

DRD3 status and plans

DRD3 Proposal team: D. Bortoletto, D. Contardo, E. Vilella, H. Pernegger, N. Cartiglia, C. Gemme, A. Macchiolo, M. Mikuz, M. Moll, I. Pintilie, S. Seidel, M. Bomben, G. Kramberger, A. Morozzi, F. Moscatelli, J. Schwandt, S. Spannagel, D. Dannheim, M. Fernandez, Garcia, M. Jaksic, I. Vila, T. Bergauer, T. Koffas, A. Oh, G. Pelligrini, X. Shi, G. Calderini, D. Dannheim, T. Fritzsch, F. Hugging

From 01.01.2024

	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with long-term stability
Gaseous	DRDT 1.2	Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out schemes
	DRDT1.3	The state of the s
	DRDT1.4	Achieve high sensitivity in both low and high-pressure TPCs
	DRDT 2.1	Develop readout technology to increase spatial and energy resolution for liquid detectors
limite.	DRDT 2.2	Advance noise reduction in liquid detectors to lower signal energy thresholds
Liquid	DRDT 2.3	Improve the material properties of target and detector components in liquid detectors
	DRDT 2.4	Realise liquid detector technologies scalable for integration in large systems
	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors
-	DRDT 3.2	Develop solid state sensors with 4D-capabilities for tracking and

DRD3

	DRDT 2.4	Realise liquid detector technologies scalable for integration in large systems
	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors
Solid	DRDT 3.2	Develop solid state sensors with 4D-capabilities for tracking and calorimetry
state	DRDT 3.3	Extend capabilities of solid state sensors to operate at extreme fluences
	DRDT 3.4	Develop full 3D-interconnection technologies for solid state devices in particle physics
PID and	DRDT 4.1	Enhance the timing resolution and spectral range of photon detectors
Photon	DRDT 4.2	Develop photosensors for extreme environments
FINAN	DRDT 4.3	Develop RICH and imaging detectors with low mass and high resolution timing
	DRDT 4.4	Develop compact high performance time-of-flight detectors
	DRDT 5.1	Promote the development of advanced quantum sensing technologies
Quantum	DRDT 5.2	Investigate and adapt state-of-the-art developments in quantum technologies to particle physics
l Nubrathium C	DRDT 5.3	Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies
	DRDT 5.4	Develop and provide advanced enabling capabilities and infrastructure

- The roadmap identified several R&D themes
- Critical to achieve the scientific programme in the ESPP (European Strategy for Particle Physics)
- Derived from the technological challenges that need to be overcome for the scientific potential of the future facilities

	DRDT 6.1	Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution
Calorimetry	DRDT 6.2	Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods
	DRDT 6.3	Develop calorimeters for extreme radiation, rate and pile-up environments
	DRDT7.1	Advance technologies to deal with greatly increased data density
	DRDT7.2	Develop technologies for increased intelligence on the detector
Flactronics	DRDT7.3	Develop technologies in support of 4D- and 5D-techniques
	DRDT7.4	Develop novel technologies to cope with extreme environments and required longevity
	DRDT7.5	Evaluate and adapt to emerging electronics and data processing technologies
	DRDT 8.1	Develop novel magnet systems
	DRDT 8.2	Develop improved technologies and systems for cooling
Integration	DRDT 8.3	Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.
	DRDT 8.4	Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects
Training	DCT1	Establish and maintain a European coordinated programme for training in instrumentation
	DCT 2	Develop a master's degree programme in instrumentation

Coverage of ECFA DRDTs (& GSRs) DRD3

Within the ECFA roadmap

4 Detector R&D Themes (DRDTs)

have been identified for the Solid State Detectors in particle physics.

- **DRDT3.1.** Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors
- **DRDT3.2**. Develop solid state sensors with 4D-capabilities for tracking and calorimetry
- **DRDT3.3.** Extend capabilities of solid state sensors to operate at **extreme fluences**
- **DRDT3.4.** Develop full **3D-interconnection technologies** for solid state devices in particle physics.

