Unweighted multijet event generation using factorisation-aware neural networks

Timo Janßen

in collaboration with K. Danziger, D. Maître, S. Schumann, F. Siegert, H. Truong

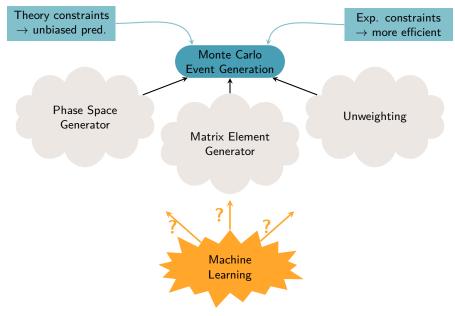
Institut für Theoretische Physik, Georg-August-Universität Göttingen

25th MCnet meeting 2023 @ CERN

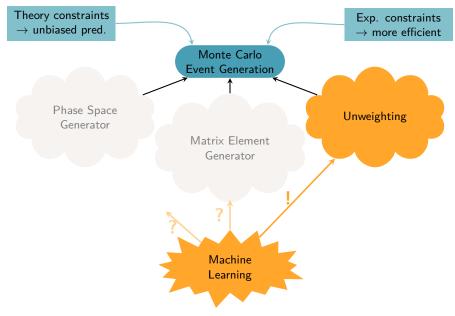
GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

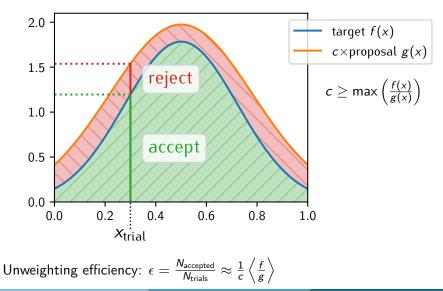
Introduction



Introduction



How to generate unweighted events rejection sampling (hit-or-miss):



Basic Idea

K. Danziger, TJ, S. Schumann, F. Siegert

SciPost Phys. 12, 164 (2022)

#Feynman diagrams grows quickly with #particles
 → high-multiplicity MEs are very expensive

need to evaluate the ME for each trial event

 \rightarrow small unweighting efficiency = bottleneck

Idea:

- reduce event generation time by reducing the number of calls to the matrix element
 - \rightarrow use a fast & accurate surrogate

correct all errors from the approximation in a 2nd unweighting step

 \rightarrow method is unbiased by design

Interlude: Partial unweighting

- NN are suitable as highly accurate surrogates
 - ... but can produce extreme outliers
- large-weight outliers diminish unweighting efficiency even when contribution to total XS is miniscule



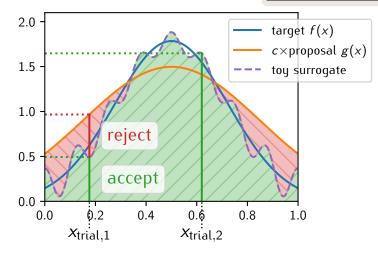
Partial Unweighting

- allow max(g) < max(f)
- some events get an overweight $ilde{w}>1$
- partial unweighting is the default in SHERPA (and other generators)
 - we don't know the global maximum
 - partial unweighting is much faster

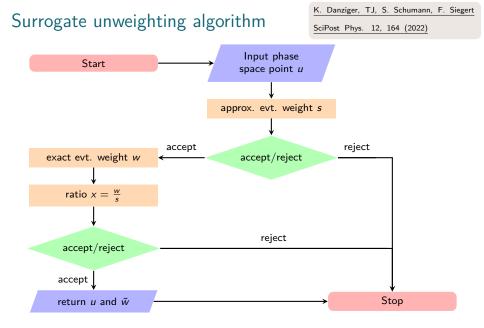
Surrogate unweighting

K. Danziger, TJ, S. Schumann, F. Siegert

SciPost Phys. 12, 164 (2022)



