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Abstract—The paper presents an improved model of induction
hardening of gear wheels. Although the mathematical model of
the hardening is well known, some parameters are subject to
uncertainties (temperature dependence of material parameters,
coefficient of convective heat transfer, or emissivity). The authors
offer a methodology based on calibration and optimization
techniques to minimize the relevant errors and illustrate it with
a typical example.

Index Terms—gear wheels, hardening, calibration, optimiza-
tion, mathematical model

I. INTRODUCTION

From the mathematical viewpoint, induction hardening is
typically a coupled task that involves a non-linear interaction
between magnetic and temperature fields. It also results in
metallurgical changes, especially in the surface structures of
the material being processed [1]. Induction hardening is com-
monly performed in a three-dimensional configuration, making
optimizing its input parameters practically challenging.

Due to this difficulty, it becomes necessary to introduce
appropriate simplifications, which can significantly expedite
the computations. However, a question regarding the reliability
and accuracy of such a simplified model arises. To address
this concern, the model must undergo thorough calibration to
ensure that the results fall within the tolerance range of the
experimental data.

II. SOLUTION PROCEDURE

The simplified model starts from the following assumptions:
It considers that the temperature Ac3 does not depend on
the heating rate, and the continuous cooling transform (CCT)
diagram remains unaffected by it, too. The variations in the
material microstructure are considered only qualitatively. The
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procedure of teeth cooling, whether by spraying or natural
air circulation, works with a constant or linearly dependent
convection coefficient. It must, however, correspond to the
real cooling time [2]. The way of finding this coefficient is
the main contribution of this paper, as its value is necessary
to model the quenching process of similar wheels.

We assume that the dimensions of the wheel and inductor
are known so that we may only optimize the amplitude and
frequency of the field current, together with the convective
coefficients. The converter’s frequency, however, can only vary
within a narrow range (although we can perform the sweep
analysis within a narrower band to find its optimal value),
so it is often sufficient to optimize only the time evolution
of the current envelope. The convection coefficients can be
determined experimentally from the temperature measured at
several points on the tooth (its tip, root, and center) for two
different values of the field current. Then, we process the
results using powerful optimization techniques [3] to find the
required temperature pattern of the hardened layers.

III. MATHEMATICAL MODEL

The induction hardening process of a gear wheel comprises
two sub-processes. The first sub-process involves induction
heating, achieved using a one-turn circular pipe-type copper
inductor cooled by water. Once the surface layers of the wheel
reach the desired temperature for hardening, which exceeds
Ac3 for the material used, the cooling process begins. An
appropriate quenchant, such as water or polymer, cools the
wheel, or it can cool naturally in the air. The hardness of the
resulting surface layers follows from the cooling time, where
faster cooling leads to higher hardness.

The fundamental equation governing the process of heating
may be written as [4]:

curl

(
1

µ
· curl A

)
+ γ · ∂A

∂t
= Jext. (1)



Here, symbol A denotes the magnetic vector potential, γ
stands for the electric conductivity, µ is the magnetic perme-
ability, and Jext represents the external current density in the
inductor that is considered uniform. The boundary conditions
applied along an artificial boundary are of Dirichlet’s or
Neumann’s kind.

The temperature field is described by the heat transfer
equation in the form [4]:

div (λ · grad T ) = ρ · cp · ∂T
∂t

− pJ. (2)

Here, symbol λ denotes the thermal conductivity, ρ represents
the specific mass, T is the temperature, cp stands for the
volumetric heat, and pJ denotes the volumetric Joule losses.
The boundary conditions include convection and radiation,
but for the sake of simplicity, the influence of radiation is
incorporated into the impact of convection.

Equation (2) still characterizes the cooling process, but the
second term on the right side disappears as there are no energy
losses within the body. The boundary condition is similar to
the heating case, albeit with distinct coefficients.

A hard-coupled formulation must be used to solve equations
(1) and (2) because the material properties are highly nonlinear
and vary with temperature. Additionally, the magnetic perme-
ability of hardened steel relies not only on temperature but
also on the magnetic flux density and frequency applied.

