
Negative weight fractions Simplified pilot runs Event generation on GPUs Event generation using Machine Learning Conclusions

SHERPA: performance and statistics

Marek Schönherr

IPPP, Durham University

Marek Schönherr SHERPA: performance and statistics 1/10



Negative weight fractions Simplified pilot runs Event generation on GPUs Event generation using Machine Learning Conclusions

Negative weight fractions
Danziger, Höche, Siegert, arXiv:2110.15211, ATLAS arXiv:2112.09588

‚ explored three methods to improve
the neg. weight fraction in SHERPA

1) reduce matching accuracy to
leading colour, neglect spin-
correlations

2) include jet veto on H-events,
as originally formulated in
arXiv:2012.5030

3) use local K -factor in NLOÑLO
merging from core configuration
instead of highest multiplicity

‚ public since SHERPA-2.2.8 (Sep ’19)

Sherpa+OpenLoops

Default
Leading Colour Mode
+ shower veto on H-events
+ local K-factor from core

10−5

10−4

10−3

10−2

10−1

1

10 1

d
σ

/
d

H
T

[p
b/

G
eV

]

0.8
0.85

0.9
0.95

1.0
1.05

1.1
1.15

R
at

io

-2
-1
0
1
2

D
ev

ia
ti

on
0

0.05
0.1

0.15
0.2

0.25
0.3

N
eg

at
iv

e
Fr

ac
ti

on
ε

10 2 10 31
2
3
4
5
6

HT [GeV]

f(
ε)

Marek Schönherr SHERPA: performance and statistics 2/10



Negative weight fractions Simplified pilot runs Event generation on GPUs Event generation using Machine Learning Conclusions

Simplified pilot runs
Bothmann, et.al., arXiv:2209.00843

explored how to reduce the CPU footprint for the heaviest use cases,
e.g. Z ` 0, 1, 2j @NLO` 3, 4, 5j @LO (ATLAS default)

1) improvements in LHAPDF (internal grid handling)
2) xLCy-MC@NLO, reduce S-MC@NLO to traditional MC@NLO

3) pilot run
use minimal setup to find accepted phase space point,
recompute with all bell and whistles

4) xLCy-MC@NLO-CSS, move xLCy-MC@NLO to shower
5) replace more versatile loop library like OPENLOOPS with analytical

single-purpose loop library like MCFM

6) compute the pilot run with a simplified pilot scale definition, e.g.
HT instead of scale defined through clustering
Ñ incurs a weight by reverting to correct scale in final event
Ñ small weight spread, no significant reduction of stat. power

Marek Schönherr SHERPA: performance and statistics 3/10



Negative weight fractions Simplified pilot runs Event generation on GPUs Event generation using Machine Learning Conclusions

Simplified pilot runs

100 101 102 103

run time [CPU h]

ë PPRS scale

ë pilot scale

ë MCFM

ë xLCy-MC@NLO-CSS

ë pilot run

ë xLCy-MC@NLO

ë LHAPDF 6.4.0

MEPS@NLO baseline

ë pilot scale

ë MCFM

ë xLCy-MC@NLO-CSS

ë pilot run

ë xLCy-MC@NLO

ë LHAPDF 6.4.0

MEPS@NLO baseline

EWvirt+scales+152 PDFs

0.2 0.4 0.6 0.8 1.0
proportion of total run time

pp
Ñ

tt̄
+0

,1
j@

N
LO

+2
,3

,4
j@

LO
(1

00
0

ev
en

ts
)

pp
Ñ

e`
e´

+0
,1

,2
j@

N
LO

+3
,4

,5
j@

LO
(5

00
0

ev
en

ts
)

phase space
clustering

tree-level ME
loop ME

PDF
rest+overhead

Marek Schönherr SHERPA: performance and statistics 4/10



Negative weight fractions Simplified pilot runs Event generation on GPUs Event generation using Machine Learning Conclusions

Matrix-element generators on GPUs

Bothmann, et.al., arXiv:2106.06507, to appear

‚ new generator BlockGen
(now Pepper) to explore
suitable a algorithms for GPU
computations
Ñ process and multiplicity
Ñ dependent

‚ write out to Hdf5, read-in to
SHERPA proper for showering,
merging, ...

gg Ñ ng

2 3 4 5 6 7 8 9

nout

10−8

10−7

10−6

10−5

10−4

10−3

10−2

T
im

e
p

er
ev

en
t

[s
]

GPU best

CPU best

BlockGen-COΣ

BlockGen-CDMC

Comix (CDBG), MPI

Amegic∗, MPI

BlockGen-COΣ (CPU)