- surrogate should be fast and accurate
- have to correct for wrong accept/reject probabilities
 - \rightarrow 2nd unweighting against true target for all accepted points



Matrix element emulation

- gradient boosting machines for loop-induced amplitudes [F. Bishara, M. Montull: arXiv:1912.11055]
- ▶ NN for $e^+e^- \rightarrow \text{jets}$ [S. Badger, J. Bullock: JHEP 06 (2020) 114]
- NN for loop-induced amplitudes [J. Aylett-Bullock, S. Badger, R. Moodie: JHEP 08 (2021) 066]
- dipole model for $e^+e^- \rightarrow$ jets [D. H. Truong: JHEP 11 (2021) 066]
- learn ME×PS for surrogate unweighting [K. Danziger, TJ, S. Schumann, F. Siegert: SciPost Phys. 12, 164 (2022)]
- Bayesian networks for loop amplitudes [S. Badger, A. Butter, M. Luchmann, S. Pitz, T. Plehn: arXiv:2206.14831]

Factorisation-aware matrix element emulation

D. Maître, H. Truong

JHEP 11 (2021) 066

soft/collinear factorisation properties

$$|\mathcal{M}_{n+1}|^2 \rightarrow |\mathcal{M}_n|^2 \otimes \mathbf{V}_{ijk}$$

[Catani, Seymour Nucl.Phys. B485 (1997) 291-419]

Ansatz

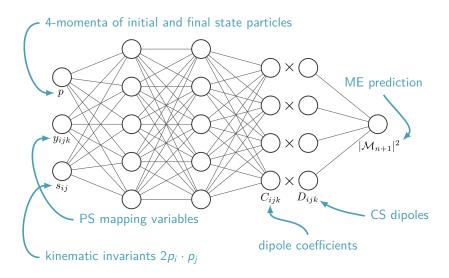
$$\langle |\mathcal{M}|^2
angle = \sum_{\{ijk\}} C_{ijk} D_{ijk}$$

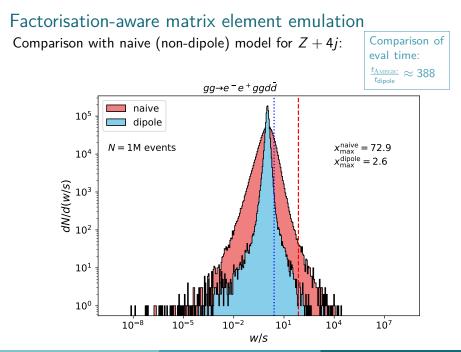
 D_{ijk} = (V_{ijk})/s_{ij}: spin-averaged Catani-Seymour dipoles divided by kinematic invariant

► *C_{ijk}*: coefficients fit by neural network

Factorisation-aware matrix element emulation

D. Maître, H. Truong JHEP 11 (2021) 066



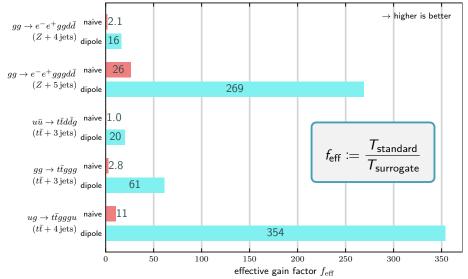


Timo Janßen (U of Göttingen

Implementation details

- constraint from experiment simulation workflow: CPU single threaded
 → no benefit from NN vectorisation capabilities
- ► for NN evaluation use ONNX Runtime with all possible optimisations
- two step unweighting implemented in SHERPA [Gleisberg et al. JHEP02(2009)007, Bothmann et al. SciPost Phys. 7, 034 (2019)]
- ▶ ME generator: AMEGIC [Krauss et al. JHEP 02 (2002) 044]
- we evaluate the performance for processes that are very important for the LHC: V+jets & tt+jets