Since the specific details of the model have been extensively
covered in various references ( [5] or [6]) and are generally
well-known, they will not be further analyzed here. Instead, the
focus will be on the coefficient α representing convective heat
transfer, which is typically estimated and becomes particularly
challenging to determine precisely when employing more
aggressive cooling techniques (such as spraying or immersing
the heated body in a cold quenchant). Therefore, it is crucial
to calibrate the model appropriately for reliable results.

Careful temperature measurements must be conducted at
specific points on the teeth to calibrate the model. The cooling
rate derived from these measurements is then utilized to
determine the temperature dependency of the coefficient α.

Another challenge arises when seeking the final hardness
profile of the tooth. Typically, this value may be obtained
from the Continuous Cooling Transformation (CCT) diagram
of the steel used. However, constructing the CCT diagram
involves a prescribed heating method and adjusted values of
temperatures like Ac3 and Ac1. It is important to note that
these temperatures depend not only on the heating rate but also
on the chemical composition of the steel, which can vary from
manufacturer to manufacturer. As a result, slightly different
CCT diagrams can be found for the same type of steel.
Specialized equipment is required to measure the dependence
of Ac3 and Ac1 on the heating rate for each steel component
provided by the manufacturer. These data enable obtaining a
heating rate that corresponds to the actual process.

IV. ILLUSTRATIVE EXAMPLE

The methodology is exemplified by demonstrating the
induction-hardening process of a gear wheel made of AISI

Fig. 1. Principal geometry of the gear wheel

Fig. 2. Temperature dependencies of the parameters of steel AISI 4340

4340 steel. Figure 1 illustrates the wheel’s fundamental di-
mensions with other pertinent information in Table 1.

Table 1. Main dimensions of the gear wheel

Quantity Symbol Value Unit
Number of teeth N 30 -

Shaft radius rs 12 mm
Root radius rt 27.5 mm

Pitch circle radius rp 30 mm
Outer radius ro 32 mm

Wheel thickness h 7.5 mm

Figure 2 shows the temperature-dependent physical param-
eters of steel AISI 4340 (thermal conductivity λ, electric
conductivity γ, volumetric heat cp, and specific mass ρ) [7].
These are used as input data for the computations.

A. Heating

The experimental work was realized at the specialized lab-
oratory stand located at the Silesian University of Technology
[8]. First, we modeled the process of induction heating. The
source current had an amplitude Im = 1.136 kA, and its



Fig. 3. Positions of thermocouples 1 and 2 (they are built in two neighbor
teeth to avoid influencing one another)

Fig. 4. Arrangement of wheel hardening (the gap between wheel and inductor
is 1 mm, external cylindrical circular pipe is the sprayer)

frequency was f = 32.07 kHz. The heating time to the re-
quired temperature above 850 ◦C (providing practically 100 %
austenite solution in the surface layers of the teeth) was 7.0 s.
The time evolution of the temperature was measured by two
thermocouples placed at a depth of 1.2 mm below the top of
the tooth and in its root (see Fig. 3).

The arrangement of heating is shown in Fig. 4. The inductor
is supplied from an inverter through the busbars and massive
hollow conductors.

The efficiency η of the process of heating the wheel can be
determined from the model using the formula

η =
Q

We
=

∫ V

0

[∫ T

T0
ρ · cp · dT

]
dV∫ tk

0
u · i · dt

. (3)

Here, Q is the heat delivered to the wheel, We stands for the
electric energy consumed by the system inductor-wheel (and
possibly the sprayer), V represents the wheel volume and T
denotes the distribution of the final temperature at the end of
heating. Furthermore, the symbol T0 is the initial temperature
of the wheel before heating, ρ(T ) is its specific gravity, cp(T )
is its volumetric heat at constant pressure, u(t) is the secondary
voltage of the transformer, i(t) is the current of the secondary
winding supplying the inductor and tk is the heating time.

