## Axion and FIMP Dark Matter in a U(1) extension of the Standard Model

## Sarif Khan

ITP, University of Goettingen

Talk at: Invisible 2023

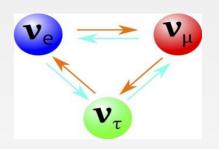
Based on: 2205.10150 [JCAP 09 (2022) 064]

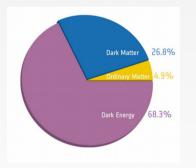
**Co-author: Laura Covi** 



# **Problems in the SM**

- SM fails to explain neutrino mass and mixings.
- SM doesn't have a DM candidate.
- SM can not explain the observed baryon asymmetry.
- The origin of smallness of the  $\theta$ -parameter.

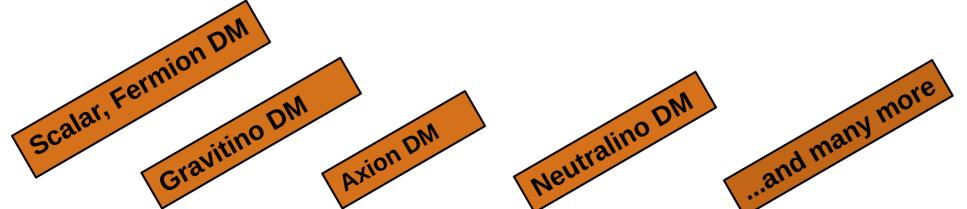




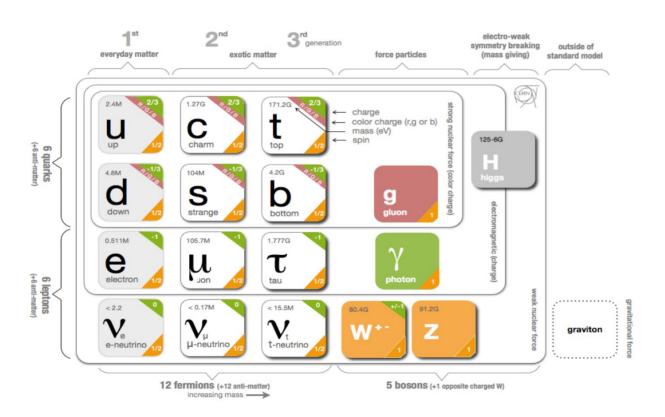


# **Nature of Dark Matter**

- Should be massive
- Should be electrically neutral
- Should be present in the early universe
- Stable in comparison to the age of the universe



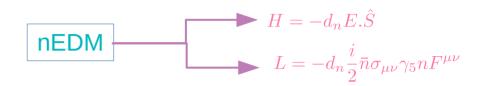
# **SM Particle Spectrum**



- Neutrino has all the properties mentioned before
- It can not account the whole amount of DM
- Relativistic in nature so no structure formation
- SM is incomplete, need new BSM physics to address DM

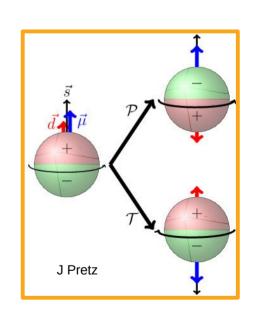
## Strong CP Problem

The measurement of nEDM  $d_n$  will imply P, CP violation and could be related to the early matter-antimatter asymmetry.



- $\longrightarrow$  nEDM puts bound on d<sub>n</sub> i.e.  $|\mathrm{d_n}| < 1.5 \times 10^{-12} \mathrm{e\,GeV^{-1}}$  Abel et al, PRL 20
- $L_{\theta} = \theta \frac{g_s^2}{32\pi^2} G\tilde{G} \text{ contribution to nEDM which comes out as } d_n \sim 1.2 \times 10^{-2} \theta e \, GeV^{-1}$  Pospelov, Ritz '99
- $\rightarrow$  Comparing theoretical and the experimental values of nEDM, we obtain  $\theta < 10^{-10}$

