MUonE alignment - module tilt

MUonE Software Meeting

Pawel Brückman de Renstrom

March 16, 2023
the henryk niewodniczański
INSTITUTE OF NUCLEAR PHYSICS
POLISH ACADEMY OF SCIENCES

MUonE target requirement

- In the longitudinal direction we have:

$$
\frac{\delta Z}{Z}=\frac{\delta \theta}{\theta} \sim 10^{-5} \quad \Rightarrow \delta Z \sim 10^{-5} \times 72 \mathrm{~cm}=7.2 \mu \mathrm{~m}
$$

- But also:

$$
\frac{\delta R}{R}=\frac{\delta \theta}{\theta} \sim 10^{-5} \quad \Rightarrow \delta R \sim 10^{-5} \times 5 \mathrm{~cm}=0.5 \mu \mathrm{~m}
$$

- More generally: one has to control systematics on the transverse length scale to $\delta Z \times \theta$ (average track angle).

The tilt (near) degeneracy

- Tilt of a module corresponds (to first order) to changing its transverse length scale!

- Can we controll the tilt angle to $\sim 4 \times 10^{-5}$?

The tilt (near) degeneracy

conditions to reach the required accuracy

- Making an optimistic assumption that we can control (locally!) Z position to the required accuracy, translates into $\delta R \sim \tan \phi \delta Z$.
- $\delta Z \leq 7 \mu \mathrm{~m}, \tan \phi=0.24 \longrightarrow \delta R \leq 1.7 \mu \mathrm{~m}$
- Reducing/eliminating the tilt angle largely mitigates the trtansverse lenth scale issue.
- Without the tilt we are limited by the actual knowledge of the module dimensions (modulo thermal expansion $\sim 3 \times 10^{-6} K^{-1}$).

BACKUP

MUonE setup

- MUonE is perfectly suited for the Global χ^{2} approach. The problem is manifestly linear, and the convergence should be reached rapidly (modulo rotational DoF's and possible treatment of outlayers).
- Assuming all transverse DoF's can be easily resolved, we are left with the ones corresponding to distortions in the Z direction.
- Expansion/contraction is the principal one (exactly singular!), but there are also two two tilt modes (collective rotations around either X or Y) and the twist (mitigated by either wide beam or vertex requirement)
- The above are the only singular modes (except for the 6 global transformations) assuming a requirement of a common vertex.
- Mitigation of the degeneracy requires additional constraints either on track parameters or alignment parameters.

Expansion: an exactly singular mode of the alignment for this tracking setup

The longitudinal degeneracy

Here we assume the perfect knowledge of the transverse alignment, and consider a single track for simplicity. Track has only one parameter - the slope (a).
$V^{-1}=\left(\begin{array}{cc}1 / \sigma^{2} & 0 \\ 0 & 1 / \sigma^{2}\end{array}\right)$,
$H=\frac{\partial \rho}{\partial \pi}=\binom{d}{d+l}$
$C=\left(H^{T} V^{-1} H\right)^{-1}=\frac{\sigma^{2}}{d^{2}+(d+l)^{2}}$
$R=V-H C H^{T}=$
$\frac{\sigma^{2}}{d^{2}+(d+l)^{2}}\left(\begin{array}{cc}(d+l)^{2} & -d(d+l) \\ -d(d+l) & d^{2}\end{array}\right)$

$A \equiv \frac{\partial \rho}{\partial \boldsymbol{\alpha}}=\left(\begin{array}{cc}-a & 0 \\ 0 & -a\end{array}\right)$,
$\mathcal{M}=A^{T} V^{-1} R V^{-1} A=\frac{a}{\sigma^{2}\left[d^{2}+(d+l)^{2}\right]}\left(\begin{array}{cc}(d+l)^{2} & -d(d+l) \\ -d(d+l) & d^{2}\end{array}\right)$
The matrix is singular leading to a weak mode of the alignent solution:
$\lambda_{1}=0, \quad X_{1}=\binom{d}{d+l} \quad \lambda_{2}=\frac{a}{\sigma^{2}}, \quad X_{3}=\binom{d+l}{-d}$

Current proposal

- The proposed solution is to set the length scale by providing precisely positioned two thin foil targets (length scale gauge).

MUonE setup

conditions to reach the required accuracy

- The fractional positioning accuracy has to be at least as good as the target accuracy of the length scale $\left(\delta<10^{-5}\right)$.
- The thickness should not compromise the above.
- The sensitivity to the expansion mode depends on the actual geometry. A very crude estimate for just two measurement planes results in:

$$
\left(Z_{B}-Z_{A}\right) \delta \approx \frac{Z_{B}-d}{d<\theta>} \Delta y
$$

e.g. for $Z_{A}=1 \mathrm{~m}, Z_{B}=2 \mathrm{~m}, d=0.5 \mathrm{~m},\langle\theta\rangle=10 \mathrm{mrad}$ we get $\Delta y \approx 0.033 \mu \mathrm{~m}$.

- Statistics-wise easy to reach (100 k tracks) for typical silicon resolution ($\approx 10 \mu \mathrm{~m}$)
- Are we systematically safe? Mind the module tilt!

$$
\frac{\mathrm{d} y}{y}=\tan \phi \mathrm{d} \phi \sim 0.24 \mathrm{~d} \phi
$$

