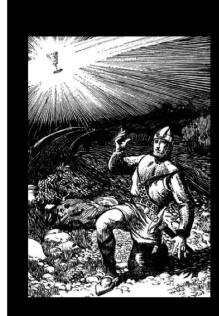
Prof Dr. Joao Seco, DKFZ Heidelberg Dr. Niklas Wahl, DKFZ Heidelberg

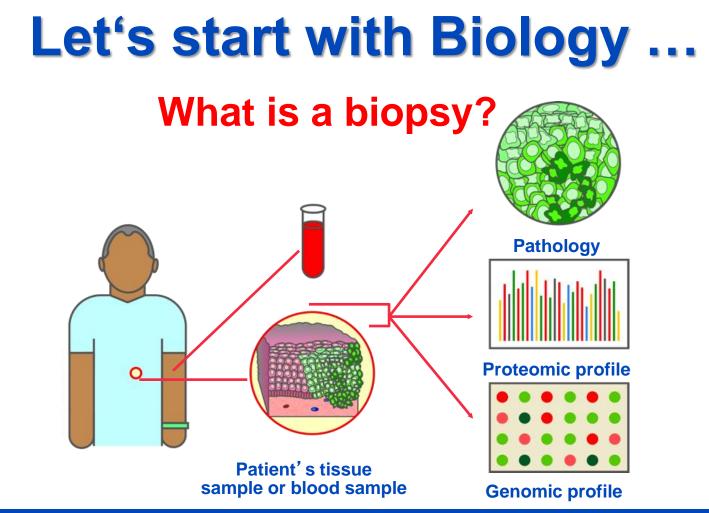
article Therapy

Physics/Biology of

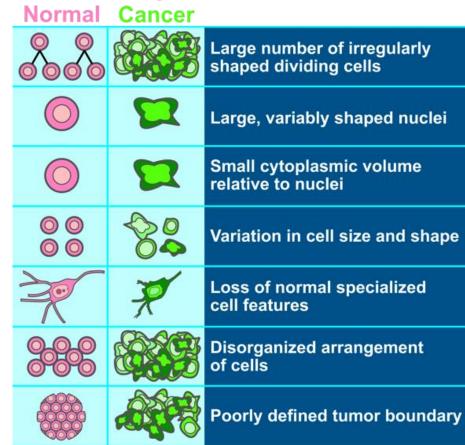
BioMedical Physics in Radiation Oncology

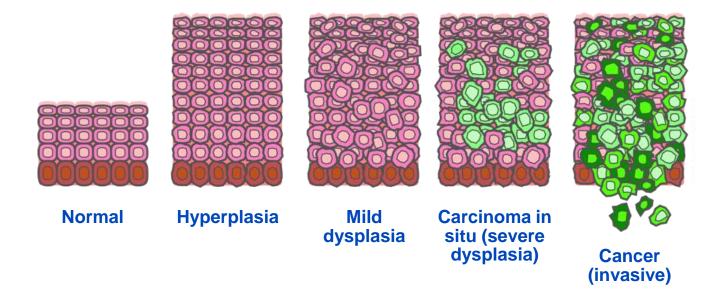

j.seco@dkfz.de

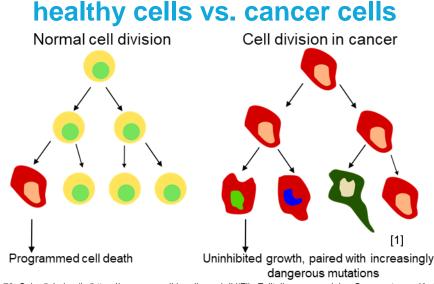
Questions are welcome at any time

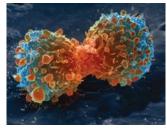


How to Treat Cancer With minimal side-effects


- Holy grail of oncology
- Identify characteristics that distinguish tumor cells from normal cells
- Design a <u>Monotherapy</u> that selectively ablates tumor cells


What does a pathologist look for in biopsy tissue?


How does Cancer look like under the microscope?