 $\rightarrow$  The problem arises why the  $\theta$  parameter is so small





**Accidental Symmetry** 

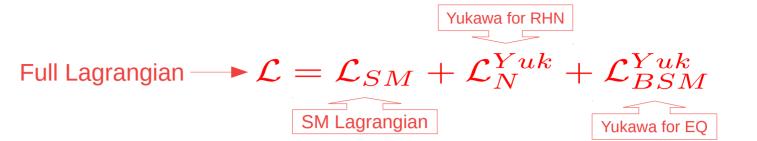
# Complete gauge group $\longrightarrow G_{SM} \times U(1)_X \times \mathbb{Z}_2$

| Gauge                         | Baryon Fields |         |                | Lepton Fields |           |           |       |         |           | Scalar Fields                   |
|-------------------------------|---------------|---------|----------------|---------------|-----------|-----------|-------|---------|-----------|---------------------------------|
| Group                         | $Q_L^i$       | $u_R^i$ | $d_R^i$        | $L_L^e$       | $L_L^\mu$ | $L_L^	au$ | $e_R$ | $\mu_R$ | $ 	au_R $ | $\overline{\hspace{1cm}}\phi_h$ |
| $\mathrm{SU}(2)_{\mathrm{L}}$ | 2             | 1       | 1              | 2             | 2         | 2         | 1     | 1       | 1         | 2                               |
| $U(1)_{Y}$                    | 1/6           | 2/3     | -1/3           | -1/2          | -1/2      | -1/2      | -1    | -1      | -1        | 1/2                             |
| $U(1)_X$                      | m             | m       | $\overline{m}$ | $n_e$         | n         | n         | $n_e$ | n       | n         | 0                               |
| $U(1)_{PQ}$                   | 0             | 0       | 0              | -2a           | 0         | 0         | -2a   | 0       | 0         | 0                               |

| Gauge                                                                | Fermions |        |        |            |            |            |            | Scalars               |                     |
|----------------------------------------------------------------------|----------|--------|--------|------------|------------|------------|------------|-----------------------|---------------------|
| Group                                                                | $N_1$    | $N_2$  | $N_3$  | $\psi_L$   | $\psi_R$   | $\chi_L$   | $\chi_R$   | $\phi_1$              | $\phi_2$            |
| $\overline{\mathrm{SU}(3)_{\mathrm{c}},\mathrm{SU}(2)_{\mathrm{L}}}$ | (1,1)    | (1, 1) | (1, 1) | (3, 1)     | (3, 1)     | (3,1)      | (3,1)      | 1                     | 1                   |
| $U(1)_X$                                                             | $n_e$    | n      | n      | $\alpha_L$ | $\alpha_R$ | $\beta_L$  | $\beta_R$  | $\alpha_L - \alpha_R$ | $\beta_L - \beta_R$ |
| $U(1)_{PQ}$                                                          | -2a      | 0      | 0      | -a         | a          | a          | -a         | -2a                   | 2a                  |
| $\mathbb{Z}_2$                                                       | -1       | 1      | 1      | 1          | 1          | -1         | -1         | 1                     | 1                   |
| No. of flavors                                                       | 1        | 1      | 1      | $N_{\psi}$ | $N_{\psi}$ | $N_{\chi}$ | $N_{\chi}$ | 1                     | 1                   |

- KSVZ type axion model has been considered
- $\mathbb{Z}_2$ -symmetry forbids mixing among the exotic quarks and also stabilise the FIMP DM
- We have two DM namely axion and right handed neutrino which is odd under  $\mathbb{Z}_2$
- $U(1)_{\rm PQ}$  symmetry is accidental and extracted from  $U(1)_X$  gauge symmetry

Gauge anomaly will put bound on the additional abelian gauge group charges Lagrangian



## Lagrangian associated with the right handed neutrinos:

$$\mathcal{L}_{N}^{Yuk} = y_{\mu 2} \bar{L}_{\mu} \phi_{h} N_{2} + y_{\mu 3} \bar{L}_{\mu} \phi_{h} N_{3} + y_{\tau 2} \bar{L}_{\tau} \phi_{h} N_{2} + y_{\tau 3} \bar{L}_{\tau} \phi_{h} N_{3} + y_{e 2} \bar{L}_{e} \phi_{h} N_{2} \frac{\phi_{1}}{M_{PL}} \longrightarrow \text{Dirac mass terms}$$

$$+ y_{e 3} \bar{L}_{e} \phi_{h} N_{3} \frac{\phi_{1}}{M_{PL}} + y_{2 2} N_{2} N_{2} \frac{\phi_{1} \phi_{2}}{M_{PL}} + y_{2 3} N_{2} N_{3} \frac{\phi_{1} \phi_{2}}{M_{PL}} + y_{3 3} N_{3} N_{3} \frac{\phi_{1} \phi_{2}}{M_{PL}} + h.c.. \longrightarrow \text{RHN mass terms}$$

