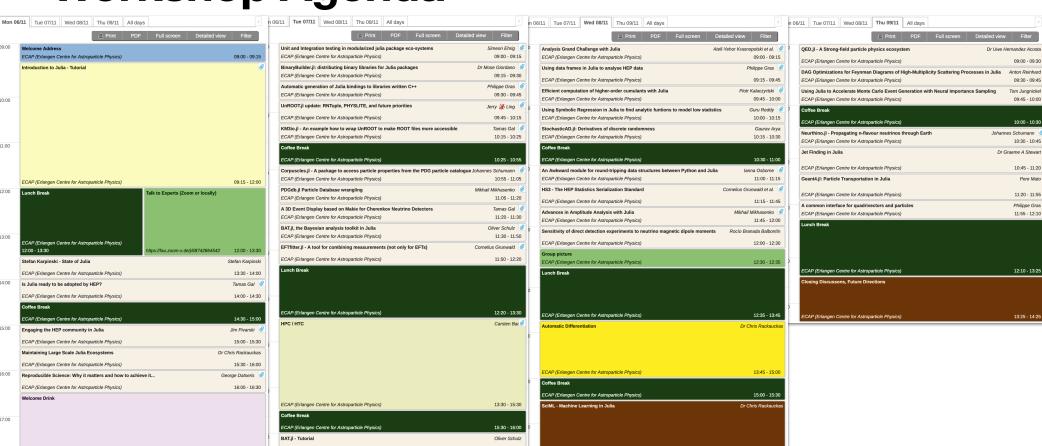


JuliaHEP 2023 Workshop Summary

6–9 Nov 2023 ECAP (Erlangen Centre for Astroparticle Physics)

Ianna Osborne


ECAP (Erlangen Centre for Astroparticle Physics)

16:30 - 18:00

ECAP (Erlangen Centre for Astroparticle Physics)

16:00 - 17:00

ECAP (Erlangen Centre for Astroparticle Physics

Workshop Key Themes

- Day 1 (Nov 6):
 - · Welcome and Julia Tutorial
 - · Insights from Stefan Karpinski on the State of Julia
 - Exploring Julia's Potential in High Energy Physics Computing
- Day 2 (Nov 7):
 - Testing, Binary Building, and Julia Bindings
 - Updates on UnROOT.jl and Package Showcases
 - HPC/HTC and End-User Analysis Tutorial
- Day 3 (Nov 8):
 - Grand Challenge, Data Frames, and Visualization in Julia
 - Reproducible Science and Julia in Differentiation
 - Focus on Scientific Machine Learning (SciML)
- Day 4 (Nov 9):
 - Particle Physics Ecosystem in Julia
 - Optimization Strategies and Monte Carlo Event Generation
 - · Neutrino Propagation, Jet Finding, and Geant4.jl

over 200 participants registered ~ 60 attending each day

PRINCETON UNIVERSITY

Exploring Julia's Potential in HEP

Is Julia ready to be adopted by HEP?

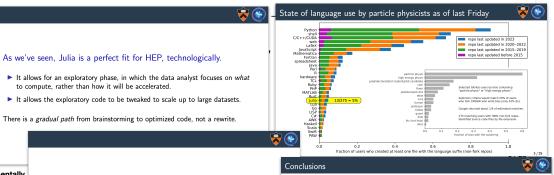
JuliaHEP 2023 - ECAP 06. - 09. November 2023

Tamas Gal - Erlangen Centre for Astroparticle Physics

https://indico.cern.ch/event/1292759/contributions/5614633/

Philippe Gras (IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France), Pere Mato (CERN, Switzerland), Jerry Ling (Harvard University), Oliver Schulz (TU Dormund, Germany), Uwe Hernandez Acosta (CASUS, Görlitz, Germany), Graeme A Stewart (CERN, Switzerland)

Interfacing legacy code


- Many high-quality, mature libraries for numerical computing written in C and Fortran were developed and optimised over the past decades
- · Julia supports native call (without any glue code) into C and Fortran libraries (via the built-in ccall() function)
- C++ wrapping available via external packages like CxxWrap.jl
- Zero-overhead Python wrapping (PyCall.jl)
- . An honorable mention for a fully wrapped HEP software
- Geant4.jl (fully wrapped using CxxWrap.jl) Join the talk from Pere Mato on Thursday at 11:20: https://indico.cern.ch/event/1292759/ contributions/5613048/
- https://github.com/JuliaHEP/Geant4.jl

Summary

- · We think that the two-language problem needs more attention and a fundamentally different approach than creating more and more Python extensions and libraries
- · Julia is an excellent language for scientific computing with high potential for HEP
- · HEP specific needs are very well covered by Julia
- Code sharing and extending foreign packages are a no-brainer, thanks to the package distribution system and the multiple dispatch design
- · Distributed and parallel computing are first-class citizens in Julia
- Join the JuliaHEP GitHub organisation: https://github.com/JuliaHEP

Engaging the HEP community in Julia

Jim Pivarski

Julia is not yet "adopted" in HEP, but it is getting more attention than any other rival to C++ and Python.

