
Amplitudes with

neural networks

Daniel Maître

IPPP, Durham

CERN, 2nd June 2023

Outline

 Matrix element emulator

 Tree-level/one-loop

 Pre-unweighting with emulator

 Integrating with a neural network

 Application to sector-decomposed amplitudes

22

Matrix element emulation

3

Work with Henry Truong
arXiv:2107.06625, arXiv:2302.04005

3

Motivation

 Matrix elements can take a significant amount of CPU to calculate

 Typically difficult to run on GPUs

 Often just to throw away when unweighting

 If precise enough a NN emulation can help:

 A NN model can easily evaluated on GPU, TPU, etc

 Can be easily ported from one platform to another

 Much quicker and parallel evaluation

 First stage unweighting

44

Difficulties emulating matrix

elements

 Singular behaviour in soft and collinear limits makes a straight-

forward emulation difficult:

 Small change in phase-space input results in dramatic change in ME

value

 Selection of training set/loss can be difficult:

 The loss can be dominated by singular configurations for loose training cuts

 The extrapolation becomes unreliable if trained on too tight cuts

55

Principle

 We know the behaviour of MEs in soft and collinear limits

 Use a NN to predict the regular factor and use the known analytic

divergent behaviour

 Use a NLO subtraction-style ansatz to emulate the LO ME

regular divergent

66

Factorisation-aware emulation

 Write amplitude as an ansatz

 Fit the coefficients

 Very redundant parametrisation

 Encourage NN to learn factorisation

77

Factorisation-aware emulation

 When approaching a singular limit only the relevant dipole is
relevant

 Away from all singularities all terms combine to emulate the matrix
element

 At LO we use Catani-Seymour dipoles, at one-loop we used
antenna functions

 Azimuthal term added:

 The angle 𝜑𝑖𝑗 is the azimuthal angle of the decay particles in the
plane perpendicular to the parent particle momentum

Results

 E+e- annihilation into jets

 Compare with previous attempt
[arXiv 2002.07516]

 They used a single NN, or a

decomposition where each NN only

has to deal with one singularity

 Our results are much more accurate

using the same size network and

same training set

99

Results

 5 jets

1010

Results

 Accuracy limited by NN size and training set, not the ability of the

model to emulate divergent behaviour

 Use larger NN and larger training set

 Train on 3 different training set

 𝑦𝑐𝑢𝑡 = 0.01, 0.001, 0.0001

 Lower cut means larger range for the matrix element

 Expect lower precision

1111

Results

 No discernable bias

 3-4 digits accuracy

1212

Cross section

 Calculate the error on the total

cross section for the test set

 The error is smaller than the

statistical uncertainty

 The model can be used to

augment the training set

1313

Phase-space trajectories

 RAMBO maps unit hypercube to phase-space uniformly

 Follow mapping along a segment connecting two random points

Phase-space trajectories 1515

One-loop amplitudes

 Much more CPU intensive to calculate

 Choose to model the k-factor

 Factorisation is more complicated, we use antenna factorisation

1616

K-factor ansatz 1717

One-loop results

 Evaluate the precision using:

1818

One-loop results

 Compare with a single NN

model for the k-factor

1919

One-loop results 2020

One-loop result 2121

One-loop result

 Use 20 replicas to estimate variance

and bias of model

 Statistical MC integration error is of

order 10%!

 Can use NN model to augment

dataset!

 Use variance as an estimate of the

NN error

2222

Unweighting with NN approximation

Work with Timo Janßen, Stefan Schumann, Frank Siegert and

Henry Truong [arXiv:2301.13562]

23

Unweighting

 Unweighting high multiplicity matrix elements can be extremely

unefficient

 Can be improved by

 Generate a set of unweighted values 𝑥 according to an approximation

𝑔(𝑥) that is easy to unweight

 Unweight this set according to 𝑓(𝑥)/𝑔(𝑥)

 If ratio is close to 1 we get to keep many more calculated ME

 Tolerate a small amount of weights above 1

Unweighting

 K. Danziger, T. Janßen, S. Schumann, F. Siegert implemented such a

two-stage unweighting in Sherpa and used a NN surrogate
[arXiv:2109.11964]

 Z/W +4 jets and 𝑡 ҧ𝑡+3 jets

 Obtained speed up of up to 10 compared with AMEGIC

 Use our factorisation aware emulator instead of their NN surrogate

 Needed to implement initial-state and massive dipoles

Unweighting

 First unweight w.r.t NN model

𝑠, then correct with true
weight 𝑤

 Factorisation-aware NN is

much more precise

 Up to Z/W +5 jets and 𝑡 ҧ𝑡+4 jet

 Result in very large efficiency

gains (16-350)