- We are covering all ECFA DRDTs
- Additional WGs were added to cover simulations, facilities and dissemination corresponding to General Strategic Recommendations (GSRs) in the ECFA roadmap
 - WG1: Monolithic CMOS Sensors
 - WG2: Sensors for Tracking & Calorimetry
 - WG3: Radiation damage & extreme fluences
 - WG4: Simulation
 - WG5: Characterization techniques, facilities
 - WG6 Non-silicon based detectors
 - WG7: Interconnect and device fabrication
 - · WG8: Dissemination and outreach

Coverage of ECFA DRDTs (& GSRs) DRD3

Within the ECFA roadmap

4 Detector R&D Themes (DRDTs)

have been identified for the Solid State Detectors in particle physics.

- **DRDT3.1.** Achieve full integration of sensing and microelectronics in monolithic **CMOS** pixel sensors
- **DRDT3.2**. Develop solid state sensors with 4D-capabilities for tracking and calorimetry
- **DRDT3.3.** Extend capabilities of solid state sensors to operate at **extreme** fluences
- **DRDT3.4.** Develop full **3D-interconnection** technologies for solid state devices in particle physics.

- We are covering all ECFA DRDTs
- Additional WGs were added to cover simulations, facilities and dissemination corresponding to **General Strategic Recommendations** (GSRs) in the ECFA roadmap DRD3

WG1: Monolithic CMOS Sensors

WG2: Sensors for Tracking & **Calorimetry**

WG3: Radiation damage & extreme fluences

WG6: Non-silicon based detectors

WG7: Interconnect and device fabrication

Simulation

facilities echniques

Characterization

WG5:

Dissemination

DRD3 proposal team: members

DRD3 proposal core team:

- to foster and guide a community-driven bottomup process towards the DRD3 proposal and the formation of the DRD3 collaboration (survey, community wide workshop, proposal document and constitutional workshop)
- formed in consensus between ECFA Roadmap TF3 conveners & RD50 management
- regular meetings since October 2022

Giovanni Calderini, Nicolo Cartiglia, Gianluigi Casse, Gregor Kramberger, Michael Moll, Giulio Pellegrini, Ioana Pintilie, Ivan Vila Alvarez, Eva Vilella

 Team extended with further experts to organize individual research lines

- WG1: Monolithic CMOS Sensors
 D. Bortoletto, D. Contardo, E. Vilella, H. Pernegger
- WG2: Sensors for Tracking & Calorimetry
 N. Cartiglia, C. Gemme, A. Macchiolo
- WG3: Radiation damage & ultrahigh fluences
 - M. Mikuz, M. Moll, I. Pintilie, S. Seidel
- WG4: Simulation
 - M. Bomben, G. Kramberger, A. Morozzi, F. Moscatelli, J. Schwandt, S. Spannagel
- WG5: Characterization techniques, facilities
 - D. Dannheim, M. Fernandez Garcia, M. Jakšić, I. Vila
- WG6 Non-silicon based detectors
 - T. Bergauer, T. Koffas, A. Oh, G. Pelligrini, X. Shi
- WG7: Interconnect and device fabrication
 - G. Calderini, D. Dannheim, T. Fritzsch, F. Hügging
- WG8: Dissemination and outreach
 - N. Cartiglia et al.

