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Abstract1

1 Introduction2

In the CERN’s Large Hadron Collider (LHC) [1,2], approximately one billion collisions between protons (pp)3

happen every second. Those collisions generate outgoing particles that are measured by dedicated, custom-4

made particle detectors. The main data stream collected by such a detector is close to 1.4 GB/s. After the5

upcoming LHC upgrade to the High-Luminosity LHC (HL-LHC) [3] this number will increase by a factor of6

3.5–5. In High Energy Physics (HEP), an important part of the data analysis is the simulation of pp colli-7

sions that are used to test analysis techniques, estimate the particle detectors’ efficiencies and resolutions,8

make comparisons with collected data, etc. Usually, the number of simulated events is an order of magnitude9

higher than the number of stored data, such that the statistical uncertainty of the generated processes doesn’t10

dominate overall uncertainty. For simulating collision data, the generation task uses Monte Carlo (MC) event11

generators. However, the increased granularity of the detectors and the higher complexity of the collision12

events after the HL-LHC upgrade pose significant challenges which cannot be solved by increments in the13

computing resources alone [4].14

15

In particular, one of the most common final-state objects in pp collisions is in the form of showers of16

hadronic particles, the hadronic jets [5]. These can be described by the quantities of its constituent particles,17

mainly their four-momentum. The Particle Flow (PF) [6] algorithm is used to combine the particles’ infor-18

mation obtained by several sub-detectors to precisely describe its properties. One can use jet reconstruction19

algorithms [7] to cluster the particle constituents into a jet and obtain its relevant properties1 for physics20

analysis such as its invariant mass, transverse momentum (pT ), energy, ϕ, η and many other.21

Being able to speed-up the process of jets simulation in a particle detector would be of great advantage22

to mitigate the needed overhead in computing resources. One of the avenues that shows very promising23

results is to use Machine Learning (ML) algorithms to perform the jets simulation. The goal is to maintain24

MC methods’ efficiency while making the process orders of magnitude faster. Recently, several approaches25

using Neural Networks (NN) have been studied and applied for this purpose. More specifically, Generative26

Adversarial Networks (GAN) [8,9] for the generation of jet constituents and, consequently, jets, have already27

been explored and provided very inspiring results. Another promising technique is the use of Variational28

Autoencoders (VAE), while already has been explored [10], is yet to demonstrate high fidelity results.29

In this work, a new method for the generation of hadronic jets from noise is presented. It is based on a30

VAE coupled with a Normalizing Flow (NF) and trained in a two-step process. The paper is organized as31

follows: section 2 contains a literature overview of ML applied to HEP, mainly focusing on generative methods32

for jets simulation; in section 3 the dataset and the model are described; section 4 details the custom loss33

function and the evaluation metrics; results are presented and discussed in section 5; finally in section 6 we34

summarize the work and give an outlook for using the new method.35

1In the LHC experiments, the coordinate system used is the following: origin is set at the center of the local pp collision
region; y axis is defined vertically upward and z axis along the proton beam direction. 3D coordinates are usually given in terms
of ρ = (x2 + y2)1/2, azimuth angle ϕ and pseudorapidity η = − ln tan(θ/2), where θ is the polar angle.
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2 Related Work36

ML techniques have been applied to hadronic jets generation following several distinct approaches. Some of37

the first attempts [11–15] were performed using convolutional neural networks (CNN) given the impressive38

computer-vision results provided by those and the fact that an image-like representation of a jet comes nat-39

urally from the particle detectors’ data. Jet image datasets are still popular amongst researchers, and have40

also been used by works that implemented other types of generative network architectures, such as graph41

neural networks (GNN) and normalizing flows (NF) [16–18]. Other jets representations such as vectors of42

energy deposits or jets characteristics have also been applied [19,20].43

44

Recently, particle-based jet datasets have also been extensively used by the ML community in the con-45

text of jets generation [8–10, 21]. They are composed of the jets constituent particles’ properties and give a46

detailed description of particles distribution inside the jet, which is known as the jet substructure [22, 23].47

GANs based on graph networks [8,9] have provided inspiring results when aiming to generate particle-based48

jets, retaining great similarity between generated jets and MC simulated jets, while improving the speed of49

simulation by 4 to 5 orders of magnitude depending on the number of particles inside the generated jet.50