Terms associated with the exotic quarks:  $\mathcal{L}_{BSM}^{Yuk} = \sum_{i,j=1}^{N_{\psi}0} \lambda_{ij} \, \bar{\psi_L^i} \psi_R^j \phi_1 + \sum_{i,j=1}^{N_{\chi}} y_{ij} \bar{\chi_L^i} \chi_R^j \phi_2 + h.c. \, .$ 

Redefining the fields:  $\psi_L \to e^{i\frac{a_1}{2v_1}}, \ \psi_R \to e^{-i\frac{a_1}{2v_1}}, \ \chi_L \to e^{i\frac{a_2}{2v_2}}, \ \chi_R \to e^{-i\frac{a_2}{2v_2}}$ 

Axion gluon coupling:  $\mathcal{L}_{AGG} = \left(\frac{N_{\psi}a_{1}}{v_{1}} + \frac{N_{\chi}a_{2}}{v_{2}}\right)\frac{g_{s}^{2}}{32\pi^{2}}G_{\mu\nu}\tilde{G}^{\mu\nu}$   $= N_{\psi}\frac{A}{F_{s}}\frac{g_{s}^{2}}{32\pi^{2}}G_{\mu\nu}\tilde{G}^{\mu\nu},$   $A = \frac{v_{2}a_{1} + n_{\chi}v_{1}a_{2}}{\sqrt{n_{\chi}^{2}v_{1}^{2} + v_{2}^{2}}}$   $F_{a} = \frac{v_{1}v_{2}}{\sqrt{n_{\chi}^{2}v_{1}^{2} + v_{2}^{2}}}$ 

# Choice of $\alpha_{\rm L}$ and $\beta_{\rm L}$

$$\overline{U(1)_X^3 \text{ and } [Gravity]^2 \times U(1)_X} \longrightarrow (n_\chi^2 - 1)y^2 + 3(n_\chi - z)y + 3(1 - z^2) = 0$$

$$\text{where } z = \frac{\beta_L}{\alpha_R}, \ n_\chi = \frac{N_\chi}{N_\psi} \text{ and } y = \frac{\beta_R - \beta_L}{\alpha_R} = \frac{\Delta\beta}{\alpha_R}$$

Roots and condition for real eigenvalues

$$y_{\pm} = \frac{-3(n_{\chi} - z) \pm \sqrt{9(n_{\chi} - z)^2 - 12(n_{\chi}^2 - 1)(1 - z^2)}}{2(n_{\chi}^2 - 1)}$$

A physical solution has to be real

$$(4n_{\chi}^{2} - 1)z^{2} - 6n_{\chi}z - n_{\chi}^{2} + 4 \ge 0.$$

$$z_{\pm} = \frac{3n_{\chi} \pm 2|n_{\chi}^{2} - 1|}{(4n_{\chi}^{2} - 1)}$$

## Choice of $\alpha_{\rm L}$ and $\beta_{\rm L}$

Depending on the sign of  $4n_{\chi}^2 - 1$ , different ranges for z are allowed, i.e.

- when  $n_{\chi} > 1/2$ , we must require  $z \leq z_{-}$  or  $z \geq z_{+}$ ; as for large  $n_{\chi}$ ,  $z_{\pm} \to \pm 1/2$  this reduces to the requirement |z| > 1/2 in the limit  $n_{\chi} \gg 1$ ,
- when  $n_{\chi} < \frac{1}{2}$ , we must require  $z_{-} \leq z \leq z_{+}$  and this reduces to |z| > 2 for  $n_{\chi} \ll 1$ .

Considered 
$$n_{\chi} > 1$$
 because  $n_{\chi} < 1 \longrightarrow \alpha_i \leftrightarrow \beta_i, N_{\psi} \leftrightarrow N_{\chi}, n_{\chi} \leftrightarrow 1/n_{\chi}$ .