 Largest gains for the most
complicated processes

2626

NN for integration

27

Work with Roi Santos-Mateos
arXiv:2211.02834

27

Introduction

 Consider parametric integrals of the form

 𝑥𝑖 are auxiliary variables and 𝑠𝑖 are the parameters

 Example: sector decomposition of loop integrals

2828

Typical solution

 Monte Carlo integration for each values of the parameters

 Each run is independent

2929

Alternative

 Sample the x-s space more uniformly

 Can leverage information on the integrand between
separate evaluations

3030

Primitive function

 Suppose we had a function with

 We can evaluate the integral as

3131

NN approximation

 We introduce a neural network approximation for the the primitive

function

 Train it such that its derivative matches the integrand function

3232

NN

 Standard network with L hidden layers

 Inputs

 output

3333

Derivatives in the loss function

 The derivative in the loss function contains all the derivatives of the

activation function up to degree k

3434

Example 1

 1-loop box for gg HH

 Four physical parameters: 𝑚𝑡
2, 𝑚𝐻

2 , 𝑠12, 𝑠14

 Three Feynman parameters 𝑥1, 𝑥2, 𝑥3

 3 sectors generated by pySecDec

 Euclidean region

3535

Result

 100 nodes

 4 hidden layers

 4M x 800 = 3.2B PS points

3636

Example 2

 2-loop box for gg HH

 Same physical parameters

 6 Feynman parameters

 1 of 30 sectors from pySecDec

3737

Results

 30 nodes

 4 hidden layers

 800k x 200 PS points

3838

Error estimate

 Use 4 replicas of the network

 Use average as the prediction

 Standard deviation as error estimate

3939

Integration Neural Network

 Not interpolating between integrated values

 MC integration: Approximate integral of the exact integrand

 INN: Exact integral of an approximate integrand

4040

Reducing variance

 Usual subtraction

 Using our neural network

4141

Reducing variance

 Usual subtraction

 Using our neural network

Lower variance !

4242

Reduce variance

 1-Loop example

 Ratio of variance with NN subtraction comparted to without
subtraction

 Improvement for all physical parameters!

4343

Outlook

 More work on training

 Initialisation

 Training data sequencing

 Size / depth of networks / number of replica

 More complicated examples

 More integration variables

 Combined sectors, combined integrals

 Minkowsky space

 Use as a parametrized Gibbs sampler

4444

Conclusion

 Neural networks are very versatile

 Best results are obtained by injecting physical knowledge

 Reasonable accuracy can be obtained

 If the accuracy is not sufficient, NN can still improve the efficiency of

the “honest” method

4545

Backup

INN Training

 Neural network training is similar to standard network but

 Take care of initialization

 Can choose our data

 Random vs qmc grids

 Size of sample

 Re-use or generate new data

 Pick activation function

 Tanh/sigmoid in N: derivatives in Loss

 Antiderivatives of tanh/sigmoid in N: tanh and sigmoid in loss (and lower

antiderivatives)

4747

INN Preprocessing

 Korobov transform

 Remove overall scaling

 Could be a lot more radical using Normalising Flows to flatten the
integrand

4848

Neural Network

 (A)NN is composed of artificial

neurons

 Crucial: the activation function is

non-linear

4949

Neural Network

 Neurons are organised in layers

 Each layer of neurones takes the output
of the previous layer as its input

 This example is function
𝑓: 𝑅4 → 𝑅3

 How many parameters?

 12

 43

 47

 103

5050

Neural Networks

 Networks with many layers are

called deep neural networks

 Used to be hard to train

 Now gigantic networks with

billions of parameters can be

trained (chatGPT-3 has 175

billion parameters)

 Universal approximator

5151

Neural Network Training

 Define an objective function to optimize

 Usually called loss function, to be minimized

 Mean squared error (appropriate when deviation
from model are due to Gaussian distributed errors)

 Parameters are optimized, usually using gradient
descent

 Frameworks to automatically calculate the
gradient exist (PyTorch, Tensorflow, JAX, …)

5252

Neural Network training

 Introducing additional term in the loss function can help enforce

other objectives

 Prevent overfitting

 Encourage sparse representation

 In this talk:

 Use factorization

 Make a NN integrate a function

5353

Bias/variance tradeoff

 The prediction error can be decomposed into two component

ത𝑦 is the expectation of the prediction under repeated fit from

different training sets

 Bias (“how wrong are my prediction in average”)

 Variance (“how different are my predictions”)