Some VAE based on convolutional networks have also been implemented using the same dataset for jets51

fast simulation [21] and for the jets generation as well [10]. However, for the later, there is great room for52

improvement when comparing the VAE generated jets with MC simulated jets.53

54

The premise of this work is that the VAE by itself is not enough to capture the full characteristics of55

a hadronic jet, mainly due to the a priori choice of the latent space distribution. On the other hand, a56

combined VAE+NF approach, which has already been applied for image generation [24], time series data57

prediction [25], among others, has not yet been tried for HEP applications. In this work, that approach is58

used to improve on the generation capacity of the VAE.59

3 Dataset and Model60

We use the gluon HLS4ML LHC Jet dataset [26, 27] composed of ∼177k gluon jets, containing the jets’61

constituent particles tri-momentum (px, py and pz). Those were obtained from simulated pp collisions with62

a center of mass energy of
√
s = 13 TeV that produced jets with pT ≈ 1 TeV, using a parameterization of63

a general purpose LHC experiment-like particle detector to simulate particles’ interaction with the detector64

material. The particle showers were reconstructed using the anti-kT algorithm [28, 29] with ∆R = 0.8. All65

of the 177k samples were divided into ∼ 70% for training, and ∼ 15% each for validation and testing. Even66

though there is no intrinsic ordering to the particles inside a jet, due to this representation of a hadronic67

jet being rather sparse, the particles were ordered in a list by decreasing pT and only the first 30 particles68

were used as input to the ML algorithm. If a jet didn’t contain the 30 particles, the rest of the list was69

filled with zeros (zero-padding). A feature-wise standardization was performed to bound the values of the70

tri-momentum to be in the range [0.0, 1.0] as input to the network.71

3.1 Convolutional VAE72

To accommodate this representation of the input dataset, the chosen model is a VAE [30–32] composed of73

convolution layers (ConVAE). The variational autoencoder is made of three structures: an encoder, which74

learns to compress the representation of the input data into a lower dimensional representation; the latent75

space, that stores this lower dimensional representation into values that closely follow a probability distri-76

bution defined by the user; and the decoder, which decodes the latent space values to the output. The77

probability distribution of the latent space values has to be differentiable, easy to implement and to sample78

from, where the most common choice is the Standard Gaussian, N (0, 1). The goal of the VAE is to do79

this process to produce output data that is as similar as possible to the input in such a way that, during80

the generation step, it is possible to randomly sample from N (0, 1) and directly insert those values into the81

decoder to generate new data that resembles the training dataset.82

83

The network was implemented in PyTorch library [33]. In this work, the encoder and decoder structures84

are mirrored, and only the encoder will be described. It is composed of a given number of consecutive two-85
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dimensional convolution layers where the last convolution layer is flattened and introduced into two linear86

layers, where the latter is fed into the latent space. An activation function is applied after each layer, except87

for the last linear layer of the encoder and the first linear layer of the decoder. The input and output layers88

of the network have a fixed size of 3×30, the activation function in between each layer, number of convolution89

layers in encoder and decoder, kernel size, latent dimension size, number of filters and number of nodes in90

the linear layers between encoder (decoder) and the latent space were set as hyperparameters of the NN to91

be obtained through optimization. The activation function of the last deconvolution layer of the decoder was92

chosen to be the Sigmoid [34], to bound the output values in between 0.0 and 1.0, given the feature-wise93

standardization.94

95

In the encoder architecture, the number of input nodes of the first linear layer is fixed by the size of the96

last convolution layer, the number of output nodes of the second linear layer is fixed as two times the number97

of dimensions of the latent space that will provide the means and standard deviations for the reparameteri-98

zation trick [32], and in the decoder architecture, the number of input nodes in the first linear layer is fixed99

by the latent space size and the number of output nodes in the second linear layer is fixed by the size of the100

first deconvolution layer. The stride and padding of the convolution layers were kept as 1 and 0, respectively.101

The first convolution layer has 1 input filter and Nfilters output filters, and the rest of the convolution layers102

has an input number of filters equal to 2layer−1×Nfilters and an output number of filters equal to 2layer×Nfilters.103