Sets of Allowed Charge assignments

$$n_e = -\frac{1 + n_\chi}{2}(\beta_L - \beta_R), \ n = \frac{n_\chi - 1}{2}(\beta_L - \beta_R) \text{ and } m = -\frac{n_e + 2n}{9}$$

### Gravitational Effect in axion Potential

 $g = |g|e^{i\delta}$ 

PQ breaking higher dimensional operator at the Planck scale

$$\mathcal{V}_{PL}(\Phi_1, \Phi_2) = \frac{g}{N_{\psi}! N_{\chi}!} \frac{\Phi_1^{N_{\psi}} \Phi_2^{N_{\chi}}}{M_{PL}^{N_{\psi}+N_{\chi}-4}} + h.c$$

$$r_g = rac{(M_A^g)^2}{(M_A)^2}$$

Total axion potential

$$\qquad \qquad \boxed{ \mathbf{V}(\ \overline{\theta_a}) = F_a^2 M_a^2 \left[ \left( 1 - \cos \overline{\theta_a} \right) + r_g \left( 1 - \cos \left( p \ \overline{\theta_a} + \delta \right) \right) \right] }$$

$$(\mathbf{M}_{A}^{g})^{2} = \frac{|g|}{N_{\psi}! N_{\chi}!} \frac{\langle \Phi_{1} \rangle^{N_{\psi}} \langle \Phi_{2} \rangle^{N_{\chi}}}{(\sqrt{2})^{N_{\psi} + N_{\chi}} M_{PL}^{N_{\psi} + N_{\chi} - 4} F_{A}^{2}}$$

quantum-gravitational induced axion mass

Extra potential term shift the minima from  $\theta=0$  by an amount

$$\Delta \theta = \frac{r_g |p \sin \delta|}{\left[1 + p^4 r_g^2 + 2p^2 r_g \cos \delta\right]^{1/2}}$$

$$r_g \ll 1 \text{ and } |p\sin\delta| \sim 1$$
  $\longrightarrow$   $\Delta\theta \sim r_g = \frac{|g|}{N_{\psi}! N_{\chi}! (\sqrt{2})^{N_{\psi}+N_{\chi}}} \frac{v_1^{N_{\psi}} v_2^{N_{\chi}}}{M_{PL}^{N_{\psi}+N_{\chi}-4} (f_{\pi}m_{\pi})^2} \frac{(m_u + m_d)^4}{m_u^2 m_d^2}$ 

## Analytical Estimate of $\Delta\theta$

$$v_1 = v_2 ext{ and } |g| \sim 1 \Longrightarrow \Delta extstyle \delta \sim rac{1}{n_\chi!} \left[rac{1+n_\chi^2}{2}
ight]^{rac{1+n_\chi}{2}} \left[rac{F_a^2}{f_\pi m_\pi}
ight]^2 \left[rac{F_a}{M_{PL}}
ight]^{n_\chi-3} rac{(m_u+m_d)^4}{m_u^2 m_d^2}$$

Stirling's formula for  $n_{\gamma} \gg 1$ 

$$n_{\chi}(1 + \ln \frac{F_a}{M_{PL}}) < 0$$

$$\Delta\theta \sim \frac{e^{n_{\chi}}}{(\sqrt{2})^{1+n_{\chi}}} \left[ 1 + \frac{1}{n_{\chi}^{2}} \right]^{\frac{1+n_{\chi}}{2}} \sqrt{\frac{n_{\chi}}{2\pi}} \left[ \frac{F_{a}^{2}}{f_{\pi}m_{\pi}} \right]^{2} \left[ \frac{F_{a}}{M_{PL}} \right]^{n_{\chi}-3} \frac{(m_{u}+m_{d})^{4}}{m_{u}^{2}m_{d}^{2}}$$

Ruled out by nEDM

$$n_{\chi} \leq 8 \longrightarrow \Delta \theta \geq 10^{-10}$$

$$n_{\chi} = 9$$

$$n_{\chi} = 9 \longrightarrow \Delta \theta \sim 29.41 \times 10^{-10} \left[ \frac{F_a}{10^{10} \text{GeV}} \right]^{10}$$