54

Variance Bias

54

Bias/Variance tradeoff

 Underconstrained model

 Low bias

 High variance

 Overconstrained model

 High bias

 Low variance

 NN tend to have many parameters

 Estimate prediction error using prediction variance

 Set of replica of the same NN with different initialisation

5555

Unweighting

 Matrix element generators calculate weights for a given phase-

space configuration

 If is often more useful to have a set of configuration where

 each element has equal weight

 Relative likelihoods are reflected in relative frequencies in the set

 Often used before detector simulation

56

Unweighting

 For complicated distribution we

use “hit and miss” method

 Set a maximum value 𝑚 for the

function

 For a new point 𝑥 evaluate 𝑓(𝑥)
and keep 𝑥 in the set if

𝑓 𝑥 > 𝑚 𝑟 where 𝑟 is a random

number between 0 and 1

57

Unweighting

 For complicated distribution we

use “hit and miss” method

 Set a maximum value 𝑚 for the

function

 For a new point 𝑥 evaluate 𝑓(𝑥)
and keep 𝑥 in the set if

𝑓 𝑥 > 𝑚 𝑟 where 𝑟 is a random

number between 0 and 1

58

Unweighting

 For complicated distribution we

use “hit and miss” method

 Set a maximum value 𝑚 for the

function

 For a new point 𝑥 evaluate 𝑓(𝑥)
and keep 𝑥 in the set if

𝑓 𝑥 > 𝑚 𝑟 where 𝑟 is a random

number between 0 and 1

59

Unweighting

 For complicated distribution we

use “hit and miss” method

 Set a maximum value 𝑚 for the

function

 For a new point 𝑥 evaluate 𝑓(𝑥)
and keep 𝑥 in the set if

𝑓 𝑥 > 𝑚 𝑟 where 𝑟 is a random

number between 0 and 1

60

Unweighting

 For complicated distribution we

use “hit and miss” method

 Set a maximum value 𝑚 for the

function

 For a new point 𝑥 evaluate 𝑓(𝑥)
and keep 𝑥 in the set if

𝑓 𝑥 > 𝑚 𝑟 where 𝑟 is a random

number between 0 and 1

 Unweighting efficiency is the
ratio of the number of kept point

over the total number of points

61

Unweighting

 Points we kept have the right distribution

62

Unweighting

 If 𝑚 is set too high we reject many events

 We need to calculate 𝑓 for all attempts

 Large spreads in weights lead to low efficiency

63

Unweighting

 Which distribution of weights has the largest unweighting efficiency?

64

Unweighting 65

Unweighting

 Bad scenario:

66

Unweighting

 Can unweight in stages

 Generate a set of unweighted values 𝑥 according to an
approximation 𝑔(𝑥) that is easy to unweight

 Unweight this set according to
𝑓 𝑥

𝑔 𝑥

67

	Slide 1: Amplitudes with neural networks Daniel Maître IPPP, Durham
	Slide 2: Outline
	Slide 3: Matrix element emulation
	Slide 4: Motivation
	Slide 5: Difficulties emulating matrix elements
	Slide 6: Principle
	Slide 7: Factorisation-aware emulation
	Slide 8: Factorisation-aware emulation
	Slide 9: Results
	Slide 10: Results
	Slide 11: Results
	Slide 12: Results
	Slide 13: Cross section
	Slide 14: Phase-space trajectories
	Slide 15: Phase-space trajectories
	Slide 16: One-loop amplitudes
	Slide 17: K-factor ansatz
	Slide 18: One-loop results
	Slide 19: One-loop results
	Slide 20: One-loop results
	Slide 21: One-loop result
	Slide 22: One-loop result
	Slide 23: Unweighting with NN approximation Work with Timo Janßen, Stefan Schumann, Frank Siegert and Henry Truong [arXiv:2301.13562]
	Slide 24: Unweighting
	Slide 25: Unweighting
	Slide 26: Unweighting
	Slide 27: NN for integration
	Slide 28: Introduction
	Slide 29: Typical solution
	Slide 30: Alternative
	Slide 31: Primitive function
	Slide 32: NN approximation
	Slide 33: NN
	Slide 34: Derivatives in the loss function
	Slide 35: Example 1
	Slide 36: Result
	Slide 37: Example 2
	Slide 38: Results
	Slide 39: Error estimate
	Slide 40: Integration Neural Network
	Slide 41: Reducing variance
	Slide 42: Reducing variance
	Slide 43: Reduce variance
	Slide 44: Outlook
	Slide 45: Conclusion
	Slide 46: Backup
	Slide 47: INN Training
	Slide 48: INN Preprocessing
	Slide 49: Neural Network
	Slide 50: Neural Network
	Slide 51: Neural Networks
	Slide 52: Neural Network Training
	Slide 53: Neural Network training
	Slide 54: Bias/variance tradeoff
	Slide 55: Bias/Variance tradeoff
	Slide 56: Unweighting
	Slide 57: Unweighting
	Slide 58: Unweighting
	Slide 59: Unweighting
	Slide 60: Unweighting
	Slide 61: Unweighting
	Slide 62: Unweighting
	Slide 63: Unweighting
	Slide 64: Unweighting
	Slide 65: Unweighting
	Slide 66: Unweighting
	Slide 67: Unweighting