Timeline

22-23 March 2023

DRD3 community meeting: To gather inputs from the community + to propose a way forward (milestones & deliverables)

June 2023

Circulate DRD3 for feedback from the community

July 2023

Submit DRD3 proposal document to DRDC

December 2022

DRD3 proposal team
formed to lead the
preparation of the DRD3
proposal + questionnaires
sent out to the community

16 March 2023

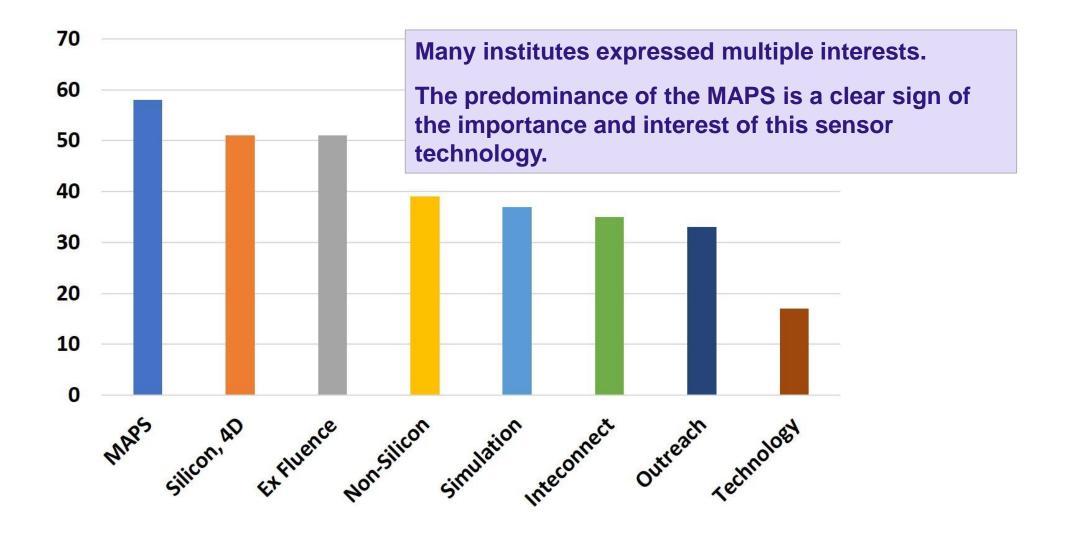
Latest day to be included in the first questionnaires evaluation (as presented in the DRD3 community workshop)
88 replies by then, ~100
replies as of today

April-May 2023

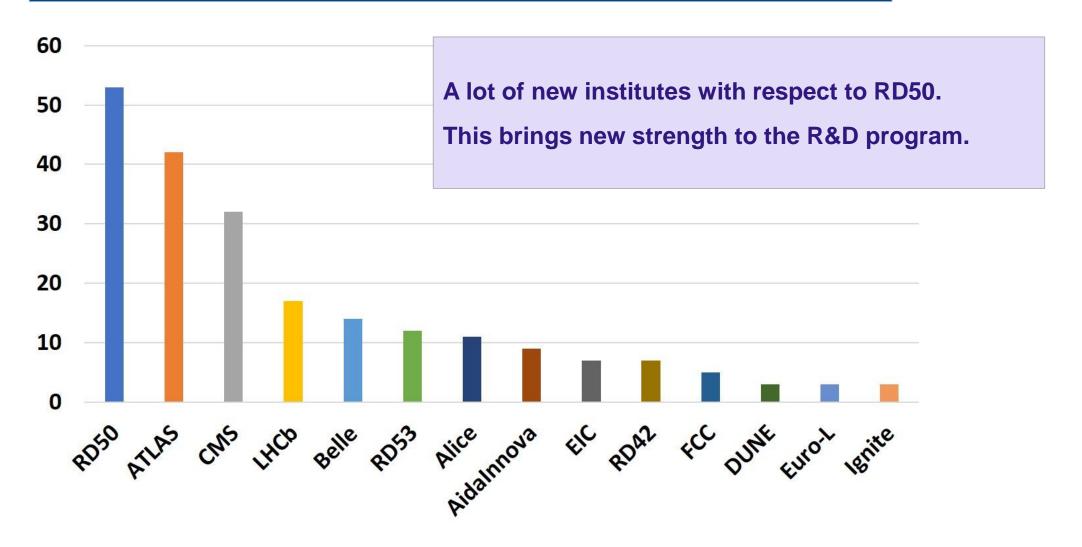
We are here

DRD3 proposal developed based on the detector roadmap and community interest:
Final questionnaires evaluation + further meetings and discussions with experts (~20 pages)

