop				
□ High rate		RPC/MRPC workshop				
Low noise	Electronics Development*	Wire chambers workshop				
Wide Dynamic Range	Is your team involved in electronic development?	Novel detector production methods				
Grounding and shielding	If the answer is yes, please specify in the Comments/Notes section the activity and the number of involved people.	CERN EP Thin Film & Glass service (photocathodes, coatings, ceramic)				
Calibration	involvea people.	Other				
	Would you be willing to contribute or support common developments in the context of the DRD1	Interest in manufacturing and production processes.				
Trigger-less systems	collaboration?*	Please indicate if your team would like to develop some learning regarding the manufacturing				
General purpose Data Acquisiti	If the answer is yes, please add more information in the Comments/Notes section if your team can	and/or industrialization of detectors? (Definition of specifications, CAD, QA/QC)				
SoC based sensor readout	take charge of specific tasks, or if member of your team are willing to supervise common developments or if member of your team are willing to take part of ongoing efforts or if you can	Knowledge Dissemination				
FPGA based readout/trigger	financially support common developments of interest for your work.					
High Voltage Systems and High		Training from industrial partners				
High resolution floating ammeter High resolution floating ammeter	the collaboration?*	Other				
Monitoring and control system		If of interest, select potential ways to improve the knowledge transfer to your research group				
Dedicated lab instrumentation	If the answer is yes, please provide more information in the Comments/Notes section. Add comments in case the answer is no but you plan to (or you would like to) ask for some support	Please add in the next Comments/Notes section if not listed.				
LV Powering	at your institute.					
Cooling	Do you have experience and industrial contacts for custom made electronics production?*	Relationships of your group with industry*				
Other	so you have experience and industrial contacts for costone made electronics production;	Development of new manufacturing processes Responsible of Technology Transfer				
		Production				

Other

20

Survey topics WG7-8

7. Common Test Facilities

Includes development of common detector characterization standards. If applicable, provide the relevant test facilities for your detector characterization or interest in development of common detector characterization standards.

Please select Detector Characterization Facilities of interest for your research*

- General purpose detector development laboratories
- Ageing Study Facility
- Gas studies facility
- Irradiation facility
- Test beam facility
- Chemistry and material laboratory
- Clean Room

FCFA

Instrumentation for common detector characterization (e.g. gas, DAQ, HV systems)
 Other

Access and use of common facilities and services

List, if any, positive experiences and advantages or difficulties and relevant problems you experienced accessing and using common facilities and services.

Outline facilities and services present at your institute (that could be used by DRD collaborators):*

Please explain the facility facilities/services?*

If the answer is yes, please add in the Comments/Notes section more information.

Is your institute interested in contributing and/or financially supporting the development/construction of specific services for existing or new facilities?*

If the answer is yes, please add in the Comments/Notes section more information.

Is your institute interested in contributing and/or financially supporting the usage of specific services that you may need?*

8. Training and dissemination

Training and dissemination Activities your group could be interested in

- Schools and trainings
- Topical workshops
- Knowledge transfer
- Other

Please select where your team is involved. If not included in the list, please add them.

Training and dissemination Target

- Bachelor and Master Students
- Doctoral students
- Postdoc
- Senior
- Training and dissemination

List examples of existing or potential training and dissemination activities that you would like to have in the context of the DRD1 collaborations?

Is your group interested in organising training and dissemination activities?*

Strategies to recognize and sustain the careers of R&D experts

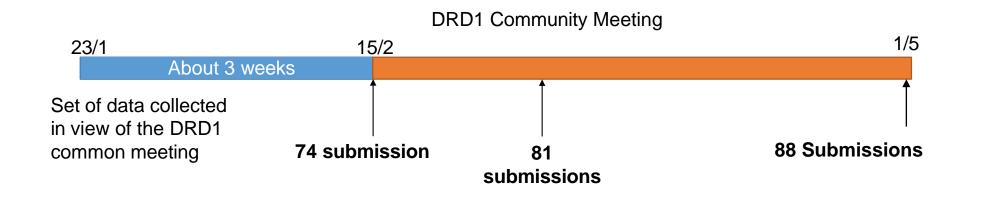
Please indicate strategies to recognize and sustain the careers of R&D experts already settled at your institute or suggest potential ones that could be implemented in the context of the DRD1 collaboration.

Young Researchers

21

Community survey: timeline

Opening date: 23 January

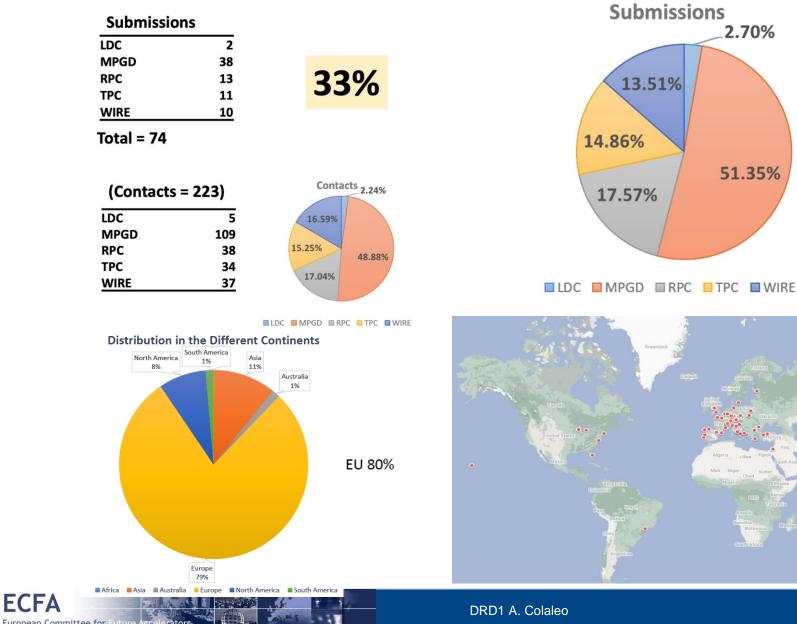

- Intermediate closing date: 15
- DRD1 Community Meeting: 1-
- Final closing date:

ECFA

European Committee for

- date: 15 February
 - ing: 1-3 March
 - 1 May 2023

- Survey was accessible only by the people in the list of contact persons, identified by the coordination team.
- Survey was neither a commitment nor a sine-qua-non for becoming a member of DRD1.
- The list of contact persons is still open to group interested in DRD1.


Survey: submission outcome

2.70%

51.35%

13.51%

Survey outcome analysed by 8 working groups, one per each of the 8 topics:

ECFA

Survey: submission outcome

Interest on asking for new resources

OPTIONAL Feedback

68% 68% • 47 Temporary • 8 Permanent Personel

Number of Analyzed Submissions : 74, 40 Answers

Number of Analyzed Submissions : 74, 43 Answers

ECFA

European Committee for

DRD1 Community meeting 1-3 March

Q4-2022/Q1-2023

Wednesday/Thursday, March 1 -2:

- ✓ General Introduction ECFA roadmap & roadmap implementation
- ✓ General survey outcome

✓ WG1-WG8 (1 hour per session):

- WG1 Technologies
- WG2 Applications
- WG3 Gas and Material Studies
- WG4 Detector Physics, Simulations, and Software Tools
- WG5 Electronics for Gas Detectors
- WG6 Detector Production
- WG7 Common Test Facilities
- WG8 Training and Dissemination

✓ Collaboration issues:

- MoU and Common Fund(s)
- Common Projects
- Work Packages

ECFA

European Committee for

- Structure of the DRD1 Collaboration

Goals and charge to the WG Conveners:

- 1. Introduction to the topics covered by the WG
- 2. Analysis and summary of the Survey.
- 3. Essential aspects from the Survey with relevance/impact in the context of the collaboration (topics, facilities, ideas).
- 4. Existing assets that can support the collaboration.
- 5. Existing or potential assets that the collaboration can support.
- 6. Synergies and common aspects between technologies.
- 7. For WG2 (applications), overlap with the ECFA roadmap document.

Friday, March 3:

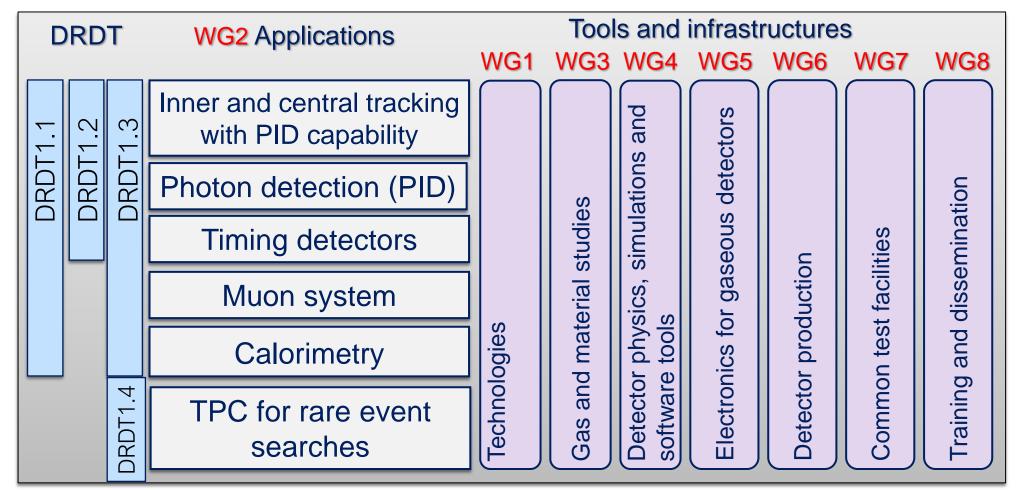
- ✓ Wrap-up (Open and Closed) Discussions
- ✓ Proposal drafting (Skeleton with bullets)
- $\checkmark\,$ Identification of an editorial team for the
- ✓ proposal writing

DRD1 Community meeting 1-3 March

About 220 people registered, mainly connected remotley, about 60 people in the room

- 3 days of presentations and discussion
- Good attendance and participation
- Main discussion on organization
- Interest in "inclusion" of new groups (non European countries) and wide ranges of R&Ds

DRD1 Scientific structure


Community feedback

ECFA DRDT			Applications Employing gaseous detectors at future facilities	Tools and infrastructures Transverse activities enabling and facilitating the R&D activities: simulation/characterization tools, beam test facilities, industrial partnership, dissemination & networking						
DRDT1.2			Inner and central tracking with PID capability			simulations and	ctors			
	JRDT		Photon detection (PID)		S S		dete			tion
			Timing detectors	studies simulat seous c		ç	ities			
			Muon system	ogies	material s	physics, tools	Electronics for gaseous detectors	Detector production	Common test facilities	and dissemination
			Calorimetry		d mat					
		DRDT1.4	TPC for rare event searches	Technologies	Gas and	Detector software	Electror	Detecto	Commo	Training

DRD1 Working group

Community feedback

Structure in **WGs**, alignment with the scientific program of the ECFA roadmap through the applications, related to future facilities challenges outlined by R&D Themes (DRDT), but also to the GSRs

DRD1 scientific organization: Working groups

Working Groups are the core of the scientific collaboration.