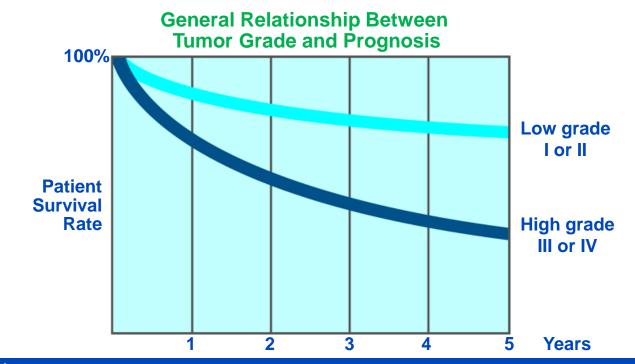


What is Cancer ?

- is uncontrolled cell proliferation and cell rampant growth
- cancer may spread to other parts of the body
- over 100 different types, individual

Cancer cell of a lung tumor during cell proliferation

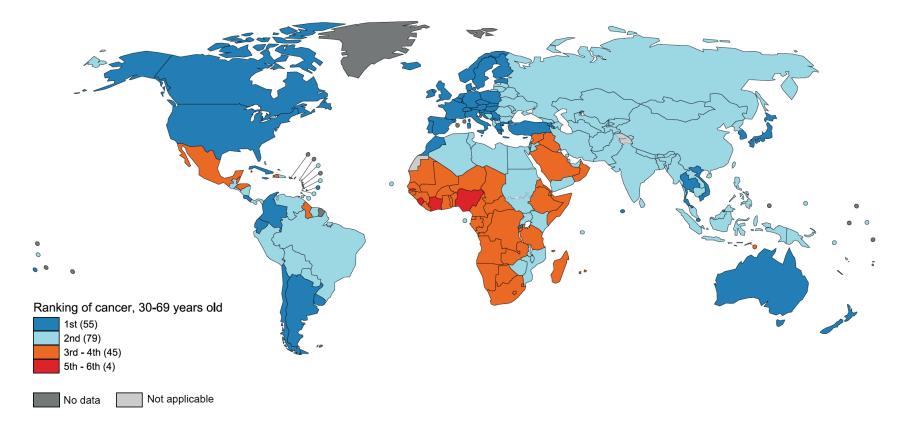
[2]


Theory of cancer formation:

(random) mutation levers out i.a.
programmed cell death
→ cells need to be removed / killed
"manually" for treatment

[1] Garak76, Suhadi Jorhaa'ir (https://commons.wikimedia.org/wiki/File:Zellteilung_normal_im_Gegensatz_zu_Krebs.svg), "Zellteilung normal im Gegensatz zu Krebs"
 [2] fineartamerica - Lung Cancer Cell Division. - Accessed from https://fineartamerica.com/featured/lung-cancer-cell-division-sem-steve-gschmeissner.html?product=metal-print on 12.02.2021. Lettering was adapted.

What is the relationship between tumor grade and patient survival?



06/03/2021

Cancer - incidence

Stewart, B. W. K. P., and Christopher P. Wild. "World cancer report 2014." (2014).
 Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

[3] RKI, Report on cancer in Germany for 2013/2014, cancer registry data [4] RKI, Report on cancer in Germany for 2015/2016, cancer registry data

2017 New Cancer Sites

Estimated New Cases

Prostate	161,360	19%	Breast	252,710	30%
Lung & bronchus	116,990	14%	Lung & bronchus	105,510	12%
Colon & rectum	71,420	9%	Colon & rectum	64,010	8%
Urinary bladder	60,490	7%	Uterine corpus	61,380	7%
Melanoma of the skin	52,170	6%	Thyroid	42,470	5%
Kidney & renal pelvis	40,610	5%	Melanoma of the skin	34,940	4%
n-Hodgkin lymphoma	40,080	5%	Non-Hodgkin lymphoma	32,160	4%
Leukemia	36,290	4%	Leukemia	25,840	3%
Oral cavity & pharynx	35,720	4%	Pancreas	25,700	3%
k intrahepatic bile duct	29,200	3%	Kidney & renal pelvis	23,380	3%
All Sites	836,150	100%	All Sites	852,630	100%