16 threaded CPUs vs. 1 GPU

Marek Schönherr SHERPA: performance and statistics 5/10



Negative weight fractions Simplified pilot runs Event generation on GPUs Event generation using Machine Learning Conclusions

Matrix-element generators on GPUs

Bothmann, et.al., arXiv:2106.06507, to appear

‚ new generator BlockGen
(now Pepper) to explore
suitable a algorithms for GPU
computations
Ñ process and multiplicity
Ñ dependent

‚ write out to Hdf5, read-in to
SHERPA proper for showering,
merging, ...

preliminary

3 4 5
number of final states

102

ga
in

 =
 ti

m
e 

pe
r e

ve
nt

 ra
tio

 C
PU

/G
PU

gu e + e gnu

evt gen + hdf5 out
evt gen only
evt gen only (CPU=Comix)

1 CPU vs. 1 GPU

Marek Schönherr SHERPA: performance and statistics 5/10



Negative weight fractions Simplified pilot runs Event generation on GPUs Event generation using Machine Learning Conclusions

Phase-space generators on GPUs
Bothmann, et.al., arXiv:2302.10449

phase space

35 %

clustering

tree-level ME 34 %

loop ME

11 %

PDF

rest+overhead
16 %

pp Ñ e`e´+0,1,2j@NLO+3,4,5j@LO

‚ phase space generator impor-
tant part of the story, Chili 10 15 10 13 10 11 10 9 10 7 10 5 10 3 10 1

weight

100

101

102

103

104

co
un

ts

Z + 2j
COMIX
Chili
Chili+NF

‚ traditional automatic phase space parametrisation contains too
many channels that are not relevant for mundane inclusive phase
space region used for main ATLAS/CMS event samples

Marek Schönherr SHERPA: performance and statistics 6/10



Negative weight fractions Simplified pilot runs Event generation on GPUs Event generation using Machine Learning Conclusions

Machine Learning phase-space integration
Gao, et.al., arXiv:2001.10028, Bothmann, et.al, arXiv:2001.05478

Two approaches using normalising
flows

1) learn phase-space distribution
of momenta directly

2) learn transformation of ran-
dom numbers using existing
phase space parametrisation,
ie. replace Vegas 10−2 10−1 100 101 102

w

10−5

10−4

10−3

10−2

10−1

100

n
or

m
al

is
ed

d
is

tr
ib

u
ti

o
n

Uniform

Vegas

NN

1.0 1.5 2.0

0

1

‚ works beautifully at low multiplicities, no better than Vegas at
higher multis

Marek Schönherr SHERPA: performance and statistics 7/10



Negative weight fractions Simplified pilot runs Event generation on GPUs Event generation using Machine Learning Conclusions

Machine Learning matrix elements

Danziger, et.al., arXiv:2109.11964, Janßen, et.al., arXiv:2301.13562

‚ replace ME with
fast ML surro-
gate

‚ use second un-
weighting step to
correct surrogate
to full ME

0 50 100 150 200 250 300 350

effective gain factor feff

naive

dipole

naive

dipole

naive

dipole

naive

dipole

naive

dipole

gg → e−e+ggdd̄
(Z + 4 jets)

gg → e−e+gggdd̄
(Z + 5 jets)

uū→ tt̄dd̄g

(tt̄+ 3 jets)

gg → tt̄ggg

(tt̄+ 3 jets)

ug → tt̄gggu

(tt̄+ 4 jets)

2.1

16

26

269

1.0

20

2.8

61

11

354

→ higher is better

Marek Schönherr SHERPA: performance and statistics 8/10



Negative weight fractions Simplified pilot runs Event generation on GPUs Event generation using Machine Learning Conclusions

Conclusions
‚ reverting to traditional MC@NLO (neglecting Nc “ 3 colour- and

spin-correlations in matching) severely reduces negative weights
without impacting the physics description of standard observables
with current uncertainties
Ñ available since SHERPA-2.2.8

‚ pilot runs for unweighted event generation massively reduces
generation time per event with no change to physics description
Ñ available since SHERPA-2.2.12

‚ newly designed matrix element and phase space generators for GPUs
will further substantially reduce generation time per event,
necessitates intermediate storage format
Ñ to be introduced in SHERPA-3.x

‚ ML sollutions to phase space integration not yet suitable for
high-multiplicities, but ME-surrogates offer working solution
Ñ to be introduced in SHERPA-3.x

Marek Schönherr SHERPA: performance and statistics 9/10



Negative weight fractions Simplified pilot runs Event generation on GPUs Event generation using Machine Learning Conclusions

Thank you!

Marek Schönherr SHERPA: performance and statistics 10/10


	Negative weight fractions
	Simplified pilot runs
	Event generation on GPUs
	Event generation using Machine Learning
	Conclusions