104

Hyperparameter optimization was performed using the Optuna package [35], which allows for fast conver-105

gence due to an aggressive pruning based on intermediate results and easy parallelization. Each ConVAE was106

set to go through 300 trials of the optimization, where each trial was executed for 300 epochs of the training.107

At training time, the batch size was kept fixed at 100 samples and the Adam optimizer [36] with a learning108

rate (lr) that was set by the hyperparameter optimization was used to update the network parameters at109

each epoch. During the optimization, the evaluation metric (described in details in section 4) was minimized110

using the value evaluated on the validation dataset after every 5 epochs. The ConVAE was retrained with111

the best set of hyperparameters for 1500 epochs, and the best model was chosen as the one that exhibited112

the smallest value of the metric.113

3.2 Normalizing Flows114

When the ConVAE is tuned for reconstruction, no constrain is applied over the values of the latent space to
follow a given probability distribution. In this case, the probability distribution of those values, pθ(z), should
be one of the best possible for the input dataset reconstruction. Those reconstruction-imposed distributions
are not known and one couldn’t do any modifications to the VAE itself to use them. However, when combining
that approach with the usage of Normalizing Flows [37, 38], which is a technique that allows training a
NN to find the transformation one probability distribution into another, and given that the values of the
latent space are accessible, one can find the transformation from those to a simple and easy to sample from

probability distribution, such as pθ(z)
ofo−−→ uφ(x) where uφ(x) = N (0, 1). Since these transformations are

invertible by construction, it is possible to start from values that follow the simple distribution, pass it
through the inverse of the transformation and get values that follow the complex and unknown distribution

as uφ(x)
f−1

−−→ pθ(z). The training of the network is done by maximizing the right-hand side of MAYBE
CHANGE THE NOTATION OF EQUATIONS 2 AND 3, AS THEY ARE THE SAME IN THE REALNVP
PAPER!!!

log(pθ(z)) = log(uφ(f(z))) + log

(∣∣∣∣det(∂f(z)

∂z

)∣∣∣∣) , (1)

where ∂f(z)
∂z is the Jacobian of the transformation.115

116

The NF network used in this work was based on the RealNVP network2 [39, 40] that makes use of very
simple analytic expressions for each intermediate transformation

y1:d = x1:d, (2)

2The implementation of the RealNVP network in this work was performed following the GitHub repository https://github.

com/ispamm/realnvp-demo-pytorch.
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yd+1:D = xd+1:D · exp(s(x1:d)) + t(x1:d), (3)

using the coupling layers [41], where only a subset of the input data undergoes the transformations while the117

rest remains untouched, and the subsets are permuted every epoch to ensure that all input data goes through118

the flows. Each individual transformation is still complex enough since the parameters s and t are obtained119

as the output of Multilayer Perceptrons (MLPs), which can be as complex as wanted.120

121

To combine the ConVAE with the NF network, a two-step training was performed (ConVAE+NF). The122

procedure was as follows: the hyperparameters of the ConVAE were optimized and a model constructed with123

the best set of them was trained for 1500 epochs. The model that showed smallest metric when comparing124

the input with reconstructed jets, calculated every 5 epochs, was saved. Values of the latent space of the125

saved network, when receiving as input the training and validation jet datasets, were extracted and used to126

generate new latent space training and validation datasets for the use in the NF. A diagram containing the127

full training procedure is displayed in figure 1.128

129

Figure 1: Illustration of ConVAE+NF network training scheme.

The NF network was also implemented using the PyTorch library. The optimizer chosen to update the130

network parameters after each epoch, aiming to minimize the negative of the mean of expression in equa-131

tion 1 as loss function, was Adam with a learning rate that was optimized via the Optuna package, and an132

exponential decay rate valued as lr/10.0. The number of flows and the number of layers and nodes of the133

two MLPs that determined s and t were set as hyperparameters to be optimized, the ReLU [42] activation134

function was used in between each layer of the MLPs, and for s the hyperbolic tangent was used after its135

last layer to constrain its values to be in between (-1.0, 1.0). The number of input and output nodes of the136

s and t networks were set to match the number of latent dimensions of the ConVAE.137

