EDM4hep and PODIO

CCE Meeting March 2023 Benedikt Hegner
CERN

Stony Brook University
for the Key4hep team

The EDM at the core of HEP software

e Different components of HEP experiment software have to talk to each other
e The event data model defines the language for this communication
e Users express their ideas in the same language

Event Data Model: EDM4hep
Recon-
struction
Overlay

Digitization
Tracking
PFA

T i

‘ Detector Geometry. DD4hep J

Generator Analysis

Whizard,

Vertexing
Pythia, ...

Jet Clustering
Flavor Tagging

EDM4hep - Goals & Motivation

e The Key4hep project aims to develop a common software stack for all future collider

projects
o ILC, CLIC, FCC-ee & FCC-hh, CEPC, EIC, ...

e EDM4hep is the shared, common EDM that can be used by all communities in the
Key4hep project (and others)

e EDM4hep has to support different use cases from these communities

e Efficiently implemented, support for multi-threading and with usage on
heterogeneous resources in mind

e Built on experience from the “past” - mainly LCIO, which has been successfully
shared by the LC communities

ED4hep schema

EDM4hep DataModel Overview (v0.6)

Raw Data

MCReooTrackerAssodm' ' =

\ e

Digitization

podio as generator for EDM4hep

® Traditionally HEP c++ EDMs are heavily (*podio code

enerator)
Object Oriented : t/ —_ P + ﬁ _linja

® Use podio to generate thread safe code

starting from a high level description \
>
\

® Provide an easy to use interface to the —
MCParticle: TR . N\
users Members: float charge;

double mass;

- int PDG
Vector3d vertex;

- float charge
- double mass

b

_ _/

- 7 Y 2

C J

The three layers of podio

® The design of podio
O favors composition over inheritance
O uses plain-old-data (POD) types wherever possible

® Layered design allows for efficient memory layout
and performant I/O implementation

HitCoIIection}

1..n }

User Layer

Hit
'y

[HitObject J

Object Layer

1

[HitData] POD Layer

podio - datamodel definition

components:
edm4hep: :Vector3f:

[float x, float y, float z]

® Reusable components

econstructedParticle:
on: "Reconstructed Particle"

® Fixed sized arrays as members "F.Gaede, DESY"

edmshep: :Vector3f momentum // [GeV] particle momentum
array<float, 10> covMatrix // energy-momentum covariance

® 1-1and 1-N relations

edmihep: :Vertex startVertex // start vertex associated to this particle

® VeCtorMemberS :Cluster clusters // clusters that have been used for this particle

edmihep: :ReconstructedParticle particles // associated particles

® Additional user-provided code

"bool isCompund() const { return particles_size() > 0; }\n"

- float parameters // hypothesis params

podio - features of generated code

C++17 code with “value semantics”

auto recos = ReconstructedParticleCollection();
70 /BT 11| S
for (auto reco : recos) {

to vtx = reco.getStartVertex();

Python bindings via PyROOT

ReconstructedParticleCollection()

0 rp : reco.getParticles()) {
to mom = rp.getMomentum();

in recos:

reco.getStartVertex()
rp in reco.getParticles():
mom = rp.getMomentum()

Using RDataFrame to read ROOT files
(uproot possible t00)
d = ROOT.RDataFrame('events', 'events.root')
h

= (d.Define('abs_pdg', 'abs(Particle.PDG)')
.Define('mu_sel', 'abs_pdg == 13')

.Define('mu_px"',
'Particle.momentum.x[mu_sel]"')
.HistolD('mu_px'))
h.DrawCopy()

podio supports different I/O backends

® Default ROOT backend

o POD buffers are stored as branches

ina TTree
o Files can be interpreted without
EDM library

® Alternative SIO backend
o Persistency library used in LCIO
o Complete events are stored as
binary records
e Schema can be stored within the files
e Adding more I/O backends is possible
and foreseen