- Coordinated by conveners
- Each WG address closely linked activities
- **Sharing experience** (Experiments, Blue Sky and generic R&D, and detector physics studies, production and test procedures)
- Identifying directions for the future strategic detector R&D supported by assisting in R&D
 - Look into the future R&D needs
 - Exploit and use synergies with other WGs/DRDs
- Maintaining an R&D environment for developing gaseous detector technologies:
 - -Gas and material studies, and link to the novel technologies
 - -Software tools and detector physics
 - -Electronics for gaseous detectors
 - -Detector production

ECFA

European Committee for

- -Infrastructure for detector R&D
- -Training and dissemination

WGs and conveners

WG1: Technologies (**P.Colas**, F. Resnati, P. Wintz, I. Deppner, M. Tytgat, L. Moleri)

Includes experimental detector physics aspects

- MPGDs
- RPCs, MRPCs
- Large Volume Detectors (drift chambers, TPCs)
- Straw tubes, TGC, CSC, drift chambers, and other wire detectors
- New amplifying structures

WG2: Applications (F. Garcia, **P. Gasik**, F. Grancagnolo, D. Gonzalez Diaz, G. Aielli, G. Pugliese, R. Farinelli; A. Colaleo, M. Titov for the ECFA part)

Full alignment with the ECFA detector R&D roadmap Themes

- Muon systems
- · Inner and central tracking with particle identification capability
- Calorimetry

ECFA

European Committee for

- Photon detection
- Time of Flight systems
- TPCs for rare event searches
- Precision experiments
- Straw chambers in vacuum
- Fundamental research applications beyond HEP
- Medical and industrial applications

WG3: Gas and material studies (**B. Mandelli**, G. Morello, F. Renga, K. Dehmelt, S. Roth,D, Piccolo, A. Pastore, B. A. Gonzalez)

- Eco-gases searches
- Light emission in gases
- Ageing
- Radiation hardness
- Light (low material budget) materials
- Resistive electrodes
- Precise mechanics
- Photocathodes (novel, ageing, protection)
- New types of wires (coated carbon monofilaments)
- Solid converters
- Novel materials (nanomaterials)

WG4: Detector physics, simulations, and software tools (M.Abbrescia, M. Borysova, P. Fonte, O. Sahin, P. Verwilligen, R. Veenhof,)

- Detector Physics (modeling and simulations)
- Detector Performance Studies (modeling and simulations)
- Software development and maintenance
- Gas Properties Databases (e.g. cross-sections) Use and/or Maintenance; Detector design

WGs and conveners

Links to GSRs

WG1: Technologies (P.Colas, F. Resnati, P. Wintz, I. Deppner, M. Tytgat, L. Moleri)

Includes experimental detector physics aspects

- **MPGDs**
- **RPCs**, MRPCs
- Large Volume Detectors (drift chambers, TPCs)
- Straw tubes, TGC, CSC, drift chambers, and other wire detectors
- New amplifying structures

WG2: Applications (F. Garcia, P. Gasik, F. Grancagnolo, D. Gonzalez Diaz, G. Aielli, G. Pugliese; A. Colaleo, M. Titov for the ECFA part)

Full alignment with the ECFA detector R&D roadmap Themes

- Muon systems
- Inner and central tracking with particle identification capability
- Calorimetry

Committee for

ECFA

- Photon detection
- Time of Flight systems
- TPCs for rare event searches
- **Precision experiments**
- Straw chambers in vacuum
- Fundamental research applications beyond HEP
- Medical and industrial applications

WG3: Gas and material studies (B. Mandelli, A Morello, Engineering support for F. Renga, K. Dehmelt, S. Roth, D. Piccolo, A. B. A. Gonzalez)

- Eco-gases searches
- Light emission in gases
- Ageing
- Radiation hardness
- Light (low material by ٠
- Resistive electrod ٠
- Precise mech? . Photocatho
- s bu <u>eering</u> of the ctor Real detering, protection)
- New typ
- ated carbon monofilaments)
- Solid

٠

instrumentations) Jaintenar WG4: Detector physics, simulations (M.Abbrescia, M. Borysova, Verwilligen, R. Veenhof,)

- •

- Gas Proper and/or Ma

s (e.g. cross-sections) - Use Jetector design

Towards a DRD1 Structure: WGs and conveners

WG5: Electronics for gaseous detectors (H. Muller, J. Kaminski, M. Gouzevitch, R. Cardarelli)

- Analog/Digital Electronics
- Discrete Readout Front End Electronics and ASICs
- Charge/Photon readout
- FE input protection & spark quenching
- Waveforms and Digitizer; Signal Processing
- Cluster Counting
- Specific needs: Timing, High rate, Low noise, Wide Dynamic Range,...)
- Grounding and Shielding; Calibration
- SoC based sensor readout
- General purpose DAQ, FPGA based readout/trigger and Trigger-less systems
- HV Systems and HV distribution schemes
- LV Powering, Cooling
- Laboratory instrumentation (High resolution floating ammeters, Monitoring and control systems)

WG8:Training and dissemination (F. Brunbauer, M. Iodice, E. Baracchini, B. Liberti, A. Paoloni)

- Schools and trainings
- Topical workshops
- Knowledge transfer

ECFA

European Committee for

- (Young) Researcher Career
- Strategies to recognize and sustain the careers of R&D experts

WG6: Detector production (R. De Oliveira, **F. Jeanneau**, A. Delbart, G. Iaselli, I. Laktineh, G. Charles)

- CERN EP-DT Micro Pattern Technology (MPT) Workshop
- Saclay MPGD workshop
- RPC/MRPC workshop
- Wire chambers workshop
- Novel detector production methods
- CERN EP Thin Film & Glass service (photocathodes, coatings, ceramic)
- Technology and knowledge transfer (to industry and within the collaboration)
- Relationship with Industry

WG7: Common test facilities (**Y. Tsipolitis**, E. Oliveri, R. Guida, G. Iaselli, A. Ferretti)

Includes development of common detector characterization standards:

- General purpose detector development labs
- Ageing Study Facility
- Gas studies facility
- Irradiation facility
- Test beam facility
- Chemistry and material laboratory
- Clean Room
- Instrumentation for common detector characterization (e.g. gas, DAQ, HV systems)

Towards a DRD1 Structure: WGs and conveners Links to GSRs

WG5: Electronics for gaseous detectors (H. Muller, J. Kaminski, M. Gouzevitch, R. Cardarelli)

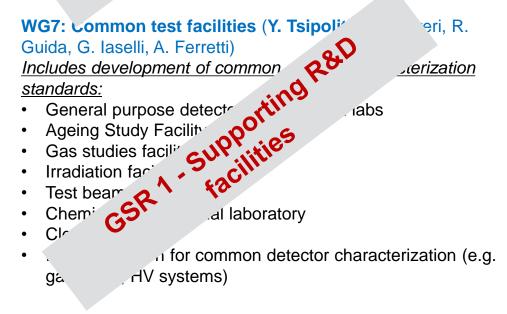
- Analog/Digital Electronics
- Discrete Readout Front End Electronics and ASICs
- Charge/Photon readout
- FOR FE input protection & spark quenching
- support Waveforms and Digitizer; Signal Pro
- **Cluster Counting**
- Specific needs: Timing, High Dynamic Range,...)

ی, Wide

- Grounding and Shield^{ir}
- SoC based sensor
- Engineering detector R&D Jased readout/trigger and General purpos **Trigger-less**
- cribution scheme HV Systr LV Pr

and diss continuture nutratine nutratine nutratine schools and the and and an avoid topical wr continue nowle continue topical wr continue topical WG8:Training and dise Baracchini, B. Liberti

Committee for


ECFA

- recognise and sustain the Nwr crantise of Ran er care e and st _e and sustain the careers of R&D experts

WG6: Detector production (R. De Oliveira, F. Jeanneau, A. Delbart, G. Iaselli, I. Laktineh, G. Charles)

- Jrkshop

- CERN EP-DT Micro Pattern Technology (* hips Saclay MPGD workshop RPC/MRPC workshop Wire chambers workshop Novel detector production CERN EP Thin Film & striat vice (photocathody coatings, ceramic) vice (photocathodes, coatings, ceramic)
- Ind Juge transfer (to industry and within Technology and the collabor
- Relation Industry

DRD1 A. Colaleo

Organization of the collaboration activities

Community feedback

following the indication of EDP, identified the following organization of the R&D efforts:

Two areas of Detector R&D :

- "Blue-sky" R&D (competitive, short-term responsive grants, nationally organised)
- Strategic R&D via DRD Collaborations (long-term strategic R&D lines) (address the highpriority items defined in the Roadmap via the DRDTs)

Common projects

For low-TRL (blue sky) R&D, or other short term generic projects

Funding method:

- Metabolism of each group
 - EU, National projects
 - DRD1 common fund

Work Packages

Strategic R&D targeting the priority programmes outlined in the updated European Strategy for Particle Physics.

Funding method:

Each institute asks its funding agency and controls the funds

Common projects

Short-term, community supported

Common Projects support **low TRL (blue-sky) R&D** considered of interest by the collaboration, **or generic projects (not related to experiments) that are vital for the community and require** special backing:

- Technology R&D projects towards developments of novel techniques, improvements of existing technologies, characterization methods and dedicated tools;
- Development and optimization for novel applications;
- Improvement of the technology transfer to industry.

This is a well-defined path (RD51 experience)

- DRD1 Common Fund supports them with matching resources from participating Institutes.
- It requires for a minimum number of participating Institutes to encourage collaborative effort between new groups.
- They are limited in time (3 years).
- Support the collaboration is limited (example 20-30k/y) through common fund
- The large number of groups in DRD1 ensures strong R&D

Some Common Projects may evolve to Work Packages.

