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Matrix element emulation 

3

Work with Henry Truong
arXiv:2107.06625, arXiv:2302.04005
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Motivation

 Matrix elements can take a significant amount of CPU to calculate

 Typically difficult to run on GPUs

 Often just to throw away when unweighting

 If precise enough a NN emulation can help:

 A NN model can easily evaluated on GPU, TPU, etc

 Can be easily ported from one platform to another

 Much quicker and parallel evaluation

 First stage unweighting

44



Difficulties emulating matrix 

elements

 Singular behaviour in soft and collinear limits makes a straight-

forward emulation difficult:

 Small change in phase-space input results in dramatic change in ME 

value   

 Selection of training set/loss can be difficult:

 The loss can be dominated by singular configurations for loose training cuts

 The extrapolation becomes unreliable if trained on too tight cuts 
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Principle

 We know the behaviour of MEs in soft and collinear limits

 Use a NN to predict the regular factor and use the known analytic 

divergent behaviour

 Use a NLO subtraction-style ansatz to emulate the LO ME

regular divergent

66



Factorisation-aware emulation

 Write amplitude as an ansatz

 Fit the coefficients

 Very redundant parametrisation

 Encourage NN to learn factorisation
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Factorisation-aware emulation

 When approaching a singular limit only the relevant dipole is 
relevant

 Away from all singularities all terms combine to emulate the matrix 
element

 At LO we use Catani-Seymour dipoles, at one-loop we used 
antenna functions

 Azimuthal term added:

 The angle 𝜑𝑖𝑗 is the azimuthal angle of the decay particles in the 
plane perpendicular to the parent particle momentum



Results

 E+e- annihilation into jets

 Compare with previous attempt
[arXiv 2002.07516]

 They used a single NN, or a 

decomposition where each NN only 

has to deal with one singularity

 Our results are much more accurate 

using the same size network and 

same training set
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Results

 5 jets
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Results

 Accuracy limited by NN size and training set, not the ability of the 

model to emulate divergent behaviour

 Use larger NN and larger training set

 Train on 3 different training set

 𝑦𝑐𝑢𝑡 = 0.01, 0.001, 0.0001

 Lower cut means larger range for the matrix element

 Expect lower precision
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Results

 No discernable bias

 3-4 digits accuracy
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Cross section

 Calculate the error on the total 

cross section for the test set

 The error is smaller than the 

statistical uncertainty 

 The model can be used to 

augment the training set
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Phase-space trajectories

 RAMBO maps unit hypercube to phase-space uniformly

 Follow mapping along a segment connecting two random points



Phase-space trajectories 1515



One-loop amplitudes

 Much more CPU intensive to calculate

 Choose to model the k-factor

 Factorisation is more complicated, we use antenna factorisation
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K-factor ansatz 1717



One-loop results

 Evaluate the precision using:
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One-loop results

 Compare with a single NN 

model for the k-factor
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One-loop results 2020



One-loop result 2121



One-loop result

 Use 20 replicas to estimate variance 

and bias of model

 Statistical MC integration error is of 

order 10%!

 Can use NN model to augment 

dataset!

 Use variance as an estimate of the 

NN error
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Unweighting with NN approximation

Work with Timo Janßen, Stefan Schumann, Frank Siegert and 

Henry Truong    [arXiv:2301.13562] 

23



Unweighting

 Unweighting high multiplicity matrix elements can be extremely 

unefficient

 Can be improved by

 Generate a set of unweighted values 𝑥 according to an approximation 

𝑔(𝑥) that is easy to unweight

 Unweight this set according to 𝑓(𝑥)/𝑔(𝑥)

 If ratio is close to 1 we get to keep many more calculated ME

 Tolerate a small amount of weights above 1



Unweighting

 K. Danziger, T. Janßen, S. Schumann, F. Siegert implemented such a 

two-stage unweighting in Sherpa and used a NN surrogate
[arXiv:2109.11964]

 Z/W +4 jets and 𝑡 ҧ𝑡+3 jets

 Obtained speed up of up to 10 compared with AMEGIC

 Use our factorisation aware emulator instead of their NN surrogate

 Needed to implement initial-state and massive dipoles



Unweighting

 First unweight w.r.t NN model 

𝑠, then correct with true 
weight 𝑤

 Factorisation-aware NN is 

much more precise

 Up to Z/W +5 jets and 𝑡 ҧ𝑡+4 jet

 Result in very large efficiency 

gains (16-350)

 Largest gains for the most 
complicated processes
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NN for integration

27

Work with Roi Santos-Mateos
arXiv:2211.02834
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Introduction

 Consider parametric integrals of the form

 𝑥𝑖 are auxiliary variables and 𝑠𝑖 are the parameters

 Example: sector decomposition of loop integrals
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Typical solution

 Monte Carlo integration for each values of the parameters

 Each run is independent
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Alternative

 Sample the x-s space more uniformly

 Can leverage information on the integrand between 
separate evaluations
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Primitive function

 Suppose we had a function with

 We can evaluate the integral as
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NN approximation

 We introduce a neural network approximation for the the primitive 

function

 Train it such that its derivative matches the integrand function 
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NN

 Standard network with L hidden layers

 Inputs

 output
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Derivatives in the loss function

 The derivative in the loss function contains all the derivatives of the 

activation function up to degree k
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Example 1

