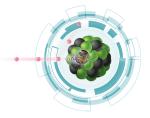
Lepton-Hadron collisions in MadGraph5_aMC@NLO


Laboni Manna

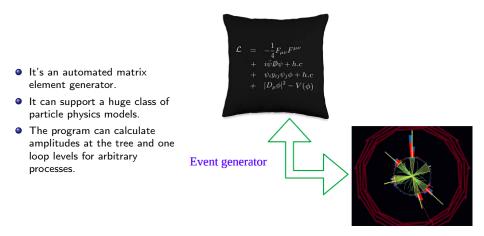
Doctoral student Warsaw University of Technology

Motivation

- To compute physical observables with higher accuracy.
- Apply a more fundamental interpretation to the phenomena observed in experimental data.
- Generating physics events using computer programs, as realistic as possible.
- To provide a tool that would help to understand detector (motivated towards EIC) performance within other constraints to study interesting physics scenarios.

Theoretical Overview

Parton distribution functions (PDFs) $= f(x, \mu_F^2) =$ momentum distribution of the quarks and gluons within a hadron. In collinear factorization,


$$\sigma_{ab} = \sum_{a,b} \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} \int d\Phi_{f} f_{a}(x_{1},\mu_{F}^{2}) f_{b}(x_{2},\mu_{F}^{2}) \frac{d\hat{\sigma}_{ab}(x_{1},x_{2},\mu_{F}^{2},\Phi_{f})}{dx_{1} dx_{2} d\Phi_{f}}$$

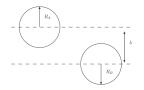
 $d\hat{\sigma}$ = Partonic cross section, calculable within perturbation theory. The partonic cross section can be expanded as:

$$\hat{\sigma} = \underbrace{\sigma^{Born}\left(1 + \frac{\alpha_s}{2\pi}\sigma^1 + ...\right)}_{\text{NLO}}$$

* LO = Leading order, NLO = Next-to-leading order and so on.

Introduction to MadGraph5_aMC@NLO

Initially, MadGraph5_aMC@NLO(MG5aMC) was developed for symmetric collisions.


Missing: asymmetric collisions at next-to-leading (NLO)!

Ultra peripheral collisions

э

A (10) A (10)

Ultra peripheral collisions

э

Ultra peripheral collisions

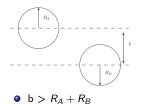
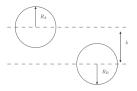
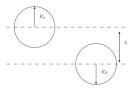
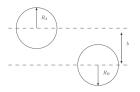