138

The metric was used to evaluate the combination of both networks as the hyperparameter optimization139

objective as follows: after every four epochs, a number of latdim values were sampled from N (0, 1) and fed140

into the inverse of the NF network, whose output was given as input to the decoder of the ConVAE tuned141

for reconstruction, and its output was compared with jets from the validation dataset. The optimization142

occurred for 300 trials with 20 epochs of the NF training per trial, and the best set of hyperparameters was143

used to train another NF network for 100 epochs where the model that exhibited the smallest metric value,144

obtained after every epoch, was saved.145
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4 ConVAE Loss Function and Evaluation Metric146

The VAE loss function is given by the following expression [30]:

L(θ, ϕ) = −Ez∼qϕ(z|x) [log pθ(x|z)] +DKL(qϕ(z|x)||pθ(z)), (4)

where the first term on the right-hand side, also known as the reconstruction term (Lrec), measures the147

distance between the output produced by the network and the input data, and the second term measures148

the difference between the probability distributions of the output of the encoder values with the latent space149

values, in which the distribution of the latent space is defined a priori by the user, and the distribution of150

the output of the encoder is inferred as one that is easy to work with, but still complex enough to describe151

its output, where the usual choice is a multivariate Gaussian.152

153

The minimization of this loss function ensures that the output will be as close as possible to the input,
while the values of the latent space closely follow the distribution chosen by the user. In addition, one can
add a hyperparameter β [43] to control the importance of each term in the loss. The loss function can be
written as:

LVAE = (1− β)Lrec + βDKL. (5)

The reconstruction loss term was customized to ensure good generation capability to the network. The
loss function that compares output particles with input dataset particles was chosen to be the chamfer
distance [44], also referred to as nearest neighbour distance (NND). This loss function is preferred over the
commonly-used Mean Squared Error (MSE) function, as it preserves permutation invariance, which is needed
since the reconstructed particles in the jets have no intrinsic ordering. The NND loss is expressed as :

LNND =
∑

k

[∑
i∈Jk

min
j∈Ĵk

D(p⃗i, ⃗̂pj) +
∑

j∈Ĵk
min
i∈Jk

D(p⃗i, ⃗̂pj)

]
, (6)

where i and j are indices that go through the particles in the input and output samples, respectively; k is the154

index on a given jet, where Jk represents a given dataset; hat distinguishes between input (without) and out-155

put (with) objects; and D(p⃗i, ⃗̂pj) is the Euclidean distance between input and output particles, treating each156

as a vector in the px, py and pz space. The first term finds the closest output particle to a given input parti-157

cle, the second term finds the closest input particle to a given output particle, and their distances are summed.158

159

The LNND alone was not enough to provide good quality of the generated jets. Therefore, physics inspired
knowledge had to be included in the form of additional distances between the input and output jets properties.
The best results were achieved using a combination of the jets mass and pT terms using MSE as a distance
function. The additional loss term was added as follows :

LJ =
∑

k [γpT
MSE(pTk

, p̂Tk
) + γmMSE(mk, m̂k)] . (7)

where k is the index on a given jet; hat distinguishes between input (without) and output (with) objects;
and parameters γpT

and γm were used to weight each contribution. Finally, the combined reconstruction loss
is given by

Lrec = αLNND + γLJ, (8)

in which α and γ were used to weight the importance of each contribution to the loss function. The full set160

of loss parameters (α, β, γ, γpT
and γm) was also optimized with Optuna.161

162

It is important to note here that the hyperparameter optimization procedure was carried out in two steps:163

the first where only the loss parameters and the optimizer learning rate were being optimized while the set164

of network’s parameters was fixed at some reasonable choices established after manual tests, and the second165

where all the network’s parameters were optimized given the just found best set of loss parameters. This166

was performed to ensure convergence of the optimization procedure in a feasible amount of time given the167

amount of resources available.168

169

The evaluation metric chosen to quantitatively measure the generation capabilities of the distinct models170

was the Earth Mover’s Distance (EMD; analogous to the 1-Wasserstein’s distance) [45], calculated for each171

histogram of the input and output jets mass, energy, pT , η and ϕ, and summed to get the EMDsum. The172

choice of the variables was based on interesting quantities for jet-based searches in LHC experiments [46,47].173
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5 Results and Discussion174

From figure 2 it is possible to notice that there is a clear tendency of EMDsum to be minimized and reach a175

plateau as a function of the epochs, which is also stressed out by the behavior of each separate component.176

177
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Figure 2: Evolution of EMDsum and each of its components during training calculated every 5 epochs,
EMDsum (blue), EMDmass (orange), EMDpT

(green), EMDϕ (red), EMDenergy (purple) and EMDη (brown).