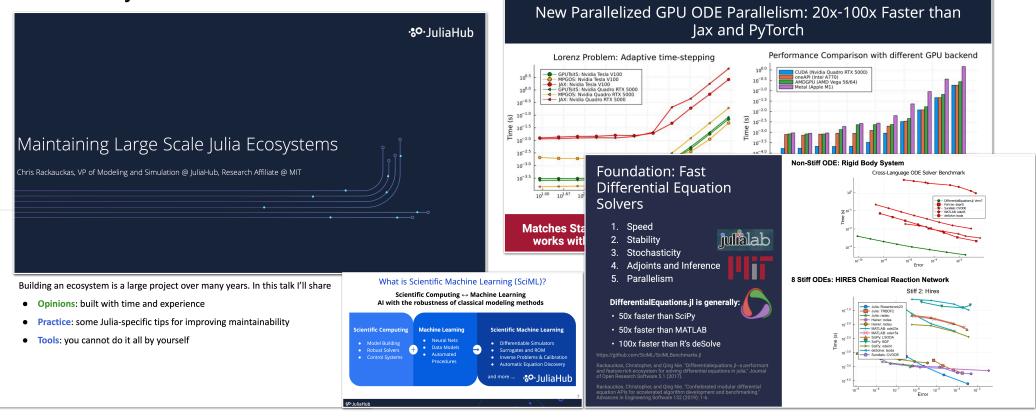
As we've seen, Julia is a perfect fit for HEP, technologically.

to compute, rather than how it will be accelerated.

From here, it could continue to rise in prominence or end up passing as a fad. This is a critical time.

We need stronger connections between HEP analysis tools in Python and HEP analysis tools in Julia.

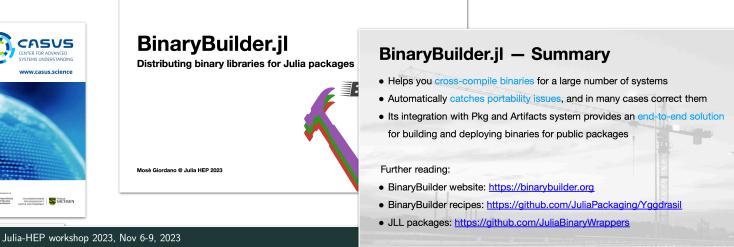
- ▶ StatsBase.Histogram/FHist.jl generalization that is interchangeable with scikit-hep/boost-histogram, scikit-hep/hist?
- ► LorentzVectors.jl or LorentzVectorHEP.jl: interop with scikit-hep/vector?
- ► Corpuscles.jl: share data with scikit-hep/particle?
- ► IMinuit.il √
- zfit, pyhf, cabinetry, Coffea, etc.?


Encourage Python users to use Julia with their Python/C++ code! (Otherwise, they won't use it at all.)

Maintaining Large Scale Julia Ecosystems

Discussion on the challenges and strategies for sustaining large-scale Julia

ecosystems



Testing, Building, Integration

Start implementing (automatic) testing as early as possible Think about your development workflow Develop your CI pipeline incrementally Prepare yourself that your CI concept has gaps Update: The algorithm for searching for package dependencies becomes a separate package: https://github.com/QEDjl-project/IntegrationTests.jl

Automatic generation of Julia bindings to libraries written C++

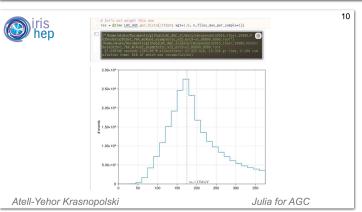
Philippe Gras
IRFU, CEA, Université Paris-Saclay, France
Nov 6-9, 2023

• We sup
• Use

- $\hbox{ {\bf Prototype developed to test automatic generation of Julia bindings for $C++$ based on $CxxWrap.}$
- It demonstrates the feasibility of such automation.
- Well advanced. More development needed to leverage the prototype to a production tool with full support of C++ templates.
- Used to provide a Julia interface to GEANT4! See Pere Mato's Talk on Thursday.