Reviewed by the DRD1 Collaboration

ECFA

Strategic R&D

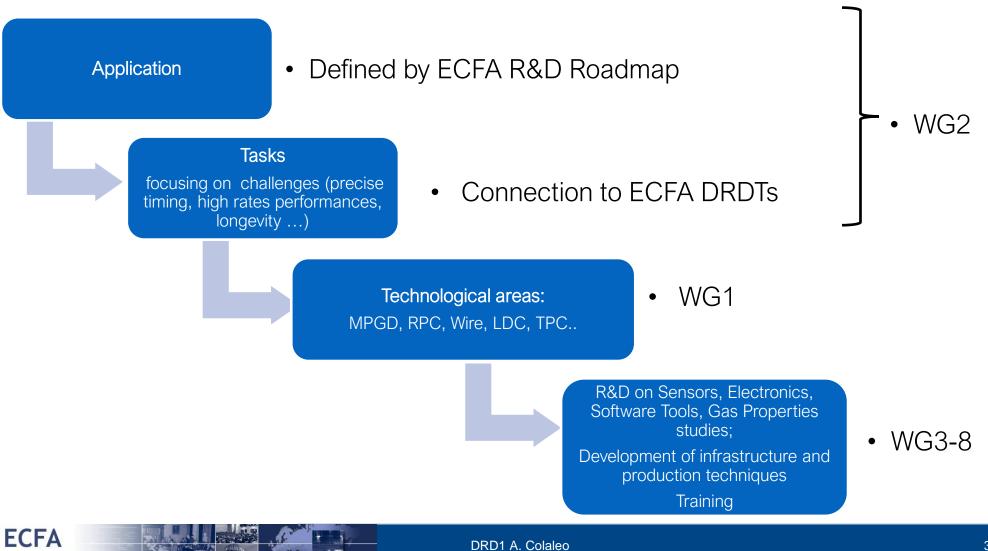
ECFA panel requests

Strategic R&D targeting the priority programmes outlined in the updated European Strategy for Particle Physics.

DRD should highlight the following:

- Technologies to be studied and performances to be expected with respect of the set goals
- Key R&D deliverables in the coming three years
- Estimated costing
- List of institutes

ECFA


European Committee for

- Resources available:
 - Manpower (FTE)
 - Committed budget
 - Additional budget

10

Strategic R&Ds

Strategic R&D targeting the priority programmes outlined in the updated European Strategy for Particle Physics.

European Committee

Work Packages

Strategic R&D are organized in Work Packages, group activities of the Institutes with shared research interests around Applications with a focus on specific task(s) devoted to a specific DRDT challenge, typically related to a specific Detector Technologies and the development to specific tool or infrastructure.

There is no obligation to participate in the WP to be a member of DRD1.

WPs are organized and coordinated internally by participating Institutes:

Should pursue implementation of the milestones and deliverables and execute the workplan outlined in the approved scientific proposal

>funds are fully controlled and operated by participating Institutes.

A formal agreement between participating Institutes, DRD1 management, and the host lab (CERN) is being sorted out by CERN management

Work Packages **take full advantage and may contribute** to the DRD1 scientific program, R&D environment, infrastructure, and R&D tools (electronics, software).

The strategic R&D will be in the focus of the DRDC reviews.

ECFA

European Committee for

DRD1 Work Packages

Preliminary list of tasks is being prepared associated to each application, according to the fe edback received by the community

D	RD	Т	Applications	Link to WG activities	Milestones/interested
					institutions
1.3	1.2	1.3	Inner and central tracking with PID capability	 Tools/infrastructures (WGs) 	 Task1 – Milestones, Institutions Task2 – Milestones, Institutions
DRDT	DRDT	DRDT	Photon detection (PID)	 Tools/infrastructures (WGs) 	 Task1 – Milestones, Institutions Task2 – Milestones, Institutions
			Timing detectors	Tools/infrastructures (WGs)	 Task1 – Milestones, Institutions Task2 – Milestones, Institutions
			Muon system	Tools/infrastructures (WGs)	 Task1 – Milestones, Institutions Task2 – Milestones, Institutions
			Calorimetry	Tools/infrastructures (WGs)	 Task1 – Milestones, Institutions Task2 – Milestones, Institutions
		DRDT1.4	TPC for rare event searches	Tools/infrastructures (WGs)	 Task1 – Milestones, Institutions Task2 – Milestones, Institutions
		Ğ	360101163	J	•

DRD1 Proposal

DRD1

Q2-2023

DRD1 document in the making

Structure of the document:

- Executive summary
- Research topics and Work plan
 - 8 sections: one per Working Group
 - WorkPackages described in 3.2
- Scientific organization
- Resource and infrastructures

DRD1 R&D PROPOSAL

Abstract

The proposal document provides a comprehensive overview of the state of the art and challenges for various gaseous detector technologies, as well as a detailed list of R&D tasks grouped into Work Packages (WPs). The latter are related to the strategic R&D programs to which funding agencies might commit, with nelated infrastructures and tools necessary to advance the technological goals, as outlined in the ECFA R&D roadmap. The main DRD1 document is structured into chapters, each describing the activity planned by the eight Working Groups (WG), which are the core of the future scientific organization. The current DRD1 proposal concentrates on the collaboration research program for the next 3 years.

Please, pay particular attention to your institute's research interests in chapter 3.2 devoted to applications, which is fully aligned with the ECFA Detector R&D roadmap themes and serves as the basis of the Work Packages.

1

The draft document already sent to the contact persons Comments receiving

	285	C	ontent	5	
	256	1	Execut	ive Summary	12
	257	2	Introd	uction	13
	258 259	3		ch Topics and Work Plan echnological Aspects and Developments of New Detector Struc-	14
	290		t	ires, Common Characterization and Physics Issues [WG1]	14
	291			1.1 Introduction 1.2 Challenges	14 17
	292 293			.1.2 Challenges	19
	294		3	2.1 Muon Systems	19
	295		3	2.2 Inner and central tracking with particle identification ca-	· .
	296 297			pability (Drift Chambers, Straw Chambers and Time Pro- jection Chambers)	20
	298		3	2.3 Calorimetry	24
	299			.2.4 Photo-detectors (PID)	27
	300		-	2.5 Timing detectors (PID and trigger)	29
	301		-	2.6 full fi co (fulle creatio, ficultino physics, deure fulgeto)	30 33
	305		3.3 0	2.7 Beyond HEP	33
	304		3	.3.1 Topics covered by the WG3	36
	305		3	3.2 Impacts of some topics in ECFA Roadmap and possible	20
	306 307		3	common research interests	38
	308			topics	40
	309		3.4 N	fodelling and Simulations [WG4]	42
	310		-	4.1 Introduction	42
	311			4.2 State of the Art	42 44
	312 313		-	4.4 Overview of the Tasks	49
	314		3.5 E	lectronics for gaseous detectors [WG5]	51
	315			.5.1 Introduction	51
	316			5.2 Status of readout systems for gaseous detectors	51
	317		1	+ ECFA requirements)	54
	319		3	.5.4 Plan for modernized Readout System including work pack-	
	320		-	ages	56
	321		-	.5.5 Topics beyond the readout system	58 59
	322		5.0 F		59
	323			3.6.1 Development of cost-effective technologies and industri-	
	324			alization (technology transfer)	59
	325			Collaboration Laboratories and Facilities [WG7]	63 63
	327			3.7.2 Common Test Beams	64
	328			3.7.3 Irradiation Facilities	66
	325			3.7.4 Specialised Laboratories	68 70
	330			3.7.5 Instrumentation and software sharing	70 72
	332			Knowledge Transfer, Training, Career [WG8]	73
	333			3.8.1 Introduction	73
	354			3.8.2 Knowledge exchange and facilitating scientific collabora- tion	74
	335			tion	74
	337			3.8.4 Career promotion	76
	338			3.8.5 Outreach and education	78
	335	4		tific Organization	79
	340			Collaboration Organization	80
	341		4.2 4.3	Working Groups	80 81
	343			Work Packages	81
-	344	5	Resor	irces and Infrastructures	82
	345			DRD1 Funding (proposal)	82
	346		1	5.1.1 Common Fund	82
	347			5.1.2 Work Packages	82
	348	6	Partn	ers and Their Fields of Contributions	83