This metric was used as the hyperparameter optimization objective, the choice of the best model, and178

was ultimately used in between distinct approaches to determine the model with best generation capacity. As179

already described, the Hyperparameter optimization was performed using the Optuna framework and it was180

executed in steps to ease the convergence of the method due to limited time and computational resources.181

Below are displayed the ranges of each hyperparameter set used during the optimization for both types of NN.182

183

In the ConVAE case, the set of parameters to be optimized was: the learning rate of the training op-184

timizer (Adam); the loss parameters α, β, γ, γpT
and γm; and the architecture parameters as the number185

of latent dimensions, number of filters, size of kernel related to number of particles to act over, number of186

nodes in linear layers, number of convolution layers and activation function. The 2D kernel size was kept as187

(3, kernel size) for the first (last) convolution (deconvolution) layer of the encoder (decoder), where the num-188

ber 3 refers to the number of particle features of the input dataset, and it was set as (1, kernel size) otherwise.189

190

Parameters γpT
and γm ranges were extracted from the dataset, since, as it can be observed from the191

jet variables histograms NOW THE HISTOGRAMS ONLY APPEAR AFTER THIS PART; SHOULD I192

NOT MENTION THEM HERE?, jets pT and mass have distinct scales, which would imply in different193

magnitude in the loss function. γpT
was set to be optimized in a range 20% smaller and 20% higher than194

unity, while γm assumed values 20% smaller and 20% higher than the ratio of the mean of the jets pT and jets195

mass. As stated before, for the loss hyperparameters optimization, the network architecture hyperparameters196

was fixed at reasonable choices, which are displayed in table 1. For both ConVAE networks (ConVAE and197

ConVAE+NF approaches) almost all the ranges of the hyperparameters for the optimization were the same:198

• lr: [10−5, 10−1] in log scale;199

• α: [0.1, 1.0];200

• γ: [0.1, 1.0];201

• γpT
: [0.8, 1.2];202
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• γm: [9.986, 14.98];203

• latdim: [10, 300] in multiples of 10;204

• Number of filters: [5, 100] in multiples of 5;205

• Kernel size: [1, 8] in multiples of 1;206

• Number of linear nodes: [100, 3000] in multiples of 100;207

• Number of convolution layers: [1, 4] in multiples of 1;208

• Activation function: one of ReLU, GeLU, LeakyReLU, SELU or ELU.209

The only exception was for the loss hyperparameter β that, due to the difference in the magnitudes of Lrec210

and DKL, needed to be much closer to 1.0 for the ConVAE tuned for generation, where the optimization211

range was [0.9, 1.0] in log scale, and much closer to 0.0 for the ConVAE tuned for reconstruction, where the212

optimization range was [0.0, 0.1] also in log scale.213

latdim Filters Kernel Nlinear Layers Act. Func.

30 50 5 1500 3 ReLU

Table 1: Set of common architecture hyperparameters for ConVAE loss parameters optimization.

Since the number of hyperparameters of the RealNVP network is much smaller than for the ConVAE, its214

hyperparameter optimization was performed only in one step. The set of hyperparameters that were optimized215

was: the learning rate of the training optimizer (Adam); and the network architecture hyperparameters as216

the number of flows, number of linear layers for the s and t MLPs and the number of nodes in each layer217

of those MLPs. For both networks, the one used together with the ConVAE and the one used by itself, the218

ranges of the hyperparameter optimization were:219

• lr: [10−5, 10−1] in log scale;220

• Number of flows: [5, 100] in multiples of 5;221

• Number of linear layers of s and t MLPs: [1, 4] in multiples of 1;222

• Number of nodes in each linear layer: [50, 400] in multiples of 50 (optimized for each layer);223

The first approach was to optimize the hyperparameters, train and test the performance of a ConVAE224

without further modifications. The final set of optimized hyperparameters is disposed in table 2.225

lr α β γ γpT
γm latdim Filters Kernel Nlinear Layers Act. Func.