 1-loop box for gg HH

 Four physical parameters: 𝑚𝑡
2, 𝑚𝐻

2 , 𝑠12, 𝑠14

 Three Feynman parameters 𝑥1, 𝑥2, 𝑥3

 3 sectors generated by pySecDec

 Euclidean region
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Result

 100 nodes

 4 hidden layers

 4M x 800 = 3.2B PS points
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Example 2 

 2-loop box for gg HH

 Same physical parameters

 6 Feynman parameters

 1 of 30 sectors from pySecDec
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Results

 30 nodes

 4 hidden layers

 800k x 200 PS points
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Error estimate

 Use 4 replicas of the network

 Use average as the prediction

 Standard deviation as error estimate
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Integration Neural Network

 Not interpolating between integrated values

 MC integration: Approximate integral of the exact integrand

 INN: Exact integral of an approximate integrand
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Reducing variance

 Usual subtraction

 Using our neural network
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Reducing variance

 Usual subtraction

 Using our neural network

Lower variance !
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Reduce variance

 1-Loop example

 Ratio of variance with NN subtraction comparted to without 
subtraction

 Improvement for all physical parameters!
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Outlook

 More work on training

 Initialisation

 Training data sequencing

 Size / depth of networks / number of replica

 More complicated examples

 More integration variables

 Combined sectors, combined integrals

 Minkowsky space

 Use as a parametrized Gibbs sampler 
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Conclusion

 Neural networks are very versatile

 Best results are obtained by injecting physical knowledge

 Reasonable accuracy can be obtained

 If the accuracy is not sufficient, NN can still improve the efficiency of 

the “honest” method
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Backup



INN Training

 Neural network training is similar to standard network but

 Take care of initialization

 Can choose our data

 Random vs qmc grids

 Size of sample

 Re-use or generate new data

 Pick activation function

 Tanh/sigmoid in N: derivatives in Loss

 Antiderivatives of tanh/sigmoid in N: tanh and sigmoid in loss (and lower 

antiderivatives)
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INN Preprocessing

 Korobov transform

 Remove overall scaling

 Could be a lot more radical using Normalising Flows to flatten the 
integrand
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Neural Network

 (A)NN is composed of artificial 

neurons

 Crucial: the activation function is 

non-linear
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Neural Network

 Neurons are organised in layers

 Each layer of neurones takes the output 
of the previous layer as its input

 This example is function
𝑓: 𝑅4 → 𝑅3

 How many parameters?

 12

 43

 47

 103

5050



Neural Networks

 Networks with many layers are 

called deep neural networks

 Used to be hard to train

 Now gigantic networks with 

billions of parameters can be 

trained (chatGPT-3 has 175 

billion parameters)

 Universal approximator
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Neural Network Training

 Define an objective function to optimize

 Usually called loss function, to be minimized

 Mean squared error (appropriate when deviation 
from model are due to Gaussian distributed errors)

 Parameters are optimized, usually using gradient 
descent

 Frameworks to automatically calculate the 
gradient exist (PyTorch, Tensorflow, JAX, …)
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Neural Network training

 Introducing additional term in the loss function can help enforce 

other objectives

 Prevent overfitting

 Encourage sparse representation

 In this talk:

 Use factorization

 Make a NN integrate a function
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Bias/variance tradeoff

 The prediction error can be decomposed into two component

ത𝑦 is the expectation of the prediction under repeated fit from 

different training sets

 Bias (“how wrong are my prediction in average”)

 Variance (“how different are my predictions”)
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Variance Bias
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Bias/Variance tradeoff

 Underconstrained model

 Low bias

 High variance

 Overconstrained model

 High bias

 Low variance

 NN tend to have many parameters 

 Estimate prediction error using prediction variance

 Set of replica of the same NN with different initialisation
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Unweighting

 Matrix element generators calculate weights for a given phase-

space configuration

 If is often more useful to have a set of configuration where 

 each element has equal weight

 Relative likelihoods are reflected in relative frequencies in the set

 Often used before detector simulation
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Unweighting

 For complicated distribution we 

use “hit and miss” method

 Set a maximum value 𝑚 for the 

function

 For a new point 𝑥 evaluate 𝑓(𝑥)
and keep 𝑥 in the set if 

𝑓 𝑥 > 𝑚 𝑟 where 𝑟 is a random 

number between 0 and 1
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Unweighting

 For complicated distribution we 

use “hit and miss” method

 Set a maximum value 𝑚 for the 

function

 For a new point 𝑥 evaluate 𝑓(𝑥)
and keep 𝑥 in the set if 

𝑓 𝑥 > 𝑚 𝑟 where 𝑟 is a random 

number between 0 and 1

 Unweighting efficiency is the 
ratio of the number of kept point 

over the total number of points
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Unweighting

 Points we kept have the right distribution
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Unweighting

 If 𝑚 is set too high we reject many events

 We need to calculate 𝑓 for all attempts

 Large spreads in weights lead to low efficiency
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Unweighting

 Which distribution of weights has the largest unweighting efficiency?
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Unweighting 65



Unweighting

 Bad scenario:
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Unweighting

 Can unweight in stages

 Generate a set of unweighted values 𝑥 according to an 
approximation 𝑔(𝑥) that is easy to unweight

 Unweight this set according to 
𝑓 𝑥

𝑔 𝑥
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