Running of SU(3) coupling above the EQ mass scale

$$\beta_3(\alpha_3) = -\frac{\alpha_3^2}{2\pi} \left[ 7 - \frac{2(N_{\psi} + N_{\chi})}{3} \right] \longrightarrow N_{\psi} + N_{\chi} \le 10$$

$$N_{\psi} + N_{\chi} \le 10$$

## **Axion Density**

Misalignment mechanism gives us the axion density:

$$\Omega_a h^2 \simeq 0.18 \, \theta_i^2 \left( \frac{F_a}{10^{12} \, {\rm GeV}} \right)^{1.19} \, ,$$

Preskill et al PLB 1983 Turner et al '85

PQ symmetry breaking happens before or during inflation then the axion field as massless field contains quantum fluctuations:

$$\delta a = \frac{H_{\rm inf}}{2\pi}$$
,

Kawasaki et al PLB 2018

\* These fluctuations of the axionic field contribute to the axion energy density:

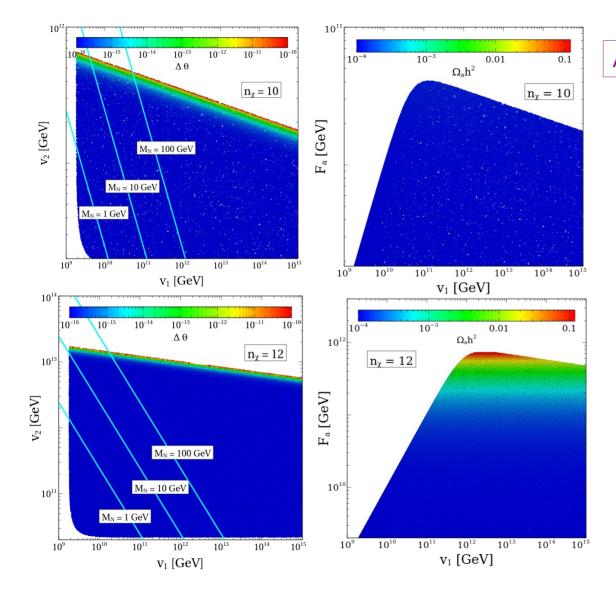
$$\Omega_a h^2 \simeq 0.18 \, \left[ \theta_i^2 + \left( \frac{H_{\rm inf}}{2 \pi F_a} \right)^2 \right] \left( \frac{F_a}{10^{12} \, {\rm GeV}} \right)^{1.19} \, ,$$

 axion fluctuations generate an isocurvature perturbation (SDM) on top of the curvature perturbation given by the inflaton:

$$S_{\rm DM} = \frac{\Omega_a h^2}{\Omega_{\rm DM} h^2} \frac{\delta \rho_a}{\rho_a} \,,$$

Hubble parameter H\_inf and F\_a must satisfy the following relation to be consistent with the CMB data

$$H_{\rm inf} < 2.4 \times 10^7 \,{\rm GeV} \, \left(\frac{F_a}{10^{12} \,{\rm GeV}}\right)^{0.405}$$
.



## Axion relic density using misalignment:

$$\Omega_a h^2 \simeq 0.18 \, heta_i^2 \left( rac{F_a}{10^{12} \, {
m GeV}} 
ight)^{1.19}$$

- $n_\chi=10$  can not give us total amount for dark matter although not true for higher  $n_\chi$  values.
- $n_\chi=12$  Can give right relic density for part of the parameter space.
- From the asymptotic freedom we can not take high value of  $n_{\chi}$ .
- We need a second component to fill the gap to the total DM relic density.