표 문 문

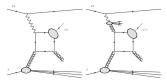

Ultra peripheral collisions

- $b > R_A + R_B$
- Photon induced

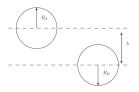
표 문 문


Ultra peripheral collisions

- $b > R_A + R_B$
- Photon induced

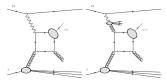

Inclusive Photoproduction

Ultra peripheral collisions

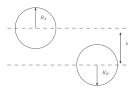


- $b > R_A + R_B$
- Photon induced

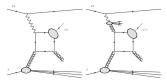
Inclusive Photoproduction



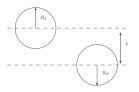
Ultra peripheral collisions


- $b > R_A + R_B$
- Photon induced

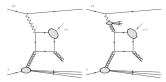
Inclusive Photoproduction


• Hard final state gluon

Ultra peripheral collisions

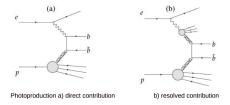

- $b > R_A + R_B$
- Photon induced

Inclusive Photoproduction


- Hard final state gluon
- Resolved vs. direct contribution

Ultra peripheral collisions

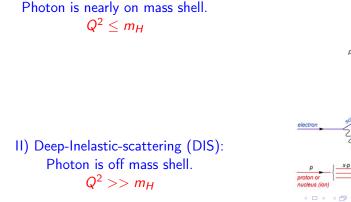
- $b > R_A + R_B$
- Photon induced

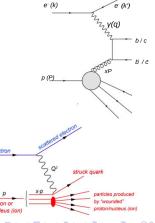

Inclusive Photoproduction

- Hard final state gluon
- Resolved vs. direct contribution
- Probe gluon PDF
- Photoproduction is simpler than hadroproduction should be easier to extract PDFs.
- Photon PDF is not well known
- UPC @ LHC $\sqrt{s_{\gamma p}} pprox 1$ TeV vs. HERA $\sqrt{s_{\gamma p}} pprox 0.2$ TeV
- Future study @ EIC has the advantage of reduced resolved contributions.

HF 2022, K.lynch

EIC (Electron-Ion Collider): "The Electron-Ion Collider will be a discovery machine for unlocking the secrets of the **glue** that binds the building blocks of visible matter in the universe"

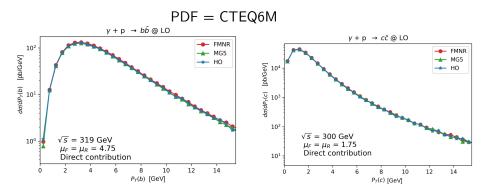



- Highly polarized electron (pprox 70%) and proton (pprox 70%) beams : spin structure studies
- Variable e+p center-of-mass energies from 20 to 100 GeV, upgradable to 140 GeV.
- It is possible to access the region where saturation scale is large and in the perturbative region by using heavy nuclei

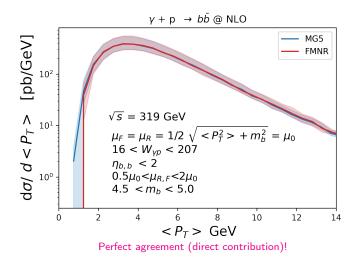
Electron-proton collisions

I) Photoproduction:

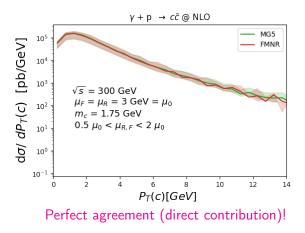
Electron - proton processes are traditionally classified according to the virtuality (Q²) of the photon i.e four-momentum transfer to the photon from the electron (incoming outgoing), $Q^2 = -q^2 = -(k-k')^2$


Validation of LO result

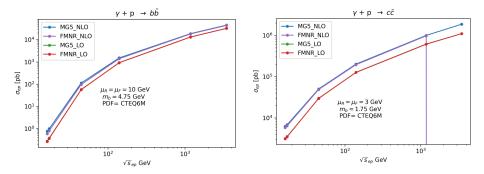
Comparison between pseudorapidity distribution of bottom quark pair production cross section obtained from MG5 at LO (FLO) and with another LO event generator called Helac-onia (HO).


	MG5(nb) (LO)	MG5(nb) (FLO)	HO (nb) (LO)
cross section	$3.34 \pm 4.4 imes 10^{-3}$	$3.34\pm19 imes10^{-3}$	$3.34 \pm 10.08 \times 10^{-3}$

Validation of LO Results with FMNR

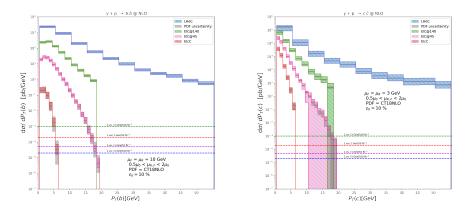


Good agreement from Charm and Beauty quark photoproduction!