2017 Cancer Deaths

Estimated New Cases

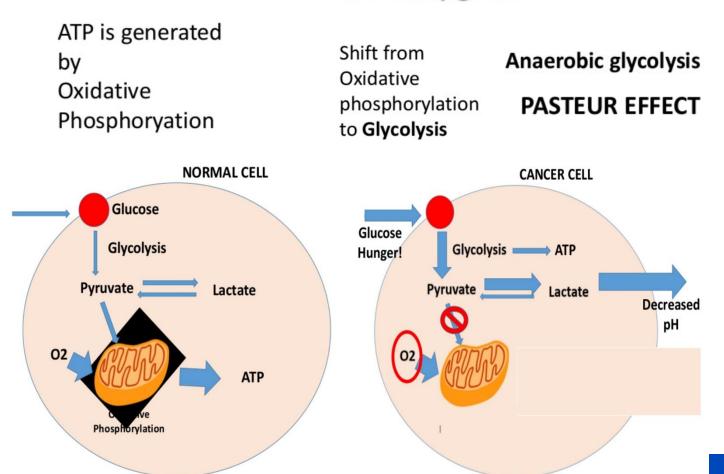
			Males	Females		
Prostate	161,360	19%		Breast	252,710	30%
Lung & bronchus	116,990	14%		Lung & bronchus	105,510	12%
Colon & rectum	71,420	9%		Colon & rectum	64,010	8%
Urinary bladder	60,490	7%		Uterine corpus	61,380	7%
Melanoma of the skin	52,170	6%		Thyroid	42,470	5%
Kidney & renal pelvis	40,610	5%		Melanoma of the skin	34,940	4%
Non-Hodgkin lymphoma	40,080	5%		Non-Hodgkin lymphoma	32,160	4%
Leukemia	36,290	4%		Leukemia	25,840	3%
Oral cavity & pharynx	35,720	4%		Pancreas	25,700	3%
Liver & intrahepatic bile duct	29,200	3%		Kidney & renal pelvis	23,380	3%

Estimated Deaths

			Males	Fen
Lung & bronchus	84,590	27%		
Colon & rectum	27.150	9%		
Prostate	26,730	8%		2
Pancreas	22,300	7%		
Liver & intrahepatic bile duct	19,610	6%		
Leukemia	14,300	4%		
Esophagus	12,720	4%		
Urinary bladder	12,240	4%		
Non-Hodgkin lymphoma	11,450	4%		
Brain & other nervous system	9,620	3%		
All Sites	318,420	100%		

males

Lung & bronchus	71,280	25%
Breast	40.610	14%
Colon & rectum	23,110	8%
Pancreas	20,790	7%
Ovary	14,080	5%
Uterine corpus	10,920	4%
Leukemia	10,200	4%
Liver & intrahepatic bile duct	9,310	3%
Non-Hodgkin lymphoma	8,690	3%
Brain & other nervous system	7,080	3%
All Sites	282,500	100%
All Sites	202,500	10



Hallmark of Cancer "Warburg Effect"

06/03/2021 Page 12 j.seco@dkfz.de

Adequate oxygen As Oxygen Decreases

dkfz.