Survey response: country



Survey response: interests



Survey response: experiments

Technologies and work packages

DRDT 3.1	CMOS sensors	DRDT 3.2	Sensors for 4D tracking
WP1.1	TPSCo 65 nm	WP2.1	3D sensors
WP1.2	TowerJazz 180 nm	WP2.2	LGADs
WP1.3	LFoundry 150 nm		
WP1.4	TSI 180 nm		
WP1.5	LFoundry 110 nm		
WP1.6	IHP 130 nm		
DRDT 3.3	Sensors for extreme fluence	DRDT 3.4	Demonstrator for 3D-integration
WP3.1	Wide bandgap (SiC, GaN)	WP4.1	
WP3.2	Diamond	WP4.2	
WP3.3	Silicon		

WG 3.1: Monolithic CMOS sensors

- Spatial resolution of 3 μm
- Timing precision of 20 ps
- Readout architectures for 100 MHz/cm²
- Radiation tolerance of 10E16 n_{eq}/cm² NIEL and 500 MRad

WG 3.2: Sensors for tracking and calorimetry

- Spatial and temporal resolutions at extreme radiation levels
 - Reduction of pixel cell size for 3D sensors
 - 3D sensors with a temporal resolution of about 50 ps
- Spatial and temporal resolutions at low radiation levels and low material and power budgets
 - LGAD sensors with very high fill factor and an excellent spatial and temporal resolution
 - LGAD sensors for Time of Flight applications

WG 3.3: Radiation damage and extreme fluence operation

- Build up data sets on radiation induced defect formation in WBG materials
- Develop silicon radiation damage models based on measured point and cluster defects
- Provide measurements and detector radiation damage models for radiation levels faced in HL-LHC operation
- Measure and model the properties of silicon and WBG sensors in the fluence range 10E16 to 10E18 n_{eq}/cm²

WG 3.4: Simulation

- Flexible CMOS simulation of 65 nm to test design variations
- Implementation of newly measured semiconductor properties into TCAD and MC simulation tools
- Definition of benchmark for the validation of the radiation damage models with measurements and benchmark different models
- Developing of bulk and surface model for 10E16 n_{eq}/cm² to 10E17 n_{eq}/cm² NIEL
- Collate solutions from different MC tools and develop algorithms to include adaptive electric and weighting fields

WG 3.5: Measurement and characterization techniques

- Development of new semiconductor characterization techniques is a priority for future detector developments
- These techniques should enable high-resolution imaging and defect spectroscopy of semiconductor materials,
 as well as advanced characterization of charge transport properties
- The Two Photon Absorption TCT setup, Caribou DAQ system and the Ion Beam testing and irradiation facility at RBI have been identified as good examples and further improvements are being proposed

WG 3.6: Wide bandgap and innovative sensor materials

- 3D diamond detectors, cages/interconnects, base length 25 μm, impact ionisation
- Fabrication of large area SiC and GaN detectors, improve material quality and reduce defect levels
- Improve tracking capabilities of WBG materials
- Apply graphene and/or other 2D materials in radiation detectors, understand signal formation

WG 3.7: Sensor interconnection techniques

- Yield consolidation for fast interconnections
- Demonstration of small pitch (< 30 μm) pixel interconnections
- Demonstration of radiation hardness and thermomechanical constraints
- Development of maskless post-processing for commonly-used interconnection technologies
- Bring part of the commonly-used interconnection technologies to specialised academic groups
- Develop device-to-wafer interconnection technologies
- Develop wafer-to-wafer in presently advanced interconnection technologies
- Develop VIAS in multi-tier sensor/front-end assemblies
- Develop connection techniques for post-processed devices