D Sipythia_converter_output_ee_Z_bhbar root

=) ®# [events;1
=] ,gﬂ FReconstructedParticles
% ReconstructedParticles type
2 &HewnstructedPanicles.enengy
% ReconstructedParticles.momentum.x
% ReconstructedParticles. momentum.y
& ReconstructedParticles momentum .z
3% ReconstructedParticles referencePoint x
3% ReconstructedParticles referencePaint.y
§% ReconstructedParticles referencePaint.z
& FReconstructedParticles charge
% ReconstructedParticles mass
’ ReconstructedParticles goodnessOfPID
t ReconstructedParticles.covMatrix[10]
% ReconstructedParticles clusters_begin
3 ReconstructedParticles clusters_end
3% ReconstructedParticles tracks_begin
& ReconstructedParticles tracks_end
* ReconstructedParticles particles_begin
* ReconstructedParticles particles_end
* ReconstructedParticles particlelDs_begin
& ReconstructedParticles particlelDs_end
W @size
A ReconstructedParticles#0
ﬂ FReconstructedParticles#1
ﬂ FReconstructedParticles#2
A ReconstructedParticles#3
A FReconstructedParticles#4
P ReconstructedParticles#S
AParticle
A Particles0
HlParticle#!
% |metaclata; 1
% |run_metaata; 1
% |evt_metadata;1
% |col_metadata;1

ReconstructedParticles.energy

Std Dev 12 34

80 100
ReconstructedParticles.energy

. Collection

/0
Backend

CMake for projects using podio

(PODIO)

generate the c++ code from the yaml definition
(edmshep edm&hep.yaml headers sources I0_BACKEND HANDLERS "ROOT;SIO")
t compile the core data model shared library (no I/0)
(edm4hep "${headers}" "${sources}")

t generate and compile the ROOT I/0 dictionary
(edm4hepDict edm4hep "${headers}" src/selection.xml)
t compile the SIOBlocks shared library for the SIO backend
(edmshep "${headers}" "${sources}")

Install the created targets
(TARGETS edm4hep edm4hepDict edm4hepSioBlocks)

e [Easy to use functions for integrating a podio generated EDM into a project
e Splitinto core EDM library and I/O handling for different backends

o Pick what you need

o 1/0 handling parts dynamically loaded by podio on startup

10

The Frame - A generalized (event) data container

e Container aggregating all relevant data B .

.) - i & - i Collection

e Defines an interval of validity / category Frame e e
C

for contained data : zonsts « RREDRNARRASARARES)

——_"3» Collection

o Event, Run, readout frame, ... Collection]‘ Vessesssisssocans -

e Easy to use and thread safe interface for Collection

data access Collection

o Immutable read access only M 34d: ., mutable owned by user
. . o ~2Ve
o Ownership model reflected in API \—

e Decouples I/O from operating on the data

Parameters / Metadata

1

Prototyping of new data types

e podio comes with a mechanism to extend
existing (“upstream”) datamodels
e EDM4hep uses this for prototyping new
datatypes
o Have to avoid to fracture EDM4hep
o Goal is always inclusion into
EDM4hep
e Used in Key4hep for some detector
prototyping
o Room for more detector concepts in
EDM4hep!

| our data
does not
fit into it

N

(

R/
-

profit
from

all the
work

our data
does not
fit into it

[V

|

12

Ongoing work and future plans

e Release v1.0 with backwards compatibility from then on
o Need to finish some clean-up tasks first
e Propagate Frame based I/O to all currently existing “customers”
o Framework integration, ddsim (DD4hep) outpuit, ...
e Implement currently missing features
o E.g. User defined associations between arbitrary types
o Interface types that allow for easier high level workflows (e.g. tracker hits for different
technologies)
e Start exploring work on heterogeneous resources
e Multi-language support based on abstract data model definitions

@
o Did so with podio in Julia exercise during 2022 GSoC .uli.a
o Will do a prototype with Rust this year J

13

Conclusions

e EDM4hep is the shared, common EDM for the Key4hep project
o Community effort is a success
It is generated via the podio EDM toolkit
Efficient implementation of data types and flexible 1/O capabilities
podio extension mechanism can be used to add new data types
EDM4hep is open for new data types for not yet covered detector types

14

Pointers to software resources

e EDM4hep
o https://github.com/key4hep/EDM4hep ICWA‘NN Y'Ofluérverl;r\”g GAME.
A FEW POINTERS?
® podio (0x3A28213A
o https://github.com/AIDASoft/podio Ox6339292C,
Ox7363682£.
e Biweekly meetings for podio/EDM4hep [HATE YOU

discussion

o https://indico.cern.ch/cateqory/11461/ Q&ﬁ %

xkcd.com/138

15

https://github.com/key4hep/EDM4hep
https://github.com/AIDASoft/podio
https://indico.cern.ch/category/11461/