Example for Work Package: Muon system

Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3 y	Interested Institutes
New resistive materials (RPC) and production techniques for resistive layers	 Develop low-cost resistive layers (tech- nology dependent) increase rate capabil- ity 	WG3 (3.1C, 3.2D), WG7 (7.1- 5)	1.1, 1.2	 HPL, low resistivity glass Semiconductors Printed resistive pat- terns 	 Design, con- struction and test of prototypes with new produc- tion techniques 	INFN-RM2, INFN-PD, KOBE, Pavia
New resistive materials (MPGD)	 Stable up to gains of O(10⁶) High gain in a single multiplication stage 	WG3 (3.1C, 3.2D), WG4, WG7 (7.1- 5)	1.2		 Design, con- struction and test of prototypes with new resistive materials 	USTC, INFN-PD, INFN-RM3, INFN-LNF, INFN-FE
New front-end electron- ics	 1 fC threshold High-sensitivity electronics (together with new detector structures) to achieve stable and ef- ficient operation up to C/(MHz/cm²) 	WG5, WG7 (7.1,2)	1.1	Integration of the FEE in the detector Faraday cage Integration of elec- tronics and readout PCB	 Conceptual electronics design based on gas de- tector simulation and experimental measurements Development and test of a front- end prototype 	Oviedo, IFIN- HH, INFN-FE
Scalable multichannel readout system	 Front-end link con- centrator to a power- ful FPGA with possibil- ities of triggering and O(20 GBit/s) to DAQ 	WG5	1.1, 1.2	- FPGA-based architec- ture - FPGA with embedded processito for trigger- ing und ML - Brsic firmware and software can be boot- strapped from existing readout system	 First prototype by end of 2024 for commissioning at test beam 	IFIN-HH
Eco-friendly gases	Guarantee long-term operation Explore compatibility and optimized operation with high-GWP gases	WG3 (3.1A, 3.1B, 3.2C), WG4, WG7 (7.1- 4)	1.1	 Ageing studies Leak mitigation and maintenance of existing systems 	- Test and char- acterization of gaseous-detection technologies with high-GWP gases (broadly)	CERN, Wurzburg, INFN-BA, INFN-LNF, Pavia
Manufacturing	Construction of large- area detectors at low cost Modular design Technology transfer scheme and training center for production	WG3 (3.2E), WG6, WG8	1.3	 Optimization of the manufacturing pro- cedure to minimize time-consuming or costly steps 	Design and manufacturing of large area detector Large area DLC production	Heidelberg, USTC, Weiz- mann, GSI, INFN-LNF
Thinner layers and in- creased mechanical pre- cision over large areas	- Test to experience the ultimate limits to thin- ning down the detector	WG3 (3.2E), WG5, WG7 (7.1,2)	1.3			
Longevity on large de- tector areas	 Study discharge rate and the impact of irra- diation and transported charge (C/cm²) 	WG1, WG3 (3.1B, 3.1D, 3.2B), WG4, WG7	1.1	- Discharge probability - Ageing		
	New resistive materials (RPC) and production techniques for resistive layers New resistive materials (MPGD) New front-end electron- ics Scalable multichannel readout system Eco-friendly gases Manufacturing Thinner layers and in- creased mechanical pre- cision over large areas Longevity on large de-	New resistive materials (RPC) and production techniques for resistive layers - Develop low-cost resistive layers (tech- nology dependent) - increase rate capabil- ity New resistive materials (MPGD) - Stable up to gains of O(10 ⁶) New front-end electron- ics - If C threshold New front-end electron- ics - If C threshold Scalable multichannel readout system - If C threshold Scalable multichannel readout system - Front-end link con- centrator to a power- ful FPGA with possibil- ities of triggering and O(20 GBit/s) to DAQ Eco-friendly gases - Guarantee long-term operation - Explore compatibility and optimized operation with high-GWP gases Manufacturing - Construction of large- area detectors at low cost - Modular design - Technology transfer scheme and training center for production Thinner layers and in- creased mechanical pre- cision over large areas - Test to experience the utimate limits to thin- ning down the detector Longevity on large de- tector areas - Study discharge rate and the impact of irra- diation and transported	New resistive materials (RPC) and production lechniques for resistive layers - Develop low-cost resistive layers (tch- nology dependent) - increase rate capabil- ity WG3 (3.1C, 3.2D), WG7 (7.1- 5) New resistive materials (MPGD) - Stable up to gains of O(10 ⁶) - High gain in a single multiplication stage WG3 (3.1C, 3.2D), WG4, WG7 (7.1- 5) New front-end electron- ics - 1 fC threshold - High-sensitivity elec- tronics (together with new detector structures) to achieve stable and ef- ficient operation up to O(MHz/cm ²) WG5 (WG7 (7.1-2) Scalable multichannel readout system - Front-end link con- centrator to a power- ful FPGA with possibil- ities of triggering and O(20 GBit/s) to DAQ WG5 Eco-friendly gases - Guarantee long-term operation - Explore compatibility and optimized operation with high-GWP gases WG3 (3.1A, 3.1B, 3.2C), WG3 (3.2E), WG3 (3.2E), WG3 (3.2E), WG3 (3.2E), WG3 (3.2E), WG3 (3.2E), WG3 (3.2E), WG3 (3.2E), WG3 (3.2E), WG4 Manufacturing - Test to experience the ultimate limits to thin- ning down the detector WG3 (3.2E), WG3 (3.2E), WG3 (3.2E), WG4, WG4	New resistive materials (RPC) and production layers- Develop low-cost resistive layers (tech- nology dependent) - increase rate capabil- ityWG3 (3.1C, 3.2D), (7.1-5)1.1, (3.1C, 3.2D), WG7 (7.1-5)New resistive materials (MPGD)- Stable up to gains of O(10 ⁶) - High gain in a single multiplication stageWG3 (3.1C, (3.1C, (7.1-5))1.2 (3.1C, (3.1C, (3.1C, (3.1C, (7.1-5))New front-end electron- ics- If C threshold - High-sensitivity elec- tronics (together with new detector structures) to achieve stable and ef- ficient operation up to O(MHz/cm ²)WG5, (7.1,2)Scalable multichannel readout system- Front-end link con- centrator to a power- ful FPGA with possibil- ities of triggering and O(20 GBit/s) to DAQWG5, (1.1, 1.2Eco-friendly gases- Guarantee long-term operation with high-GWP gasesWG3 (3.1A, 3.1B, 3.2C), WG8, WG7, (7.1- 4)Manufacturing- Construction of large- area detectors at low cost - Modular design - Technology transfer scheme and training center for production1.3 (3.2E), WG6, WG8Thinner layers and in- creased mechanical pre- cision over large areas- Study discharge rate and the impact of irra- diation and transported hing down the detector wG3, WG6, WG6, WG6, WG6, WG6, WG71.3 (1.1Longevity on large de- tector areas- Study discharge rate and the impact of irra- diation and transported charge (C/cm ²)WG1, (1.1	New resistive materials (RPC) and production lenchiques for resistive layers - Develop resistive layers (tech nology dependent) - increase rate capabil- ity WG3 3.2D, WG7 (7.1- 5) I.1. 3.2D, WG7 (7.1- 5) - HPL, low resistivity glass - Semiconductors New resistive materials (MPGD) - Stable up to gains of O(10 ⁶) WG3 - High gain in a single multiplication stage WG3 (3.1C, 7.1- 5) 1.2 - Semiconductors New resistive materials (MPGD) - Stable up to gains of O(10 ⁶) WG3 - High sain in a single multiplication stage WG3 (7.1- 5) 1.2 New front-end electron- ics - 1 fC threshold WG5 - High sensitivity elec- ficient operation up to O(MHz/cm ²) WG5 (7.1- 5) 1.1 - Integration of the FEE in the detector structures) (7.1.2) Scalable multichamel readout system - Front-end link con- centrator to a power- ful FPGA with possibil- ities of triggering and O(20 GBit/s) to DAQ WG5 (3.1A, 3.1B, 3.2C), with high-GWP gases 1.1 (3.1A, 3.1B, 3.2C), with high-GWP gases - Ageing studies - Leak mitigation and maintenance of existing systems Eco-friendly gases - Guarantee long-term operation - Explore compatibility and optimized operation with high-GWP gases 1.3 (3.1A, 3.2E), WG6, WG7 (7.1- 4) - Ageing studies - Leak mitigation and maintenance of existing systems Manufacturing - Construction of large- area delectors at low cost - Nodular design - Technolo	WGS DRDT New resistive materials (RPC) and production lexchaques for resistive layers - Develop low-cost resistive layers (tch- logg dependent) 1.1, (3.1C, 3.2D, (7,1- 5) - IPT, low resistivity glass - Design, con- struction and lest of prototypes with new produc- tion techniques New resistive materials (MPGD) - Stable up to gains of (MPGD) (3.1C, (3.1C, (7,1- 5) - Integration of the FEL in the detector Farady (7,1- 5) - Conceptual based on gas de- tector structures) to achive stable and of - ficient operation up to O(MHJ/Cm ²) - Integration of the FEL in the detector Farady (7,1- 5) - Integration of the FEL in the detector Farady (7,1- 5) - Conceptual based on gas de- tector simulation and experimental materials New front-end electron- ics - If Chreshold WGS, (7,1- 7) 1.1, 1.2 - Integration of the FEL in the detector Farady (7,1- 0) - Conceptual based on gas de- tector simulation and experimental materials Scalable multichannel readout system - Front-end link con- centrator to a power- tift PGA with possibil- ities of triggering and O(20 GBit/s) to DAQ VGS (7,1- 4) 1.1, 3.18, 3.20, WG3 (7,1- 4) - Ageing studies - Leak mitigation and matricating prototypes - Development anternance detectors - Leak mitigation and matriting prototype - Design and matritaring pro- costif steps

Challenges for the future muon systems

- Extend state-of-the-art rate capability and longevity by minimum one order of magnitude or more in the highest eta region (up to an order of MHz/cm²)
- Enable detectors efficiently working with suitable low GWP mixtures
- Two objectives above can be favored in 3 ways:
 - low noise electronics integrated in a highly stable and noise immune Faraday cage
 - detector geometries increasing the signal collection
 - use of innovative resistive material for suppressing discharges on the electrodes.
- Time resolution O(10-100ps) for timing applications in a very high rate collider, (e.g., for identifying bunch-crossing, pile-up mitigation, and improved determination of the particle velocity)
- Large-scale serial production.
- Large series industrializes production

Applications: future electron colliders (ILC, FCC-ee, CepC), Muon collider, Hadron Physics, FCC-hh). Technologies: RPC, Micromegas and GEM, mRWELL, gridsPix, m-PIC, FTM...

See G. Aielli's talk

European Committee for Euture Ascelerate

Example for Work Package: Inner and central tracking

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Insti- tutes
TI	Optimize straw materials and technology	Develop thin films and metallization Resistance to ageing Low cross-talk Establish material m- laxation control Gas leakage control Compatible with oper- ation in vacuum	WG1, WG3 (3.1C, 3.2B), WG6, WG7 (7.1- 4)	1.1 1.2 1.3		Design and pro- duction of materi- als Production of straw tubes	CERN, JU- Krakow, U- Manchester, FZJ-GSI-U Bochum, Univ. South Carolina
T2	Develop straw tubes of 5 mm- diameter	 Faster timing (<100 ns) High rate capability, O(100 kHz/cm²) 	WG1, WG7 (7.1- 3)	1.1 1.2 1.3	Wire centering Electrostatic stability Establish assem- bly techniques and tools Straw tracker mechanics	Film tube pro- duction Establish the technique for straw-tube assem- bly Prototype setup	MPP Munich, HUJI, NFN-PV, AGH-Krakow, JU-Krakow, CERN, BURSA, U-Manchester, Univ. South Carolina
	Develop ultra- thin film walls	 < 20 µm thickness X/X₀ ~ 0.02% per straw Film metallization 					INFN-PV, JU- Krakow, U- Manchester, Univ. South Carolina
	Develop ultra- long straws (up to 4 m)	 Establish good me- chanical properties 			Ø.		HUJI, INFN- PV, JU-Krakow, CERN, U- Manchester, Univ. South Carolina
T3	Optimize straw tracker mechanics	Develop self- supporting modules Control relaxation Develop a method for straw alignment	WG1, WG3 (3.2E), WG6, WG7 (7.1)	1.1 1.2 1.3	- Design of all mechanical poils - o	 Develop assem- bly technique, prototype con- struction 	HUJI, JU- Krakow, CERN, BURSA, U- Manchester, FZJ-GSI-U Bochum
T4	Optimization of electronic readout and ASIC devel- opment	 Time readout with sub-ns precision Leading and trailing edge time readout 	WG5, WG7 (7.1- 2)		- Dedicated R&D on ASIC	 A SIC development Development of readout system 	IICLab/ IN2P3/CNRS, INFN-PV, MPP Munich, HUJI, JU-Krakow, AGH-Krakow, CERN, BURSA, U-Manchester, Univ. South Carolina
T5	3D/4D-Tracking and PID via dE/dx	 Spatial resolution <150 μm To-determination with O(ns) resolution p/K/π-separation <1 GeV/c 	WG1 WG4 WG7	1.1		Development of SW algorithms Analysis of (in- beam) test data	UCLab/ IN2P3/CNRS, MPP Munich, INFN-LE, INFN-PV, AGH- Krakow, JU- Krakow, CERN, U-Manchester, ISTINYE, FZJ- GSI-U Bochum
Т6	Longevity	 Ageing resistance at >1 C/cm 	WG1, WG3 (3.2B), WG7 (7.2)	1.1	Various DRD1 test facilities	Prototype mea- surements	CERN, JU- Krakow, FZJ- GSI-U Bochum
17	Software	Straw tube simulation and calibration - Event simulation - Pattern recognition - Tracking and PID - Tracker alignment	WG4	1.1, 1.2	 Garfield, Geant Alignment, e.g. Millepede Real-time pro- cessing 	 Development of new analysis al- gorithms and ap- plications to (in- beam) test data 	FZJ-GSI-U Bochum, CERN, Univ. South Carolina