WG 3.8: Outreach and dissemination

- Disseminating knowledge on solid-state detectors to people working in high energy physics
- Disseminating knowledge on solid-state detectors to high-school students and the general public
 - Design and set-up of the DRD3 website
 - Collection of the outreach material
 - Set-up and organize schools and exchange programs
 - Set-up of the DRD3 conference committee

Proposal document until < 2027

- Strategic R&D aligned with "near time" experiments
- Acknowledged this R&D is a stepping stone towards other experiments that are further down the line

Broad brush matrix starting point

Different detector requirements

aints	Strategic Projects	Tracking Vertex Detector (VD) Central Tracker (CT)	Timing Layer (TL) + Calorimeter
environmental constraints	Heavy Ion	ALICE-3, EIC	ALICE-3 (LS4+), EIC
ironmen [.]	Flavour collider	BELLE-3	BELLE-3
Different env	Lepton collider	ILC, CLIC FCCee, Muon Collider	ILC, CLIC FCCee, Muon Collider
Diff	pp collider	LHCb-2, ATLAS, CMS FCC-hh	LHCb-2, ATLAS, CMS FCC-hh

Note: fixed target experiments in the shadow of colliders, to be consolidated (some high precision timing targets in NA62/Klever by 2025)

1st R&D phase, up to 2028-2029

Handle mandatory (independent) performance for strategic projects of 1st half of 2030's

Milest	ones	Tracking VD/CT	Timing Layer + Calorimeter
Heavy	o lon	M1 ultralight low power tracker pitch 10 - 30 μm @ O(100) MHz/cm², O(1) μs	M2 O(20) ps (TL)
Flavour c	collider	ultralight low power tracker pitch 10 - 30 μm @ O(100) MHz/cm², O(1) ns	O(20) ps in (TL)
Lepton c	collider	e-e: ultralight low power tracker pitch down to <10 μm, @ O(100) MHz/cm² timing driven by power dissipation μ-μ: O(20) ps rates and irradiation tbc	O(10) ps in TL O(< 50) ps in calorimeter driven by power dissipation
pp coll	lider	M3 HL-LHC: 25-50 μm @ O(5) GHz/cm 2 5x10 15 to 5x10 16 neq/cm 2 , 250 - 500 MRad timing O(<50) ps FCC-hh: < 10 - 20 μm @ 30 GHz/cm 2 4D tracking O(<10) ps	M4 HL-LHC: pitch O(<1) mm O(20) ps in TL, NIEL 5x10 ¹⁵ FCC-hh: 5D calorimeter O(<10) ps up to O(10 ¹⁸) neq/cm ² , up to O(50) GRad
		up to $O(10^{18})$ neq/cm ² , up to $O(50)$ GRad	

^{*} ranges representative, ex. for VD and CT with more stringent constraints to be achieved in VD

2nd R &D phase, up to 2034-2035

Integration of 1st R&D phase performance in full 4D devices for stategic progams of the 2040 decade

	Milestones	Tracking VD/CT	Timing Layer + Calorimeter
	Heavy Ion	M1 ultralight low power tracker pitch 10 - 30 μm @ O(100) MHz/cm², O(1) μs	M2 O(20) ps (TL)
reable	-lavour collider	ultralight low power tracker pitch 10 - 30 μm @ O(100) MHz/cm², O(1) ns	O(20) ps in (TL)
mandatory/desii	Lepton collider	M5 e-e: ultralight low power tracker pitch down to <10 μm, @ O(100) MHz/cm² timing driven by power dissipation μ-μ: O(20) ps rates and irradiation tbc	O(10) ps in TL O(< 50) ps in calorimeter driven by power dissipation
mano	pp collider	M3 HL-LHC: 25-50 μm @ O(5) GHz/cm ² 5x10 ¹⁵ to 5x10 ¹⁶ neq/cm ² , 250 - 500 MRad timing	M4 HL-LHC: pitch O(<1) mm O(20) ps in TL, NIEL 5x10 M8 FCC-hh: 5D calorimeter O(<10) ps up to O(10 O(50) GRad
		up to O(10 ¹⁸) neq/cm ² , up to O(50) GRad	