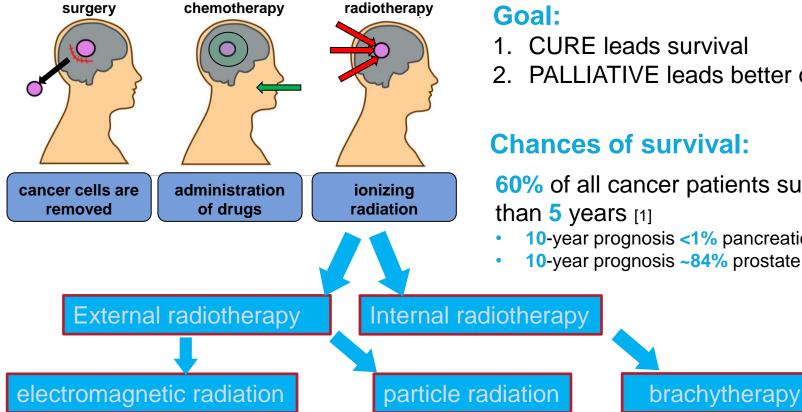
Early 20th Century

Observed that cancer cells had increased rates of glycolysis

Despite the availability of adequate oxygen levels

Aerobic glycolysis

Otto Heinrich Warburg German Physiologist

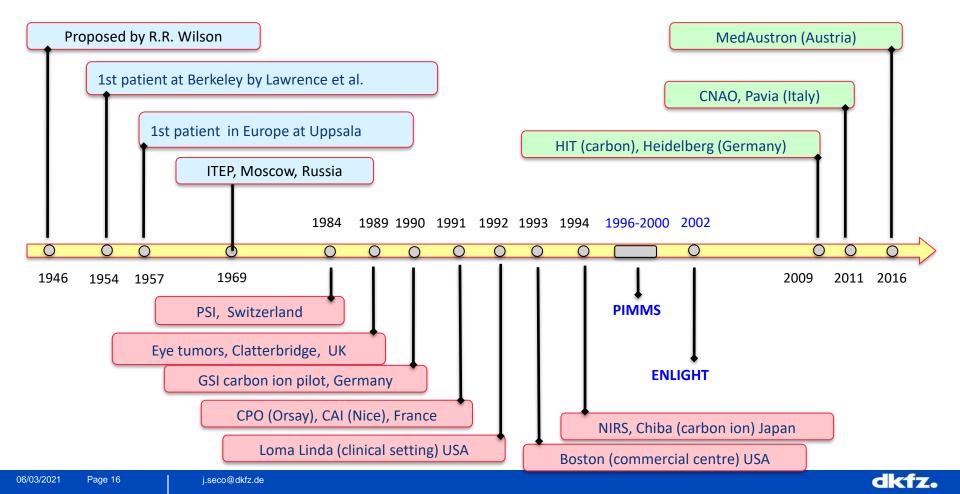

WARBURG EFFECT

dkfz.

Why do cancer cells activate glycolysis despite the presence of oxygen?

Treatment options

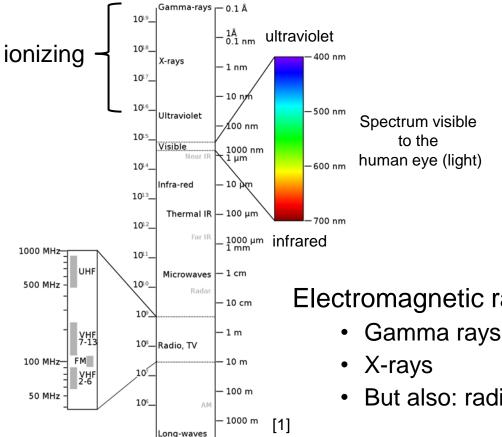
[1] A joint publication of the Robert Koch Institute and the German Cancer Associations (Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V.), 11th issue, 2017, accessed on 20.11.2018


- 2. PALLIATIVE leads better quality of life

60% of all cancer patients survive more

- 10-year prognosis <1% pancreatic cancer
- 10-year prognosis ~84% prostate cancer

History of particle therapy



Radiation **From Small amounts** to Large Amounts

06/03/2021 Page 17 j.seco@dkfz.de

Natural radiation

Electromagnetic radiation - Photons

• But also: radio, light, microwaves, etc.

