

Low-energy beam preparation for the next generation antimatter experiments

Volodymyr Rodin

SY-STI BMI, CERN

3rd ONLINE Ukrainian Teacher Programme

27/04/2023

My current occupation and project

- Fluka simulation studies of LHC collimation system in view of HL-LHC upgrade
- Protection of superconducting magnets from possible quench
- Ion beam collimation with channeling crystals

SixTrack- Fluka coupling calculation of "touches" distribution on primary collimators

2

Impacts from primary and secondary particles on machine aperture (IR7 straight section + DS)

Energy deposition scoring in Fluka Scoring of energy deposition in DS magnet coils for 0.2h BLT: 8.81E11 p/s (2760 bunches, 2.3E11 p/bunch)

27/04/2023

More in details

27/04/2023

3

Crystal channeling and bending

27/04/2023

4

Standard collimation system in LHC

Stored energy in the machine:

LHC design: 360 MJ

Superconducting magnets (T = 1.9 K)

• quench limit ~ 15-50mJ/cm³

To protect the superconductive magnets from energy deposition induced by lost particles

Collimation system is needed! η = 10⁻⁴ is the actual performance in LHC

Halo cleaning: reduce the risk of magnet quenches

Concentration of losses/activation in controlled areas

Multi-stage system with ~50 collimators per beam

The cleaning inefficiency with ions drops to 10⁻²!

Power deposition & quench test studies for IP7

10-11

لم 10⁻¹² Simulation B2 LSS nominal

Simulation B2 DS nominal

B2 quench test, nominal B2 qualification, nominal

Nominal settings: IP7 TCPs/TCSGs/TCLAs: 5 sigma/6.5 sigma/10 sigma Qualification test power loss: 5.5 kW Quench test power loss: 650 kW

Relaxed settings: IP7 TCPs/TCSGs/TCLAs: 5 sigma/8.5 sigma/10 sigma Qualification test power loss: 4.8 kW Quench test power loss: 620 kW

Distance [m]

Simulation study	J1/2 (full), kW	J1/2 (full), kW	J1/2 (full), kW	J1/2 (full), kW	Mo coating PPDD, W/ cm³
A.Waets 2020, B1, <u>HL-LHC baseline</u>)	4.25/4.13 (23.5) MoGr	10.12/10.0 8 (42.5) CFC	5.8/5.27 (28.1) CFC	5.03/3.75 (19) MoGr B5	175 B5
/.Rodin 2022, B2, LHC today, depicted)	4.5/4.07 (23.6) MoGr	10.33/10.0 3(42.52) CFC	5.53/5.09 (26.65) CFC	1.95/1.92 (8.03) MoGr D4	72 D4
TCSPM.D4 MoGr	TCSPM.B5 CFC	Beam 1	Beam 2	TCSG.A6 CFC	TCPs: B,C,D CFC.MoGr

Availability of antimatter worldwide (and low-energy antiprotons)

- CERN's Antimatter factory is the only place providing access to low-energy antiprotons
- Production of antiprotons using a fixed target
- Plans about FLAIR project at FAIR in GSI were postponed
- Any ideas how we can change this?

H⁻ (hydrogen anions) | p (protons) | ions | RIBs (Radioactive Ion Beams) | n (neutrons) | p (antiprotons) | e (electrons) | μ (muons)

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform

Antiproton Decelerator

- Deceleration of produced protons down to 5.3 MeV/c
- Better beam quality
- First efficient trapping of antiprotons by ATRAP, ATHENA and ASACUSA
- However, the capture efficiency was still below 1 % !!!

8

Extra Low ENergy Antiproton ring

- Beam extracted from AD to ELENA
- Further decelerates antiprotons from 5.3 MeV to 0.1 MeV
 - Thinner degrader foils
 - Increased quality and intensity of antiproton bunches received in traps
 - Improved trapping efficiency by factor of 10-100
 - Emittance: 2.5 mm mrad
 - Bunch length: 75-100 ns
 - Total intensity: 3×10^7

Antiproton experiments and particle traps

V.Rodin

Formation of antihydrogen

27/04/2023

Antimatter experiments

New old ideas: many-body Coulomb problem and differential cross-sections as a theory benchmark

- Difference between Born approximation and proposed theory
- Possible elements for study atomic and molecular H and He
- Some of the ideas suggest production of attosecond electromagnetic pulses
- Requires ~ns antiproton pulses for high precision

12

27/04/2023

Main challenges

13

- Element imperfections
- Magnetic stray field
- Collective effects
- Vacuum quality

27/04/2023

3D tracking studies: ALPHA and AEgIS transfer lines in G4beamline and BMAD

27/04/2023

Electrostatic quadrupole 3D field mapping

15

V.Rodin

27/04/2023

Benchmark against baseline simulations: ALPHA line

• A small discrepancy at the end due to impact of quadrupole fringe fields and non-identical simulations of electrostatic deflectors

27/04/2023

16

Impact of magnetic stray fields from AEgIS line

- Low energy antiprotons (100 keV) are quite easily deflected by low amplitude magnetic field ~5 Gauss of 4 m length
- This problem can be fixed with beam line shielding or extra kicks from corrector elements

0.01 -

0.001 -

17

Ideal gas-target conditions: rough estimation in Geant4: impact of bunch length

- N ~10¹⁴ atoms/m^3 (He gas jet target)
- 2σ beam = jet width
- Ionization cross-section ~64 Mb
- Reaction rates ~ 10⁹ per second

Impact of collective effects: Alternative mitigation

- Decrease in bunch population is required by factor >10
- Compression by de-bunching and re-bunching could solve the problem
- Adiabatic bunching with h>10 or bunch splitting (no possibility)

27/04/2023

Impact of collective effects: re-bunching

V.Rodin

27/04/2023

Antiprotonic atoms at AEgIS experiment

V.Rodin

21

27/04/2023

Physics behind antiproton atoms

- The first results were obtained in the past with He and other atoms as result of antiproton capture in solid targets
- Possibility to characterize neutron tails of the nucleous or its shape

Designed injection/extraction beamline for anions (<5 keV)

23

Stray magnetic fields

Dynamic tracking simulations: stray fields+3D PIC space-charge

Thank you for your attention! Any questions are welcome?