6.1×10−4 0.449 0.998 0.118 0.817 11.7 190 75 3 1100 4 ReLU

Table 2: Set of optimal hyperparameters for the ConVAE tuned for generation.

226

After hyperparameter optimization and saving the best model during training, the value of EMDsum for227

this network was 0.0033. Figure 3 shows the comparisons of the distributions of input and output jets mass,228

pT , energy, η and ϕ after hyperparameter optimization. Qualitatively, it is possible to notice that the compar-229

isons for jets energy, η and ϕ are very similar, with differences only at the extremes of the histograms, while230

for pT there is a slight difference at the peak of the distribution and small discrepancies at both tails. The231

greatest discrepancy is when comparing jets mass, where, from the ratio of the histograms, only generated232

jets with masses in the range 80 GeV ⪅ jmass ⪅ 175 GeV are reasonable.233

234

The second approach was the study of the ConVAE+NF model. The complete sets of optimized hyper-235

parameters are displayed in tables 3 and 4. After both networks were trained, at the testing stage, randomly236
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Figure 3: Comparison of input jets variable distributions (red) with randomly generated jets from the Con-
VAE model (blue). From left to right, top to bottom: mass, energy, pT , η and ϕ distributions are displayed.
On the subplots the ratio gen/input is shown.

generated jets were compared with jets from the test dataset, providing an EMDsum of 0.0026. The his-237

tograms of the jet variables are displayed in figure 4.238

239

From the EMDsum, it is possible to notice a great improvement on the generative capabilities of the240

network. Looking at the mass histogram, which was troubling for the ConVAE tuned for generation, it is241

possible to see that the randomly generated jets have great similarity with the input jets, not agreeing only242

for masses smaller than 25 GeV. However, specially when looking to η, ϕ and pT histograms ratios, it is243

noticeable that a structure arose and is causing some discrepancies between randomly generated and input244

jets.245

246

lr α β γ γpT
γm latdim Filters Kernel Nlinear Layers Act. Func.

5.3×10−4 0.425 0.046 0.121 1.15 11.8 180 50 2 3000 4 ReLU

Table 3: Set of optimal hyperparameters for ConVAE tuned for reconstruction.

For comparison, a RealNVP network was also optimized, in the same way as the NF network for the247

ConVAE+NF approach, and trained to receive as input a flattened jet3, transform it into N (0, 1), and invert248

the transformation back to flattened jets. Table 5 contains the set of best parameters after hyperparameter249

optimization for this network. The value of EMDsum for this case was 0.0049 and the comparison histograms250

3Instead of the input jet be on the format 3×30 representing each particle’s px, py and pz , it was flattened to a 1×90 vector
containing all particles px, then all py and, finally, all pz .
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lr Nflows Layers Nlinear

2.9×10−4 55 4 [400, 350, 400, 400]

Table 4: Set of optimal hyperparameters for the NF to be used on the ConVAE+NF approach.
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Figure 4: Comparison of input jets variable distributions (red) with randomly generated jets from the Con-
VAE+NF model (blue). From left to right, top to bottom: mass, energy, pT , η and ϕ distributions are
displayed. On the subplots the ratio gen/input is shown.

are in figure 5 for the jets variables. This approach clearly shows that there is a big advantage in combining251

the inference capability of the ConVAE, with the invertibility of the NF network.252

lr Nflows Layers Nlinear

3.4×10−4 65 4 [150, 200, 350, 150]

Table 5: Set of optimal hyperparameters for the NF.