ECFA

European Committee for

Challenges for the straw chambers

- Minimization of the straw diameter down to 5 mm for high rate capability of the order of 100 kHz/cm² and drift time below 100 ns;
- Reduction of the thickness of the straw film to below 20 μ m aiming at very low X/X₀, which is then comparable to the gas volume of the tube;
- Maximization of the detector straw area to few 10 m² by ultra-long straws with 2 cm diameter, up to 4 m length and low material budget;
- Extending the tracking information to 4D (space and t) and dE/dx for PID;
- Extending the application of straw tubes in vacuum to very large volumes (orders of 10m³);
- Extending the longevity of the detector by increasing the material purity as well as developing new production techniques like ultrasonic welding to minimize the usage of glue.

Applications: future electron colliders (FCC-ee, CepC), FCC-hh, FAIR, Dark Matter, rare event searches, and neutrino physics.

42

Example for Work Package: Inner and central tracking

See F. Grancagnolo's talk

ECFA

European Committee for E

			The second se				
*	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
TI	Development of Front-end ASICs for cluster count- ing	- High bandwidth - High gain - Low power - Low mæs	WG5, WG7 (7.2)	1.1, 1.2	 Achieve efficient clus- ler counting and cluster timing performances 	 Full design, construc- tion and test of the first prototype of the front- end ASIC for cluster counting 	IHEP, CAS, CNRS, INPN- RM, INPN- LE, INFN-PD, INFN-BA, Stony Brook
T2	Develop scalable multichannel DAQ board	- High sampling rate - Dead-time-less - DSP and filter- ing - Event time stamping - Track triggering	WG5, WG7 (7.2)	1.1, 1.2	- IPCIA-based architec- ture - ML algorithms-based firmware	 A working prototype of a scalable multichan- nel DAQ board 	IHEP, CAS, INFN-LE, INFN-BA
13	Mechanics: de- velop new wiring procedures and new end-plate concepts	 Feedihrough- less wiring More transpar- ent end-plakes (X < 5%X₀) 	W(3 (3.1C)	1.1, 1.3	- Separate the wire sup- port function from the gas containment func- tion	Conceptual designs of novel wiring procedures Full design of innova- tive end-plate concepts	USTC, GANIL, IJ- CLab, IN2P3, CNRS, GSI, MPI, INFN-RM, INFN-BA, INFN-BA, INFN-PD, CERN, PSI, Manchesler, Stony Brook, IFAE
T4	Increase rate ca- pability and gran- ularity	 Smaller cell size and shorter drift time Higher field-to- sense wire ratio 	WG3 (3.2E), WG7 (7.2)	13	 Higher delidesense wire num ellows in- creasing behavior of feld wires, decreasing they vire contribution to multiple scattering 	 Performance evalua- tion on drift-cell proto- types at different granu- larities and with differ- ent field configurations 	USTC, IJ- CLab, IN2P3, CNRS, MPI, Bose, INFN- RM, INFN- RM, INFN-BA, CERN, PSI, Bursa, Manch- ester, Stony Brook
TS	Consolidate new wire materials and wire metal coating	Electrostatic sta- bility High YTS Low mass, low Z High conductiv- ity Low ageing	WG3 (3.1C)	1.1, 1.2	 Establish contacts with companies produc- ing new wires Develop metal coating of carbon wires 	 Construction of a mag- netron sputtering facil- ity for metal coating of carbon wires 	GSI, UCLab, IN2P3, CNRS, INFN-RM, INFN-LE, INFN-BA, CERN, PSI, Manchester, Stony Brook
Т6	Study ageing phe- nomena for new wire types	 Establish charge-collection limits for carbon wires as field and sense wires 	WG3 (3.2B), WG7 (7.3,4)	1.1, 1.2	 Build prototypes with new wires as field and sense wires 	 Prototype tests in- beam and at irradiation facilities Measurement of per- formance and depen- dence on total inte- grated charge 	DCLab, IN2P3, CNRS, INPN-RM, INPN-LE, INPN-BA
17	Optimize gas mixing, necupera- tion, purification and necirculation systems	Use non- flammable gazes Keep high quenching power Keep low Z Keep low Z Increase radia- tion length Operate at high ionization density	WG3 (3.1B, 3.2C), WG4, WG7 (7.4)	1.3	 ATEX and safety requirements cost of gas Hydrocarbon-free mixtures 	Study the performance of hydrocarbon-fine gas mixtures Implement a complete design of a recirculating system	MPI, INFN. RM, INFN-BA, LE, INFN-BA, PSI, Bursa, Stony Brook

Challenges for the drift chambers

Mechanics:

• <u>new wiring procedures:</u> high granularity resulting in a very large number of wires require novel feedthrough-less approaches to wiring

• <u>new wire materials</u>: High gas gains and electrostatic stability for long wires require lighter and more resistant wire materials. Carbon monofilaments are good candidates, requiring developments in metal coating for increased wire conductivity and ease of soldering.

Electronics:

• front-end: Large bandwidth and high gain pre-amplifiers for efficient application of cluster counting techniques, together low power consumption and low mass, demand designs and implementations of dedicated ASICs.

• <u>DAQ</u>: Waveform digitizers at high sampling rates and without dead time, coupled to FPGA-based data-processing systems, are needed for real-time signal processing, filtering, minimization of data throughput, event time stamping, and triggering purposes.

Gas:

• <u>hydrocarbon-free mixtures</u>: Safety requirements on flammable gases

recirculation systems

Applications: future electron colliders (FCC-ee, CepC), flavor factories (SCTF)

43

Example for Work Package: Inner and central tracking

*	Task	Performance Goal	DRD1 WGs	ECFA DRDT	Comments	Deliv. next 3y	Interested Institutes
TI	IBF reduction	 Gain×IBF ≈ 1- 2 IBF optimiza- tion together with energy resolution and discharge sta- bility 	WG4, WG7, (7.1- (7.1- 2,5)	1.2	Hybrid stacks Qating GEM Okting GEM Distortion correc- tions Space-charge mon- itoring Development of simulation tools Operation in mag- netic fields	 Provide a large-area pro- totype with a uniform IBF distribution of G*IBF=5 keeping the energy resolu- tion at a toberable level Present a structure with stable settings for G×IBF of 1-2 Determine the ion block- ing power of a GEM-based gale Provide systematic stud- ies and simulations of IBF performance for the most common structures in (high) magnetic fields Introduce an IBF calcu- lator (Garfield-based) for optimization of the HV parameters 	IFUSP Sao P. GSI, Uni Bonn, IRFU/CEA, USTC, Uni Tsinghua, KEK, DESY, NIKHEF, GANIL, RWTH Aachen, INFN Padoxa, IP- Padoxa, IP- Padoxa, IP- Padoxa, IP- Padoxa, Stony Brook
T2	Pixel TPC de- velopment	- Produce 50000- 60000 GridPixes to read out a full TPC - Achieve dV/dk counting- resolution < 4%	WG5, WG7 (7.1- 2,5)	1.1	 InGrids (grouping of channels) Low-power FEE Optimization of pixel size (>200 µm) or cost æduction 	 Provide a large-area pixel-based (InGrid) read- out module Measuring IBF for Gridpix. Reduction with double-mesh Present dW/dx measure- ments in beam 	Uni Bonn, NIKHEF
T3	Optimization of the am- plification is stage and its mechanical structure, and development of low X/X_0 field cages (PC)	 Uniform ne- sponse across the a readout unit area. Keep σ_d _d _d _d s ^d ₅ - Point resolution of <100 µm - Minimize static distortions by ne- ducing insensitive areas - Achieve E-field homogeneity at ~10⁻¹ level 	WGI, WG4, WG6, G(7) (7.1- 2.5)	1.1 1.2	Minimization of static distortions: - Algorithms for dis- tortion corrections - Field shaping wires - Minimize GEM frames area (use thick of EEMs) - Lace vywkems Managene, stages: - Lace vywkems Managene, stages: - Maltiple GEM - Maltiple GEM - GrindPix - Hybrids FC: - high-quality strips, suspended strips - module flatness	 Previde a solution for a large-volume TPC with O(10⁶) pad-readout by means of pre-production of several meadout modules of comparable quality 	IRFU/CEA, Uni Bonn, IHEP CAS, USTC, GANIL, IN2P3, CNRS, GSL, RWTH Aachen, INFN Padova INFN Padova INFN Bar, IPPLM Poland, PSI, Bursa, Stony Brook
T4	Low-power FEE	- ⊲5 mW/ch for >10 ⁶ pad TPC - ASIC de- velopment in 65 nm CMOS	WG5	13	- Continuous vs. pulsed	 Present stable opera- tion of a multi-channel TPC prototype with a low- power ASIC 	IHEP CAS
T5	FEE cooling	- Operate 10 ⁶ channels per end-plate	WG5	1.2	Two-phase CO ₂ cooling Micro-channel cooling with 300 µm pipes in carbon fiber tubes - 3D printing: com- plex structures, performance opti- mization, material selection	 Present a prototype of a cooling system for the 10⁶ pad TPC option 	IRFU/CEA, Land Univ, INFN Pisa, INFN Lecce, INFN Padova
T6	Gas mixture	Optimize: - Longevity - Ageing - Discharge prob- ability - Drift velocity - Ion mobility	WG1, WG3 (3.1D, 3.2A, 3.2B), WG4, WG7 (7.1- 3,5)	1.1	 Discharge proba- bility, ageing, gas properties Optimization of the HV working point Optimization wrt. the expected res- olution (aim for <100 µm) 	 Lower the discharge probability of readout units by 1-2 orders of magnitude down to ~10⁻¹⁴ per hadron Avoid secondary dis- charges in MPGD stacks 	CERN, IFUSP Sao P., GSL, TUM, IHEP, GANIL, USTC, IN2P3, IRFU/CEA, CNRS, RWTH Aachen, Uni Bonn, Bose, INFN Roma, INFN Padova, INFN Bari, IP- PLM Poland, USC/IGFAE, Bursa, Stony Brook

Challenges for the TPC

- Good dE/dx resolution, partly driven by a good gain uniformity;
- very low gainxlon Back Flow to drastically reduce space charge distortions;
- high readout granularity to cope with the particle multiplicity;

See P. Colas talk

- electronics with low power dissipation to meet the increased density of readout channels.
- large area coverage at reduced low cost, relying on lightweight mechanical structures based on composite materials.