^{*} ranges representative, ex. for VD and CT with more stringent constraints to be achieved in VD

Ball park generic performance targets*

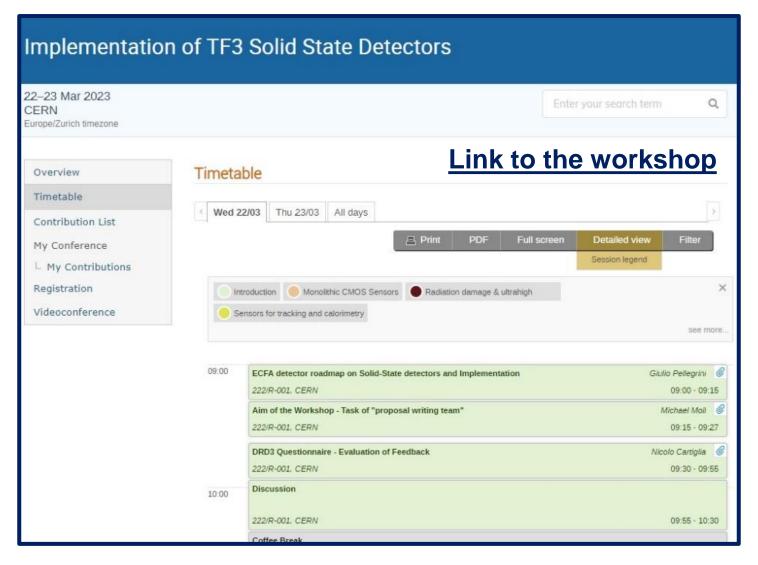
WG1 Monolithic CMOS sensors WPs DRD3

WP	Technology
1.1	TPSCo 65 nm
1.2	TowerJazz 180 nm
1.3	LFoundry 150 nm
1.4	TSI 180 nm
1.5	LFoundry 110 nm
1.6	IHP 130 nm

- Programme foresees several submissions (deliverables) per technology.
- Subject to availability of MPWs and shared ER submissions where MPWs are not possible.
- Synergies with DRD7 (timeline of 65 nm driven by DRD7, conversations onogoing).

WG1 Monolithic CMOS sensors WPs DRD3

- Many discussions with experts to define
 - Number of deliverables
 - What could be achieved with each deliverable
 - Detailed timeline
 - Cost
- Starting to converge...



Full details about the proposed plan **DRD3**

Areas of 'Detector R&D'

Strategic R&D via DRD Collaborations

- Long-term strategic R&D lines
- To address the high-priority items defined in the Roadmap via the DRDTs

'Blue-sky' R&D

- Competitive
- Short-term responsive grants
- Nationally organised

Experiment-specific R&D

- With very well defined detector specifications
- Funded outside of the DRD programme, via experiments

Work Groups will take care of

- Work package is a platform for addressing
 - Strategic R&D to which funding agencies will commit (included in MoU)
- Common projects
 - Also generic R&D, blue sky
- Collaboration with experiments
 - With very well defined detector specifications
 - Funded outside of the DRD programme, via experiments

Timeline going forward

June 2023

Circulate DRD3 for feedback from the community

July 2023

Formation of the "electoral / administrative" Collaboration Board (1 rep. with voting right per institute)

2024

Start of DRD3 collaboration: collection of MoU signatures + DRD3 kick-off workshop

We are here

July 2023

Submit DRD3
proposal
document to
DRDC including
estimates of the
resources needed

Q4 2023

Following the review and revision (if required) of the proposal, the DRDC recommends the formal establishment of the DRD3 collaboration + formal approval by the CERN Research board

Q4 2023

WG conveners will be elected
(how many per WG and
voting procedure to be
agreed);
Collaboration Board Chair and

Collaboration Board Chair and spokespersons appointed