Validation of NLO result with FMNR program

Validation of NLO result with FMNR program

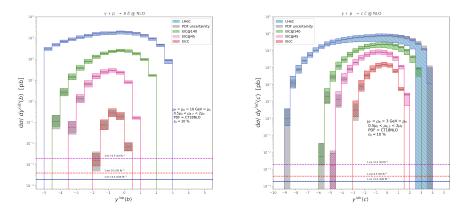
Possibility of future predictions



3

イロト イロト イヨト

- ∢ ≣ →


Preliminary Results

Transverse momenta distribution of Beauty and charm quark

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Preliminary Results

Rapidity distribution of Beauty and charm quark

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

• Future work for electron-proton collisions,

- Develop interface for photoproduction and DIS at NLO + PS.
- Extend our electron-proton work with electron-nucleus collisions by including nuclear PDFs.

< 合型

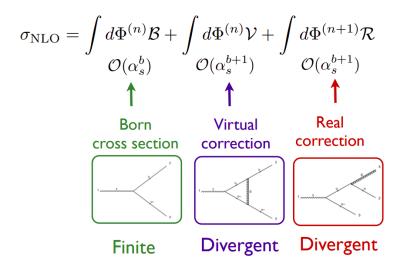
- Our implementation of photoproduction at NLO in MG5 validation is completed and will be available very soon for users.
- We are also focusing on the development of photoproduction and DIS at NLO in Parton shower mode.
- After the complete development and validation of electron-proton collisions in MG5, it will be extended for electron-nucleus collisions.

MG5 aMC capabilities :

Mode	LO (SM)	LO (ep collision) (Photoproduction + DIS)	NLΟ (γp collision) Photoproduction	NLO (ep collision) DIS
Fixed order	$\checkmark\checkmark$	$\sqrt{}$	\checkmark	In progress
Parton shower	$\sqrt{}$	\checkmark	Development will be starting soon	Development will be starting soon

Thank you for your attention!

< □ > < 同 > < 回 > < 回 > < 回 >

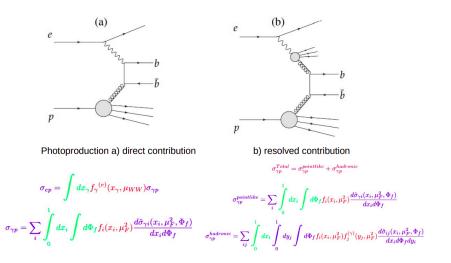

Part of this work has received funding from the European Union's Horizon 2020 research and innovation programme as part of the Marie Skłodowska-Curie Innovative Training Network MCnetITN3 (grant agreement no. 722104). The research was funded by POB HEP of Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme.

backup slides

3

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

NLO calculation



$$\sigma_{\rm NLO} = \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \mathcal{V} + \int d\Phi^{(n+1)} \mathcal{R}$$
$$= \int d\Phi^{(n)} \mathcal{B} + \int d\Phi^{(n)} \left[\mathcal{V} + \int d\Phi^{(1)} S \right] + \int d\Phi^{(n+1)} \left[\mathcal{R} - S \right]$$

The subtraction counterterm S should be chosen:

- It exactly matches the singular behavior of real ME
- It can be integrated numerically in a convenient way
- It can be integrated exactly in the d dimension
- It is process independent (overall factor times Born ME)

Photoproduction

э

DIS	Photoproduction	
Photon is highly virtual	Photon is quasi-real	
Scattered e ⁻ observed	Scattered e- not observed due to low virtuality	
Direct	Direct & resolved photon contribution due to partonic structure of photon	

NLO calculations and approaches:

NLO calculations are performed in several schemes. All approaches assume a scale to be hard enough to apply pQCD and to guarantee the validity of the factorization theorem.

- The massive approach is a fixed order calculation (in α_s) with $m_Q \neq 0$
- The massless approach sets $m_Q = 0$. Therefore the heavy quark is treated as an active flavor in the proton.
- In a third approach (FONLL) the features of both methods are combined. The matched scheme adjusts the number of partons, nf, in the proton according to the relevant scale.
- Our work is focused on the first approach, massive heavy quark.