[1] !Original: PenubagVector: Victor Blacus (https://commons.wikimedia.org/wiki/File:Electromagnetic-Spectrum.svg), "Electromagnetic-Spectrum", https://creativecommons.org/licenses/by-sa/3.0/legalcode

Natural radiation

Particle radiation

Alpha radiation

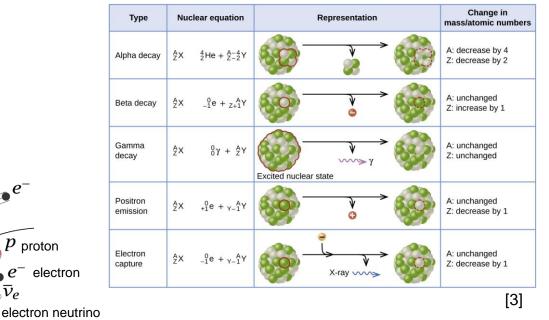
[1]

- Alpha radiation helium nuclei
- Beta radiation electrons/positrons ٠
- Other nuclei/ions (e.g. cosmic radiation) •

Beta

radiation

[2]


β

neutron

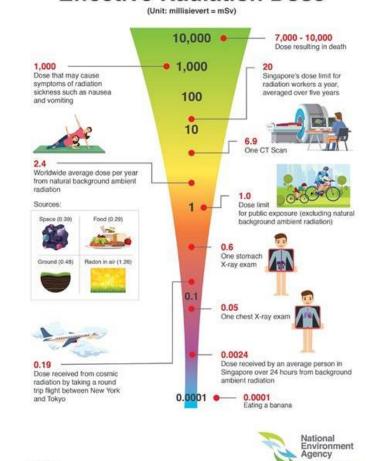
р

 $\overline{\nu}_{
ho}$

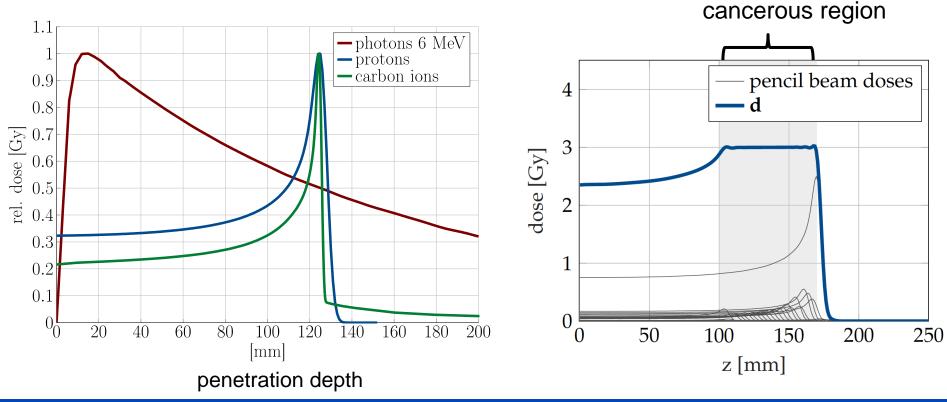
Types of radioactive decay

2 protons

2 neutrons


Radiation exposure in everyday life Effective Radiation Dose

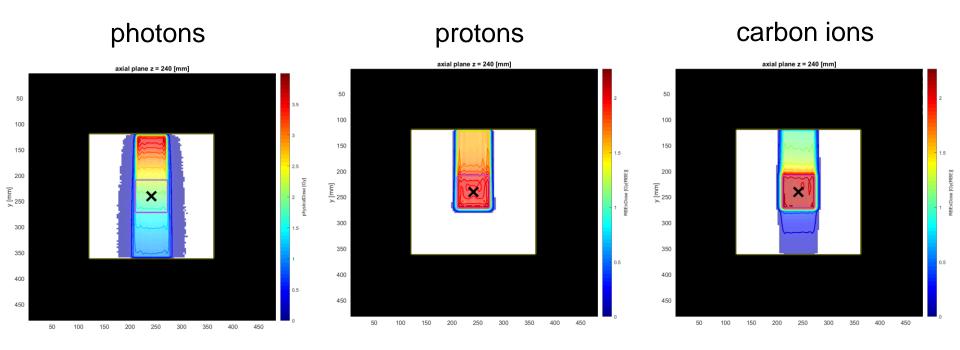
- Generally known: body dose
- given and measured in Sievert
- considers the sensitivity of the respective organ and radiation type
- cosmic and terrestrial radiation
- medical and technical applications
- diverse loads (e.g. flight travels)


Banana equivalent dose:

0.4 gram potassium consists to 0.01% of the radioactive potassium isotope K-40 1000 bananas in 8 hours \rightarrow 0.1 mSv

Average dose: 4 mSv per year

Why bother with particle therapy?