253

Following the work done in [8], another set of metrics was calculated and compared to the MPGAN254

results. WM
1 , WP

1 and WEFP
1 correspond to the average 1-Wasserstein distance between input and gener-255

ated jets mass, constituents ηrel, ϕrel and prelT , and the energy-flow polynomials (EFPs) which are a set of256

variables that capture the distribution of the particles inside the jets (substructure). The computation of the257

EFPs was performed using the JETNET package [48], where the EFPs used correspond to the set of loopless258

multigraphs with 4 vertices and 4 edges [8]. MAYBE CHANGE THIS. IT IS STILL TOO SIMILAR TO259

THE MPGAN PAPER!!!; FPND is the ParticleNet [49] version of the Fréchet Inception Distance (FID) [50],260

mainly used for comparing images in computer-vision works; and coverage (COV) and minimum matching261
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distance (MMD) which measure the fraction of samples inX that were matched to Y and the average distance262

between matched samples, respectively. TOO SIMILAR TO MPGAN PAPER, NEED TO CHANGE THE263

WAY IT IS WRITTEN!!! From table 6, it is possible to observe that, in between the models implemented264

in this work, the ConVAE+NF approach is better than the other two in almost every metric. However, the265

comparison with the MPGAN shows a very distinct picture in which the GAN outperforms the VAE in every266

single metric. The advantage of the ConVAE+NF approach, however, is that it is approximately two times267

faster ((18.30 ± 0.04) µs vs 35.7 µs as the average time to generate a jet; timing measured using a NVIDIA268

Tesla T4 GPU) and, given that its generated jets can be of use for some physics analysis applications, it269

might be useful in the future.270

271

Model WM
1 (×10−3) WP

1 (×10−3) WEFP
1 (×10−5) FPND COV↑ MMD

ConVAE 9.1 ± 0.6 8.5 ± 0.8 576 ± 1035 43.6 0.32 0.036
ConVAE+NF 4.5 ± 0.5 5.3 ± 0.4 197 ± 247 34.3 0.38 0.034

NF 12.7 ± 0.7 8.5 ± 0.8 8.6k ± 13.2k 93.6 0.38 0.033

MPGAN 0.7 ± 0.2 0.9 ± 0.3 0.7 ± 0.2 0.12 0.56 0.037

Table 6: Set of metrics used in [8] to compare the performance of distinct ConVAE and NF approaches.
In bold are the best values of the metrics when comparing the methods implemented in this work; last line
exhibits the performace of the MPGAN for the same gluon jet dataset.
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Figure 5: Comparison of input jets variable distributions (red) with randomly generated jets from the NF
only model (blue). From left to right, top to bottom: mass, energy, pT , η and ϕ distributions are displayed.
On the subplots the ratio gen/input is shown.

From the comparisons of the networks above, it is clear that the mixed VAE+NF approach exhibited an272

10



improvement over the VAE only when looking into low and high-level hadronic jets variables. We attribute273

this to the fact that not only the Standard Gaussian distribution is not the optimal probability distribution for274

the elements in the latent space dimension, which was altered by the NF network, but, also, the decompression275

of those values could be improved by using the same parameters of the ConVAE tuned for reconstruction.276

There is still, however, some discrepancies in between the ConVAE+NF generated jets with input jets, mainly277

related to the substructure variables, and with the results of the MPGAN. The core difference between the278

two approaches is in the architecture chosen for the MPGAN that is a GNN. For the purpose of working279

with jets, their constituents’ representation in terms of an unordered set of particles is much more natural,280

intrinsically preserves permutation invariance, and most probably is the cause of the large differences between281

ConVAE and MPGAN results.282

6 Summary and Outlook283

We presented a novel technique in the context of hadronic jets generation in simulated pp collisions, based284

on a machine learning approach that combined a Convolutional Variational Autoencoder with Normalizing285

Flows. From the values of EMDsum obtained, there was a clear improvement with respect to the previous286

work [10], not only by the application of hyperparameter optimization to the ConVAE, but also with the287

usage of the ConVAE+NF technique. The generation of gluon jets was performed using the ConVAE+NF288

and compared with a standard ConVAE, NF alone, and the MPGAN, in which the ConVAE+NF stand out289

against the first two, but needs changes to be comparable to the later.290

291

There is, however, an improvement in comparison with the MPGAN since the ConVAE+NF showed292

a decrease of almost two times in the time to generate each jet. This observation by itself can already293

offer advantages in physics applications where large amounts of simulated samples are needed but perfect294

accuracy is not a strict requirement. It is worth noting, though, that the MPGAN architecture is based on295

a graph neural network, which has a much more natural representation for a particle-based jet dataset. For296

a future work, a GraphVAE+NF can be implemented, trained and tested to check for improvements in the297

jet generation capabilities using the VAE architecture.298
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