The supplying circuit may be described by the equation

u = R · i+ d (L · i)
dt

. (4)

Fig. 5. CCT diagram of steel AISI 4340: A–austenite, M–martensite,
F–ferrite, B–bainite [9]

This way of calculating the integral in the denominator of
(3) seems to be the best for calculating the electric energy
delivered to the system, as the direct measurement of the active
power would be problematic because of a low value of the
power factor φ. Then∫ tk

0

u · i · dt =
∫ tk

0

R · i2 · dt+
∫

i · d (L · i) . (5)

The resistance and inductance of the system busbar-feeder-
inductor-sprayer were measured very carefully during the
whole process of heating, using a precise RLC meter. Their
mean values in time were R = 5.84mΩ and L = 274 nH.
The inductance is, however, negligibly small compared with
the resistance, and its influence can be neglected.

Then

We =
R · I2m · tk

2
= 31.94 kWh, (6)

while the value of Q in (3) obtained from the numerical
calculation of the temperature distribution in the gear wheel
at the end of heating is 7.92 kWh. The computations were
carried out by the finite element method, and the integral in the
numerator of (3) was obtained by summing up the individual
contributions in all the time subintervals and all elements.
Hence, η = Q/We = 0.248.

B. Cooling

The cooling starts from the CCT diagram of steel AISI 4340
depicted in Fig. 5.

The next step is the calibration of coefficient α. It consists
of four following sub-steps:

1) Proposal of the objective function f in the form f =∑n
i=1 (Tci − Tmi)

2, where n is the number of the
selected points, Tmi are the measured, and Tci the
calculated values of temperature at these points.

2) Selection of suitable optimization methods. After thor-
ough testing, we chose the BOBYQA procedure.



Fig. 6. Convergence of coefficient α (its initial value being 500)

Fig. 7. Convergence of coefficient α for different initial values

3) Repeated applications of this procedure for different
initial values of α and comparison of results.

The resulting coefficient α for fast cooling is
1485W·m−2·K−1. Its value was calculated after only
twenty iterations with the BOBYQA algorithm. Figure 6
shows the convergence of α in the dependence on iterations.
The initial value was α = 500W·m−2·K−1.

Similar convergence patterns we obtained for different ini-
tial values of α; see Fig. 7. The only exception occurs when the
initial value of α is 2300 − 3000W·m−2·K−1. The objective
function has another extreme for this value visible even from
the convergence curve for α = 4000W·m−2·K−1; a steep
change is notable at this place. The most probable reason is
that the objective function is wavy and has more extremes
there.

Finally, Fig. 8 shows the comparison of the measured and
calculated cooling curves at the thermocouples TC1 and TC2
for α = 1485W·m−2·K−1. It is evident that the agreement is
very good, and particular differences do not exceed more than
about 6 %.

V. CONCLUSION

The paper describes an enhanced approach to induction
hardening that starts by determining a more accurate heat
transfer coefficient. This coefficient is often unknown when
aggressive cooling methods such as spraying or sinking into
a quenchant are employed.

Fig. 8. Comparison of measured and calculated cooling curves

The authors propose a method starting by measuring the
temperature evolution at specific spots of the heated body
using thermocouples. The data obtained are subject to an
optimization process to determine the coefficient values that
ensure the most similar temperature evolution and cooling
time. The authors utilized the BOBYQA method for optimiz-
ing and demonstrated its advantages for modeling gear wheel
hardening. Additionally, they calculated an electric efficiency
of about 0.25 for the heating process.

Nevertheless, using deterministic algorithms for optimizing
the convective coefficient requires considerable attention. The
objective function often exhibits more local extremes, and
the result may be faulty. So it is necessary to compare it
automatically with measured data. Only a precise experiment
may confirm its correct value.

Future research in this field will concentrate on expediting
the algorithms used, as the optimization process alone takes
over 30 hours when executed on a cluster comprising four
high-performance computers.
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