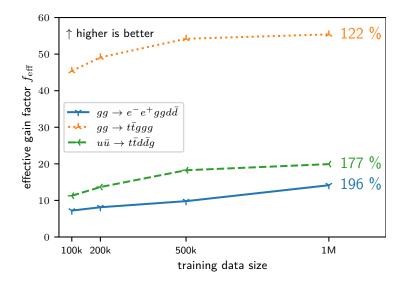
Results: effective gain factors for LHC multi-jet processes Using 1M training events:



TJ, D. Maître, S. Schumann, F. Siegert, H. Truong: arXiv:2301.13562

Timo Janßen (U of Göttingen)

Results: effect of training size variation



Colour sampling

- realistic use case: multi-jet merged calculations @LHC
- most promising part: highest multiplicity LO amplitudes
- at high multiplicity we prefer colour-sampling \rightarrow see <u>Max's talk</u>

naive ansatz

- use the same (colour-summed) dipole model and augment it with colour assignments
- Iet the NN figure out the rest
- ► difficulty: with Comix [Gleisberg & Hoeche JHEP12 (2008) 039]: T(w_{PS}) ≈T(w_{ME})
 - \rightarrow train on full event weight ($w_{\text{ME}} \times w_{\text{PS}}$)

Result:

- $\rightarrow\,$ significant drop in performance, no gains
- $\rightarrow\,$ further work necessary

Summary

- generic method to speed up unweighting with surrogates
- premises: costly integrand & low unweighting efficiency
- dipole model very accurate for colour-summed MEs
 - \rightarrow incl. hadronic initial states & massive quarks
- ► large gain factors for unweighting of colour-summed MEs
 → can enable colour-summing for higher multiplicities

Outlook

- improve gains for colour-sampled MEs by using better suited models
- use dipole model for other applications
- emulation of loop amplitudes

Summary

- generic method to speed up unweighting with surrogates
- premises: costly integrand & low unweighting efficiency
- dipole model very accurate for colour-summed MEs
 - \rightarrow incl. hadronic initial states & massive quarks
- ► large gain factors for unweighting of colour-summed MEs
 → can enable colour-summing for higher multiplicities

Outlook

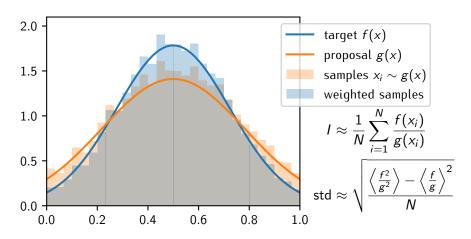
- improve gains for colour-sampled MEs by using better suited models
- use dipole model for other applications
- emulation of loop amplitudes

Questions?

Backup

How to generate weighted events

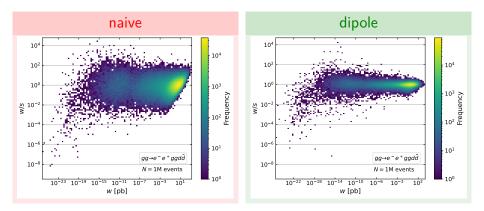
importance sampling:



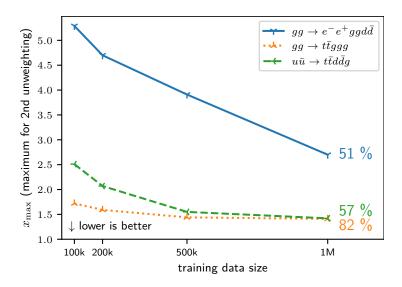
HEP example: Breit-Wigner distribution for resonances

Factorisation-aware matrix element emulation

Comparison with naive (non-dipole) model:

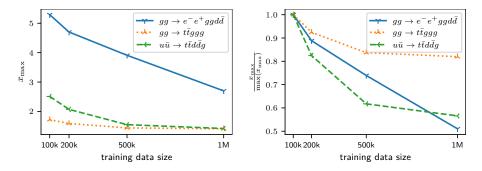


Factorisation-aware matrix element emulation Effect of training size variation:



Factorisation-aware matrix element emulation

Effect of training size variation:



Results: effect of training size variation