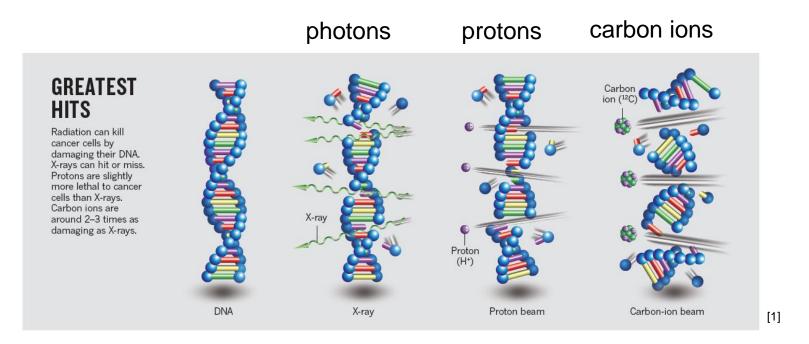


06/03/2021 Page 21

dkfz.

Why bother with particle therapy?

• We always risk damaging healthy tissue "on the way"...


... but it looks quite good for a particle beam 🙂

06/03/2021 Page 22

j.seco@dkfz.de

Why bother with carbon ions?

- Energy release is **localized** to a varying extent. ¹²C is 12 times heavier than p⁺
- Heavy ions generate locally more severe damage \rightarrow more difficult to repair

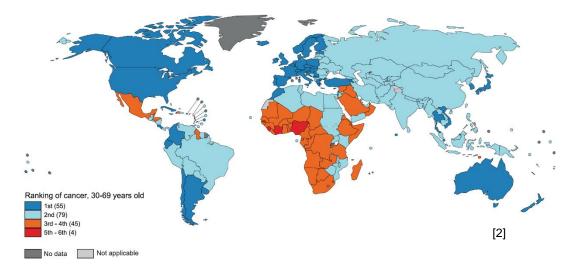
[1] Marx, V. (2014, April 4). Sharp shooters. 508. Nature, p. 137.

Summary

- cancer diseases are characterized by uncontrolled growth of mutated cells
- radiation transfers energy to the tissue in form of elementary physical interactions
 → radiation dose
- energy release ionizes the tissue
 - → breaks down chemical bounds or forms new ones
 - \rightarrow DNA damage
 - \rightarrow cell death
- by artificially generating radiation, we can combat cancer cells in a targeted manner
- not without risk for the healthy tissue
 - \rightarrow but high conformity when applying particle beams

• Questions?

[1] Gage Skidmore from Peoria, AZ, United States of America (https://commons.wikimedia.org/wiki/File:Captain_Jack_Sparrow_(5763467649).jpg), "Captain Jack Sparrow (5763467649)", https://creativecommons.org/licenses/by-sa/2.0/legalcode


[1]

Cancer - incidence

Cancer incidence worldwide

14 million new cases of cancer in 2012 [1]
8 million deaths due to cancer in 2012 [1]
19 million new cases of cancer in 2020 [2]
10 million deaths due to cancer in 2020 [2]
2.3 million deaths

28.4 million new cases of cancer in **2040** [2] How many deaths in 2040?

Dark blue: Cancer is the leading cause of premature death

Cancer incidence national

- 500 000 new cases of cancer in Germany every year [3,4], 2.5 times the population of Mainz
- rising tendency due, among other things, to demographic developments

Stewart, B. W. K. P., and Christopher P. Wild. "World cancer report 2014." (2014).
 Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

[3] RKI, Report on cancer in Germany for 2013/2014, cancer registry data [4] RKI, Report on cancer in Germany for 2015/2016, cancer registry data