12/12

Analysis Grand Challenge



Atell-Yehor Krasnopolski IRIS-HEP Fellow Universität Würzburg

Jerry Ling Harvard University Alexander Held UWM

UnROOT.jl Past, Now, Future

Jerry Ling¹ Tamás Gál² Nov. 07, 2023

¹Harvard Univseristy/ATLAS

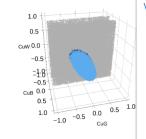
Future 2: Quality of Life in Analysis

Over the 2023 summer, Alex Held and I supervised an IrisHEP Fellow project — Analysis Grand Challenge in Julia(LHC_AGC.jI)⁸.

Atell and I realized that, although we wrote less boilerplate in Julia, it's far from perfect. Obvious wish list: declarative systematics branches, automatic histogram variations, built-in cutflow etc.

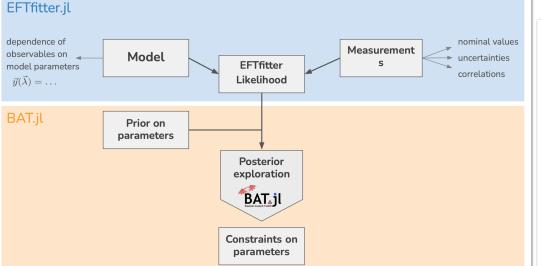
Discussion: What's a composable interface without a performance hit? What "package" should these live in?

⁸See Atell-Yehor Krasnopolski's talk



Data Analysis

EPJC 80 (2020) 2, 136 [arXiv: 1909.13632]



What is EFTfitter?

- tool for the statistical combination & interpretation of measurements
- well suited for EFT interpretations, but not restricted to this field of applications

What it does

- combines measurements of the same or of different observables
- uses a Bayesian approach for inference on model parameters & uncertainty propagation
- provides access to the full posterior distribution of the model parameters (via BAT.jl)
- emphasis on correct statistical treatment of uncertainties & correlations
- · allows the implementation of user-defined (EFT) models & the formulation of physical constraints on observables and model parameters
- ⇒ basically: a user-friendly interface to BAT.jl for a specific kind of likelihood

Why is it called EFTfitter?

Effective Field Theory (EFT): effective extension of the SM Lagrangian for energies much higher than the SM scale:

 O_i : higher dimensional operators C_i : Wilson coefficients

- released the "EFTfitter" package in 2016, based on the C++ version of BAT
- targeted to be used in HEP for EFT interpretations
- EFTfitter.il: rewrite of EFTfitter in Julia
- still for EFT use cases, but tool is also much more generally applicable

Eur. Phys. J. C 76 (2016) 432, [arXiv:1605.05585]

Data Analysis

Julia-HEP workshop 2023, Nov 5-6

Using data frames in Julia to analyse HEP data

The Bayesian Analysis Toolkit (BAT)

Oliver Schulz on behalf of the BAT team

Enrico Guiraud¹, **Philippe Gras²** Nov 5-6, 23

¹Princeton University, USA ²CEA/IRFU - Saclay, France

PDGdb.jl

Wrangling the Particle Data Base

Mikhail Mikhasenko Ruhr University Bochum

Erlangen, 7/11/2023

oschulz@mpp.mpg.de

Conclusions and Outlook

- BAT concept: user brings domain knowledge and likelihood, BAT provides sampling, integration and visualization
- ► BAT.jl v3.x releases will gradually add more "measure language" in API:

$$\int_{B} \alpha_{b}(A) \, \mathrm{d} \, \bar{\beta} = P(A \times B) = \int_{A} \beta_{a}(B) \, \mathrm{d} \, \bar{\alpha}$$

$$\alpha_b(A) = \int_A \frac{\mathrm{d}\,\beta_a}{\mathrm{d}\,\bar{\beta}}(b) \mathrm{d}\,\bar{\alpha}(a)\,,\quad \bar{\beta}(B) = \int_A \beta_a(B) \,\mathrm{d}\,\bar{\alpha}$$

- ► In progress: Switch from tuning MCMC proposals to tuning space transformations
- ► Next sampler (we hope): Dynamic space transformations via RQS normalizing flows during algorithm tuning
- ► ToDo: Add SciMAL optimization and integration algorithms

Corpuscles.jl in a nutshell

- · Native Julia package
- Uses same CSV table like SciKit-HEP Tarticle
- → Official catalog slightly modified/fixed
- Mainly based on info encoded to PDGID
- → PDGdb.jl seems to provide a lot more additional info: e.g. decays and branching ratios ...
- Values are given using Unitful.jl

The PDG is on the track to make the databases available. **Decays properties are accessible!** MySQL is the internal format; new releases will be in the same form.