Area of application: future electron colliders (ILC, FCC-ee, CEPC). Timeline: 2035-2040, most of the R&D goals should be reached by 2030 to allow for timely construction.

DRD1 Implementation next steps

- 17 April 5 May: draft document preparation including a preliminary definition of WP
- **15 May:** Start the community consultation. Draft shared with Institute Contacts.
- 15 May 1 June: Proposal Team works on the draft document within working groups, implementing the feedback from the community and preparation of the preliminary version of the Executive Summary with WP tables.
- **1 June:** End of the community feedback about the first draft
- **16 June:** Approval of the document for the community-wide discussion and release to the whole community.
- 22-23 June: <u>DRD1 Community workshop</u> wide discussions during the community workshop
- June- July: Definition of the required resources for the outlined programme need (split into personel effort (FTEs) and material plus services (non-FTE) costs. institute's inputs
- End-July: <u>Submission of the proposal</u>

ECFA

Committee for E

BACKUP SLIDES

ALM ST. ALL

46

With the intention to keep lightweight <u>RD51 like MoU</u> and flexibility

Work Packages - funds won, fully controlled, and operated by participating Institutes - **major funding lines** for strategic R&D projects as **identified** (scientific promotion) **by DRD1** (covered by MoU addenda annexes)

- a formal agreement between participating institutes and DRD1 management and/or host lab
- approved and co-signed by funding agencies
- scope, deliverables, work plan, resources
- coordinated internally by participating institutes, reported to DRD1, and reviewed by DRDC
- WG (software, electronics, ..) activities should be included when possible

Work Packages group activities of the Institutes with shared research interests around Applications (TPC, Muon Systems, Calorimetry,..), Challenges (Precise timing, High rate, Longevity,..), Technologies (Resistive electrodes, Photocathodes,..), Detector Technologies (MPGDs, RPCs, Wires,..), or Working Group tasks (Electronics, Software tools,..).

Major Common Investments (material, infrastructure) - a similar mechanism to WPs

art. 9.3 of the MoU for the RD-51 Collaboration:

independently from the RD-51 Common Fund, Parties to the RD-51 Collaboration may agree amongst themselves to share

costs for common projects, such as the submission of wafer production or other procurements.

Proposal for the DRD1 organizzation

- Collaboration type: Community-driven with the R&D environment (common infrastructures and R&D tools):
- Everything in matters of collaboration is decided and run by the collaboration (including the structure of the work)
- Scientific organization: Working Groups structure with mixed technologies, flexibility, and possible parallel configurations addressing closely linked activities:
- DRD1 funding model:

ECFA

European Committee for

- **light-weight** RD51-like **MoU** (focused on collaboration aspects including common fund and fund sharing, organization, and signed by all DRD1 Institutes)
- annexes with **Work Packages** (describing deliverables, work plan, and resources, and signed by participating funding agencies).

Working Group ≠ Work Package !!!

Proposal for the DRD1 organizzation

- Collaboration type: Community-driven with the R&D environment (common infrastructures and R&D tools):
- Scientific organization: Working Groups structure with mixed technologies, flexibility, and possible parallel configurations addressing closely linked activities:
- DRD1 funding model:

ECFA

- **light-weight** RD51-like **MoU** (focused on collaboration aspects including common fund and fund sharing, organization, and signed by all DRD1 Institutes)
- annexes with **Work Packages** (describing deliverables, work plan, and resources, and signed by participating funding agencies).

Working Group \neq Work Package !!!

Roadmap Implementation Brief History

Phil Allport :111th Plenary ECFA

- CERN Council charged ECFA with developing an implementation plan for the Detector R&D Roadmap recommendations.
- Initial proposals, worked out by the Roadmap Coordination Group, were presented and discussed in the Rome RECFA meeting in March 2022, followed by extensive discussions with Funding Agencies and further refinement of the proposals.
- The proposed Detector and Accelerator implementation plans were presented to all Funding Agencies at the April 2022 Plenary RRB https://indico.cern.ch/event/1133070/timetable/ by ECFA and LDG Chairs (Karl Jakobs and Dave Newbold).
 - Given the diverse funding and costing models for different Funding Agencies it was decided to utilise the existing
 understood framework for funding long-term investments in particle physics experiments at CERN as the basis for
 supporting Detector R&D (DRD) collaborations to deliver the multi-decadal Strategic R&D programmes to meet
 requirements identified by the DRDTs in the Roadmap documents.
 - The clear need for "strategic" R&D was emphasised as separate from, but additional to, that for "blue-sky" and "experiment-specific" activities (see also back-up).
- Slightly updated implementation proposals were then presented during June 2022 Council Week and at Plenary ECFA on 22nd July 2022.
- Further refinements of the implementation plan for the Detector R&D Roadmap were discussed over the summer with the Roadmap Panel, CERN management plus RD50, RD51 and CALICE representation.
- These led to the September 2022 SPC and Council approved implementation plan: <u>CERN/SPC/1190</u>.

November 2022

ECFA

		Jisting Procedure
For information	SCIENTIFIC POLICY COMMITTEE 330 th Meeting 26-27 September 2022	
For information	RESTRICTED COUNCIL 209 th Session 29 September 2022	4
EUDODI	WETRATECV FOR BARTICLE	BITVELCE
EUROPH	AN STRATEGY FOR PARTICLE	PHYSICS
EUROPE	AN STRATEGY FOR PARTICLE DETECTOR R&D ROADMAP	PHYSICS
n the context of the im hysics, the European C ouncil in 2020 to deve levelopment Roadmap		sean Strategy for Particle s mandated by the CERN A Detector Research and

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRI CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCI

ERN/3679 Vriginal: Englis

Restricted ECFA

Institutes have to get in touch with the RECFA Restricted ECFA Composition

https://ecfa.web.cern.ch/restricted-ecfa

Chair	Prof. Dr Karl Jakobs	Appointed Jan. 2021
Secretary	Prof. Patricia Conde Muino	Appointed July 2021
Members		
Austria	Dr Manfred Jeitler	Appointed Jan. 2018
Belgium	Prof. Nick van Remortel	Appointed July 2018
Bulgaria	Prof. Plamen laydjiev	Appointed Jan. 2016
Croatia	Prof. Mirko Planinic	Appointed July 2020
Cyprus	Prof. Panos Razis	Appointed Oct. 2017
Czech Republic	Dr Marek Tasevsky	Appointed Jan. 2019
Denmark	Prof. Mogens Dam	Appointed Jan. 2018
Finland	Dr Kati Lassila-Perini	Appointed Jan. 2018
France	Dr Jean-Claude Brient	Appointed Jan. 2020
Germany	Prof. Heiko Lacker	Appointed July 2021
Greece	Prof. Paris Sphicas	Appointed July 2018
Hungary	Dr Ferenc Siklér	Appointed Jan. 2021
Italy	Prof. Chiara Meroni	Appointed July 2020
Israel	Prof. Eilam Gross	Appointed Jan. 2018
Netherlands	Prof. Stan Bentvelsen	Appointed Jan. 2015
Norway	Prof. Alexander Read	Appointed Jan. 2018
Poland	Prof. Justyna Łagoda	Appointed Jan. 2021

Portugal	Prof. Patricia Condes Muino	Appointed July 2020
Romania	Dr Alexandru-Mario Bragadireanu	Appointed Jan. 2019
Serbia	Prof. Peter Adžic	Appointed July 2012
Slovakia	Dr Pavol Stríženec	Appointed May 2016
Slovenia	Prof. Marko Mikuž	Appointed July 2018
Spain	Prof. Celso Martinez	Appointed Jan. 2021
Sweden	Prof. David Milstead	Appointed Jan. 2018
Switzerland	Dr Mike Seidel	Appointed Jan. 2019
Turkey	Prof. Mehmet Zeyrek	Appointed July 2018
United-Kingdom	Prof. Max Klein	Appointed Jan. 2021
Ukraine	Prof. Mykola Shul'ga	Appointed July 2018
CERN	Dr Roger Forty	Appointed Sept. 2015
Ex-Officio Members		
CERN	Dr Fabiola Gianotti Prof. Joachim Mnich	Appointed Jan. 2016 Appointed Jan. 2021
LDG	Prof. Dave Newbold	Appointed Jan. 2021
Observers		
EPS-HEPP Board Chair	Prof. Thomas Gehrmann	Appointed Sept. 2019
ApPEC Chair	Dr Andreas Haungs	Appointed Jan. 2021
NuPECC Chair	Prof. Marek Lewitowicz	Appointed March 2018
Russian Federation	Prof. Victor Matveev	Appointed Jan. 2007
Early Career Researchers (ECR)	Lydia Brenner	Appointed Feb. 2021

November 2022

*community feedback via RECFA delegates and National Contac25

Work

Work Packages group activities of the Institutes with shared research interests around Applications (TPCs, Muon Systems, Calorimetry,..), Challenges (Precise Timing, High-Rate Performance, Longevity,..), Technologies (Resistive Electrodes, Photocathodes,..), Detector Technologies (MPGDs, RPCs, Wires,..), or Working Group tasks (Electrowith, Softward Tools, Gas Properties...).

Like CPs, they may start at any time.