We get to deal with the historic records.

not-clean: physics-aware processing and cleaning is needed.

not-consistent: feedback to the PDG is appreciated. Collected in [Issues]

Cleaned and shaped DB can be exported e.g. to Corpuscles.jl, scikit-hep/particle

Misha Mikhasenko | Ruhr University Bochum | PDGbd.jl

07/11/2023

17

ECAP JuliaHEP Johannes Schumann / University Erlangen-Nürnberg

technische universität

HS³ - A serialization standard for statistical models in high energy physics

Cornelius Grunwald¹, Robin Pelkner¹

Many people involved: Carsten Burgard, Oliver Schulz, Mikhail Mikhasenko, Jerry Ling, Lukas Heinrich, Alexander Held, Wouter Verkerke, Jonas Eschle, Lorenzo Moneta, Matthew Feickert, Louis Moureaux, Tomas Dado, and many others

JuliaHEP Workshop 2023 - 08.11.2023

¹ TU Dortmund University

Julia Prototype Implementation

- WIP HS³ implementation, still ongoing
- most functionalities for reading HS³ are there
- currently: focusing on reproducing physics results
 - ATLAS Higgs discovery workspaces
 - Master thesis deadline in 2 weeks

code currently more optimized for reproducing physics results rather than

- still needed accord vitan bap used an side of the second second and second accord vita and second se
- but: proof of concept implementation already shows feasibility of the approach

FEATURE COMPLETE

Robin Pelkner & Cornelius Grunwald

HS3 - HEP Statistics Serialization Standard

Reproducible Science

Why it matters and how to achieve it...

Scientific project reproducibility

PUBLISH REPRODUCIBLE PAPERS, END THE CYCLE OF DESPAIR

11/8/2023

Good Scientific Code - George Datseris

How I make a 100% reproducible project

- 1. Initialize a DrWatson project and add all packages I foresee using
- 2. Open three columns in my IDE: source, script, console
- Start doing the analysis on middle column, the script, which uses DrWatson
- 4. Functionality of general purpose goes to the source file after creation in script
- 5. Periodically the code base is reorganized to more script and source files
- 6. When ready to publish:
- Make one script per paper figure or table that needs numbers
- Publish the entire code repository (+ README, Project.toml, Manifest.toml) on GitHub
- Assign a DOI to the GitHub repo via Zenodo.org. Then, cite the DOI in the paper!
- Example: Minimal recipes for global cloudiness (latest paper with code base)

2023 Good Scientific Code - George Datseris

HPC / HTC

High-Performance Computing / High Throughput Computing

Julia for High-Performance Computing (HPC)

Carsten Bauer

November 7, 2023 @ ECAP JuliaHEP Workshop

Summary

► Julia can be a great option for HPC!

- ► serial and parallel performance on-par with Fortran/C/C++
- portability and high-productivity
- → new opportunities, e.g. interactive HPC

► New challenges

- ► workflow / interactivity at scale, Julia depot, system binaries, ...
- "Early adoption" cost
 - ▶ Julia for HPC is a niche
 - ► lack of support, tooling, ...

The Julia for HPC community is small but vibrant. Join us!

iris

Tutorials

from a beginner to an expert

- Introduction to Julia by Graeme A Stewart, Samuel Skipsey
- HPC / HTC by Carsten Bauer
- BAT.jl Tutorial by Oliver Schulz
- Amplitude Analysis with Julia by Mikhail Mikasenko
- Automatic Differentiation by Dr Chris Rackauckas
- SciML Machine Learning in Julia by Dr Chris Rackauckas
 - Julia's SciML
 - 18.337 Parallel Computing and Scientific Machine Learning

Workshop Summary

Discussion: JuilaHEP 2023 Workshop

- · Interoperation with existing software
- · Data analysis
- · Julia libraries for HEP
 - Identified needs include LorentzVector interfaces, PDG data, histograms, and plotting support
 - Suggestion to provide recipes for popular plotting libraries like Plots.jl, Makie.jl, and PGFPlots
- ML in HEP
- HPC in HEP
- Workflows in Julia
 - Exploration of workflow tools (e.g., Snakemake equivalent) and xyzpy equivalent
 - · Consideration of GPU data analysis workflows and potential challenges
- · Documentation & training
 - Emphasis on tutorials hosted on JuliaHEP and HSF websites, including a JuliaHEP primer
 - · Monthly community calls and plans for the next workshop at CERN, potentially with a hackathon

Overall Impact

- Discussions on Julia's role in the future of High Energy Physics
- Several development projects identified
- Workshop served as a vibrant platform for knowledge exchange, showcasing Julia in HEP and envisioning its continued growth