ECFA

There is no obligation to participate in the WP to be a member of DRD1.

WPs are organized and coordinated internally by participating Institutes. They define their scope, deliverables, and work plan and describe involved resources. They are reporting to DRD1 and are reviewed by DRDC.

Involved **funds come from participating Institute's Funding Agencies** through **major funding lines** for strategic detector R&D as identified by the ECFA detector R&D roadmap in compliance with DRD1 scientific program.

Funds are fully controlled and operated by participating Institutes.

A formal agreement (DRD1 MoU Addendum Annex) between participating Institutes, DRD1 management, and the host lab (CERN) is requisite when required by FAs. In this case, it should be approved and co-signed by Funding Agencies.

Work Packages **take full advantage and may contribute** to the DRD1 scientific program, R&D environment, infrastructure, and R&D tools (electronics, software).

National contacts – CERN Members States through ECFA

Not all countries have a national contact at this stage, i.e. table might be updated while we move forward

ECFA

ECFA

European Committee for Future

If TF convenors seek specific input from the CERN member state countries, these colleagues can be contacted with specific questions and they will organise such as to provide you with an

Country	Name	Function	email
Austria	Manfred Jeitler	RECFA member	Manfred.Jeitler@cern.ch
Belgium			
Bulgaria	Venelin Koshuharov	Sofia University "St. Kl. Ohridski"	Venelin.Kozhuharov@cern.ch
Croatia	Tome Anticic	Rudjer Boskovic Institute	anticic@irb.hr
Cyprus	Panos Razis		razis@ucy.ac.cy
Czech Republic	Tomáš Davídek		davidek@ipnp.mff.cuni.cz
Denmark			
Finland			
France	Didier Contardo	CEA/CNRS contact for France	contardo@cern.ch
Germany			
Greece	Dimitris Loukas	Institute of Nuclear Physics, Demokritos	loukas@inp.demokritos.gr
Hungary	Dezso Varga	Wigner RCP	varga.dezso@wigner.hu
Italy	Nadia Pastrone		nadia.pastrone@cern.ch
Israel	Erez Etzion	Tel Aviv University, head of School of Physics and Astronomy	ereze@tauex.tau.ac.il
Netherlands	Niels van Bakel	head of the R&D group at Nikhef	nielsvb@nikhef.nl
Norway	Gerald Eigen		Gerald.Eigen@ift.uib.no
Poland	Marek Idzik	University of Science and Technology AGH	idzik@ftj.agh.edu.pl
Portugal	Paulo Fonte	Polytechnic Institute of Coimbra	fonte@coimbra.lip.pt
Romania	Mihai Petrovici	Senior Researcher in IFIN-HH, Head of Hadronic Physics Department	mpetro@nipne.ro
Serbia	Lidija Zivkovic		Lidija.Zivkovic@cern.ch
Slovakia			
Slovenia	Gregor Kramberger		gregor.kramberger@ijs.si
Spain	Mary-Cruz Fouz	CIEMAT	mcruz.fouz@ciemat.es
Sweden	Christian Ohm		christian.ohm@cern.ch
Swtizerland	Ben Kilminster	Zurich University	ben.kilminster@physik.uzh.ch
Turkey	Kerem Cankocak	İstanbul Technical University	kerem.cankocak@cern.ch
United-Kingdom	lacopo Vivarelli		I.Vivarelli@sussex.ac.uk
Ukraine			
CERN	Christian Joram		Christian.Joram@cern.ch

DRD1 A. Colaleo

DRD1 Implementation timeline and approval

in rest from the includes resources needed existing RD51	-2022/ -2023 F 2022/Q1- 2023 the DF sa team Colle of	 Writing the proposal and scientific proposal (~20 pages) that 	Q3-2023 End July – submission of the	 Establishing
 D Q3-2023 agreed agreed schema With mana, ment and EDP - Mechanisms agreed with funding agencies for country specific Mechanisms agreed with funding agencies for country specific Mechanisms agreed milestones, feasibility, financials) Follow the revisions and upon green ligh from DRDC, CERN PRDC review research board approves the formation of the collaboration 	in rest from the in the vey) 1 ^s _{Q2-2023} and	includes conclusions/feedback feedback from the	and resources already available	projects and carrying
manaient and EDP =Mechanisms agreed(scientific, milestones,approves the approves the formation of the collaboration <td>D 03.2022 ife</td> <td>institutes in contact with their furiding agencies about the best funding</td> <td>py the</td> <td>revisions and upon green light from DRDC,</td>	D 03.2022 ife	institutes in contact with their fur iding agencies about the best funding	py the	revisions and upon green light from DRDC,
	mana, tent and EDP - mber a tr pegin.		(scientifie, milestones,	research board approves the formation of the

Committee for Future Accelerators

ANAS INT

23. 3.2 02

DRD1 scientific organization: Working groups

- Collaboration type: Community-driven with the R&D environment (common infrastructures and R&D tools):
- Scientific organization: Working Groups structure with mixed technologies, flexibility, and possible parallel configurations addressing closely linked activities:

We propose a reasonable number of work groups dedicated to specific topic of research.

Working Groups are the core of the scientific collaboration.

- Coordinated by the conveners
- Sharing experience (Experiments, Blue Sky and generic R&D, and detector physics studies, production and test procedures)
- Identifying directions for the future strategic detector R&D supported by assisting in R&D
 - Look into the future R&D needs

ECFA

European Committee for

- Exploit and use synergies with other WGs/DRDs
- Maintaining an R&D environment for developing gaseous detector technologies:

Detector R&D Roadmap: General Strategic Recommendations

GSR 1 - Supporting R&D facilities

ECFA

European Committee for

It is recommended that the structures to provide Europe-wide coordinated infrastructure in the areas of: test beams, large scale generic prototyping and irradiation be consolidated and enhanced to meet the needs of next generation experiments with adequate centralised investment to avoid less cost-effective, more widely distributed, solutions, and to maintain a network structure for existing distributed facilities, e.g. for irradiation

GSR 2 - Engineering support for detector R&D

In response to ever more integrated detector concepts, requiring holistic design approaches and large component counts, the R&D should be supported with **adequate mechanical and electronics engineering resources**, to bring in expertise in state-of-the-art microelectronics as well as advanced materials and manufacturing techniques, to tackle generic integration challenges, and to maintain scalability of production and quality control from the earliest stages.

GSR 3 - Specific software for instrumentation

Across DRDTs and through adequate capital investments, the availability to the community of **state-of-the-art R&D-specific software packages must be maintained and continuously updated**. The expert development of these packages - for core software frameworks, but also for commonly used simulation and reconstruction tools - should continue to be highly recognised and valued and the community effort to support these needs to be organised at a European level.

GSR 4 - International coordination and organisation of R&D activities

With a view to creating a vibrant ecosystem for R&D, connecting and involving all partners, there is a **need to refresh the CERN RD programme structure and encourage new programmes for next generation detectors**, where CERN and the other national laboratories can assist as major catalysers for these. It is also recommended to revisit and streamline the process of creating and reviewing these programmes, with an extended framework to help share the associated load and increase involvement, while enhancing the visibility of the detector R&D community and easing communication with neighbouring disciplines, for example in cooperation with the ICFA Instrumentation Panel.

Detector R&D Roadmap: General Strategic Recommendations

GSR 5 - Distributed R&D activities with centralised facilities

Establish in the relevant R&D areas a distributed yet connected and supportive tier-ed system for R&D efforts across Europe. Keeping in mind the growing complexity, the specialisation required, the learning curve and the increased cost, consider more focused investment for those themes where leverage can be reached through centralisation at large institutions, while addressing the challenge that distributed resources remain accessible to researchers across Europe and through them also be available to help provide enhanced training opportunities.

GSR 6 - Establish long-term strategic funding programmes

Establish, additional to short-term funding programmes for the early proof of principle phase of R&D, also **long-term strategic funding programmes to sustain both research and development of the multi-decade DRDTs** in order for the technology to mature and to be able to deliver the experimental requirements. Beyond capital investments of single funding agencies, international collaboration and support at the EU level should be established. In general, the cost for R&D has increased, which further strengthens the vital need to make concerted investments.

GSR 7 – "Blue-sky" R&D

ECFA

European Committee for

It is essential that **adequate resources be provided to support more speculative R&D** which can be riskier in terms of immediate benefits but can bring significant and potentially transformational returns if successful both to particle physics: unlocking new physics may only be possible by unlocking novel technologies in instrumentation, and to society. Innovative instrumentation research is one of the defining characteristics of the field of particle physics. "Blue-sky" developments in particle physics have often been of broader application and had immense societal benefit. Examples include: the development of the World Wide Web, Magnetic Resonance Imaging, Positron Emission Tomography and X-ray imaging for photon science.

Detector R&D Roadmap: General Strategic Recommendations

GSR 8 - Attract, nurture, recognise and sustain the careers of R&D experts

Innovation in instrumentation is essential to make progress in particle physics, and R&D experts are essential for innovation. It is recommended that ECFA, with the involvement and support of its Detector R&D Panel, continues the study of recognition with a view to consolidate the route to an adequate number of positions with a sustained career in instrumentation R&D to realise the strategic aspirations expressed in the EPPSU. It is suggested that ECFA should explore mechanisms to develop concrete proposals in this area and to find mechanisms to follow up on these in terms of their implementation. Consideration needs to be given to creating sufficiently attractive remuneration packages to retain those with key skills which typically command much higher salaries outside academic research. It should be emphasised that, in parallel, society benefits from the training particle physics provides because the knowledge and skills acquired are in high demand by industries in high-technology economies.

GSR 9 - Industrial partnerships

It is recommended to **identify promising areas for close collaboration between academic and industrial partners**, to create international frameworks for exchange on academic and industrial trends, drivers and needs, and to establish strategic and resources-loaded cooperation schemes on a European scale to intensify the collaboration with industry, in particular for developments in solid state sensors and micro-electronics.

GSR 10 – Open Science

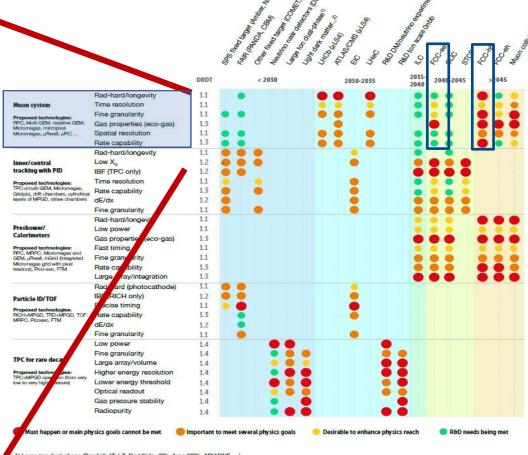
ECFA

Committee for

It is recommended that the concept of **Open Science be explicitly supported in the context of instrumentation**, taking account of the constraints of commercial confidentiality where these apply due to partnerships with industry. Specifically, for publicly-funded research the default, wherever possible, should be open access publication of results and it is proposed that the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP³) should explore ensuring similar access is available to instrumentation journals (including for conference proceedings) as to other particle physics publications.

Muon System

Main drivers from facilities:


Muon systems:

- radiation hardness, longevity and stability
 - O(100 C/cm²)
 - relevance of discharge studies
- large area (low cost),
- time resolution (< 1 ns)
 - mitigate uncorrelated background and pile-up
- fine granularity
 - Pile-up and space resolution
 - space resolution → momentum resolution
- rate capability

ECFA

European Committee

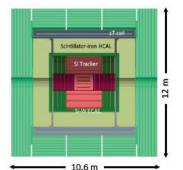
- O (10MHz/ cm²)
- Resistive materials
- **FACILITIES:** HL-LHC, EW-Higgs-Top facilities, Mucollider, hadron physics (EIC and fix target), FCC-hh
- TECHNOLOGIES: MPGDs and new (M)RPC

 Large ton dual-phase (PandaX-4T, LZ, DarkSide -20k, Argo 200k, ARIADNE, ...)
 Light dark matter, solar axion, Onbb, rare nucleikilons and astro-particle reactions, Ba taggingi 3) R8D for 100-ton scale dual-phase DW/neutrino experimenta

Must happen or main physics goals cannot be met

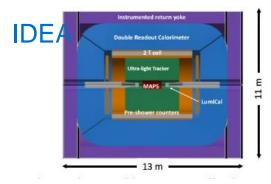
Important to meet several physics goals

Desirable to enhance physics reach


🕨 R&D needs being met

DRD1 A. Colaleo

Muon system: FCC-ee


M. Dam, M. Titov

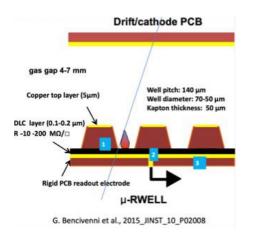
CLD

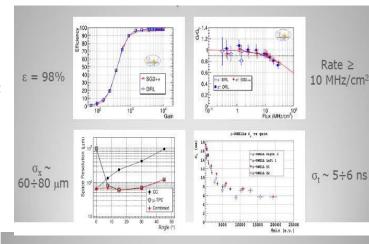
Based on CLIC detector design; profits from technology developments carried out for LCs

- · All silicon vertex detector and tracker
- 3D-imaging highly-granular calorimeter system
- Coil outside calorimeter system

New, innovative, possibly more cost-effective concept

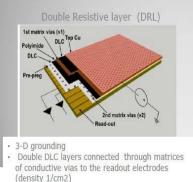
Silicon vertex detector

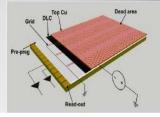

ECFA


European Committee for

- Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin and light solenoid coil inside calorimeter system

Muon system in instrumented return yoke


- 3-7 layers considered: 3000-6000 m²
- Proposed technologies
 - * RPC (30 × 30 mm² cells)
 - * µRWell chambers (1.5 × 500 mm² cells)
 - Also for IDEA pre-shower detector
 - Ongoing R&D work

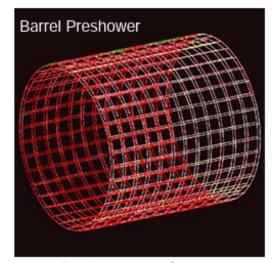


G.Bencivenni

The purpose of these HR versions is to reduce the distance to be "travelled" by the charge towards the ground

Silver Grid (SG)

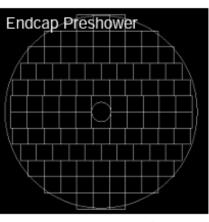
 2-D grounding
 Single DLC layer grounded by means conductive strip lines realized on the DLC laye (density 1/cm)


Pre-shower and Muon Detectors

P. Giacomelli

Preshower Detector

High resolution before the magnet to improve cluster reconstruction


Efficiency > 98% Space Resolution < 100 µm Mass production Optimization of FEE channels/cost

Similar design for the Muon detector

ECFA

European Committee for

Similar design for the Muon detector

Muon Detector

Identify muons and search for LLPs

Efficiency > 98% Space Resolution < 400 µm Mass production Optimization of FEE channels/cost

Detector technology: µ-RWELL

50x50 cm² 2D tiles to cover more than 4330 m²

Preshower

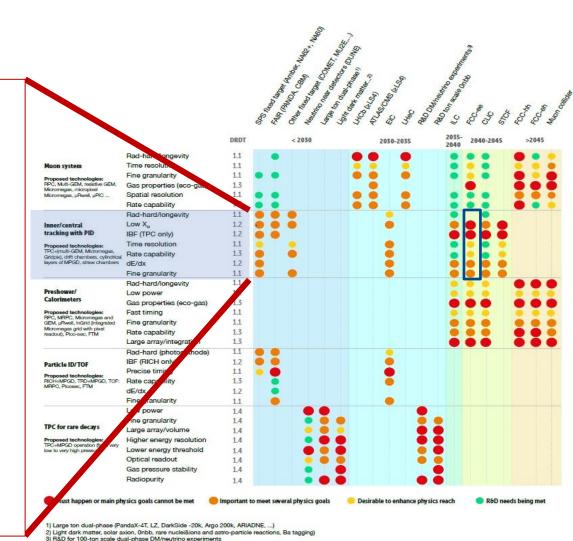
pitch = 0.4 mm FEE capacitance = 70 pF 1.5 million channels

<u>Muon</u>

pitch = 1.5 mm FEE capacitance = 270 pF 5 million channels

Inner/central tracking

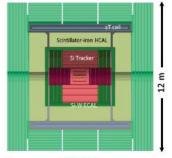
Main drivers from facilities:


Inner/central tracking with PID capabilities:

- radiation hardness, longevity and stability
- Low X_0
 - New materials as carbon monofilament
- Low IBF (TPC only)
- Time resolution
- dE/dx and Cluster counting:
 - Grid-Pix, electronics
- fine granularity
- rate capability

ECFA

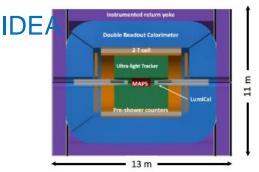
European Committee


- FACILITIES: SCTF, CepC and FCC-ee, hadron physics, rare decays and rare events at accelerators, v-physics
- TECHNOLOGIES: TPC, large volume drift chambers, straw tubes, set of co-axial cylindrical MPGDs

DRD1 A. Colaleo

Gaseous central tracking: FCC-ee

Two Complementary Detector Concepts



- 10.6 m

Based on CLIC detector design; profits from technology developments carried out for LCs

- All silicon vertex detector and tracker
- 3D-imaging highly-granular calorimeter system •
- Coil outside calorimeter system

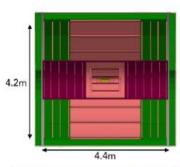
CLD

New, innovative, possibly more cost-effective concept

Silicon vertex detector

ECFA

European Committee for


- · Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin and light solenoid coil inside calorimeter system

- CLD: All silicon pixel (innermost) + strips
 - Inner: 3 (7) barrel (fwd) layers (1% X₀ each)
 - Outer: 3 (4) barrel (fwd) layers (1% X₀ each)
 - Separated by support tube (2.5% X₀)
- IDEA: Extremely transparent Drift Chamber
 - = GAS: 90% He 10% iC4H10
 - Radius 0.35 2.00 m
 - Total thickness: 1.6% of X₀ at 90°
 - Tungsten wires dominant contribution
 - Full system includes Si VXTand Si "wrapper"

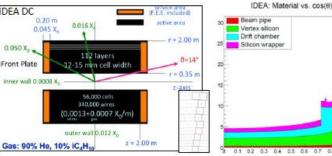
What about a TPC?

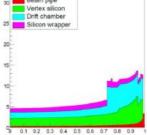
- Very high physics rate (70 kHz)
- B field limited to 2 Tesla
- Considered for CEPC, but having difficulties...

IDEA DC

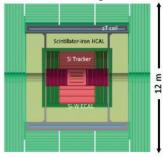
0.050 X


Front Plate


inner wall 0.0008 x


0.20 m

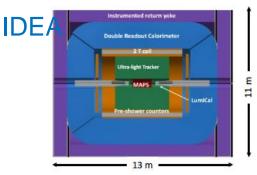
0.045 X.



Gaseous tracking: FCC-ee

M.Dam, P.Gasik

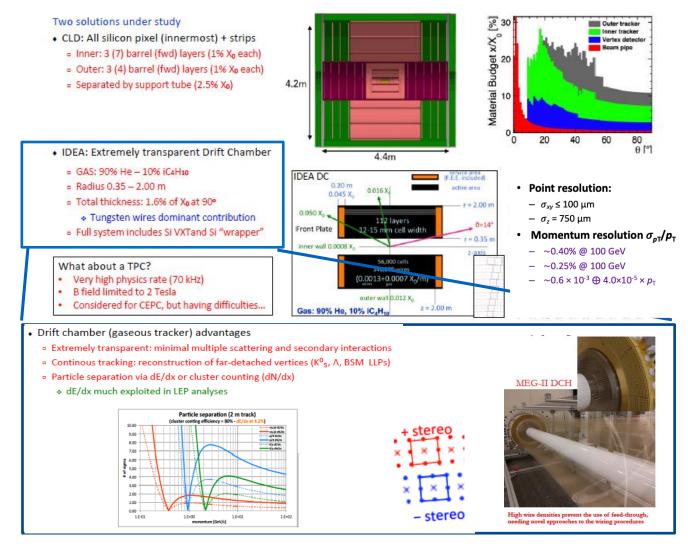
Two Complementary Detector Concepts



10.6 m

Based on CLIC detector design; profits from technology developments carried out for LCs

- All silicon vertex detector and tracker
- 3D-imaging highly-granular calorimeter system
- Coil outside calorimeter system


New, innovative, possibly more cost-effective concept

Silicon vertex detector

ECFA

European Committee for

- · Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin and light solenoid coil inside calorimeter system