# Axion coupling with SU(2)<sub>L</sub> and U(1)<sub>Y</sub> Gauge Bosons

Non – trivial contribution from  $SU(2)_L \times SU(2)_L \times U(1)_{PQ}$  anomaly :

$$\mathcal{L}_{WWA} = \frac{g_2^2}{64\pi^2} \frac{A}{F_a} \tilde{W}^i_{\mu\nu} W^{\mu\nu}_i$$
$$= \frac{g_2^2}{64\pi^2} \frac{A}{F_a} \tilde{W}^i_{\mu\nu} W^{\mu\nu}_i.$$

Non – trivial contribution from  $U(1)_Y \times U(1)_Y \times U(1)_{PQ}$  anomaly :

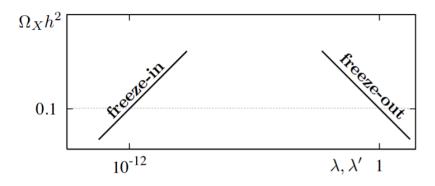
$$\mathcal{L}_{AYY} = (2Y_{Le}^2 - Y_e^2) \frac{g_1^2}{32\pi^2} \frac{A}{F_a} \tilde{F}_{\mu\nu}^Y F^{\mu\nu Y}$$
$$= -\frac{g_1^2}{64\pi^2} \frac{A}{F_a} \tilde{F}_{\mu\nu}^Y F^{\mu\nu Y},$$

- Combining W3 and BY we get exact cancellation of axion coupling with photons
- Nevertheless a non-vanishing coupling arises from the pion-axion mixing giving

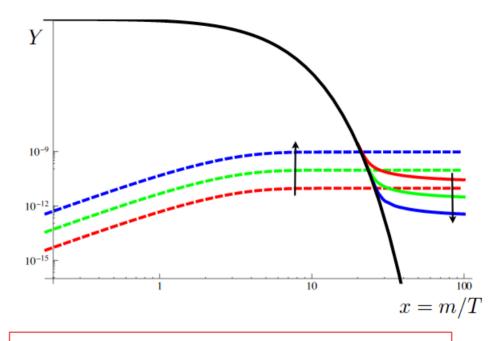
$$\mathcal{L}_{A\gamma\gamma} = -\frac{e^2}{12\pi^2} \left( \frac{4m_d + m_u}{m_d + m_u} \right) \frac{A}{F_a} \tilde{F}_{\mu\nu} F^{\mu\nu} \,.$$

MADMAX can explore  $F_A$  in between  $(1.4-14)\times 10^{10}$  GeV which corresponds to  $(40-400)\mu eV$  axion mass babylaxO will explore even higher mass range i.e. from meV to eV range

# FIMP DM



- WIMP DM is easy to detect but no signal puts bound on its parameter space
- FIMP DM is difficult to probe in different experiments due to its feeble interaction
- This work has both WIMP and FIMP type DM depending on the choice of masses



- In the present model vevs are very heavy from the axion study
- To have TeV scale extra gauge boson and DM, their associated interactions become very suppressed

### $N_1$ as FIMP

- In the present work, we can consider one of the RHN as DM which is odd under $\mathbb{Z}_2$
- Lagrangian for the DM candidate  $N_1$ :  $\mathcal{L}_{N_1} = rac{i}{2} ar{N}_1 \gamma^\mu \left( \partial_\mu i \, g_X^{eff} Z_X 
  ight) N_1 + \lambda ar{N}_1^c N_1 rac{\phi_1^\dagger \phi_2}{M_{Pl}} + h.c.$
- Boltzmann equation for the DM evolution:

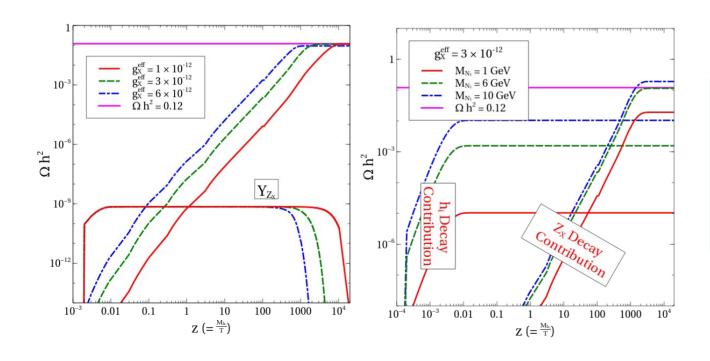
$$\frac{dY_{Z_X}}{dz} = \frac{2 M_{\text{Pl}} z \sqrt{g_{\star}(z)}}{1.66 M_{h_1}^2 g_s(z)} \left[ \sum_{i=1,2} \langle \Gamma_{h_i \to Z_X Z_X} \rangle_{TH} (Y_{h_i} - Y_{Z_X}^2) - \langle \Gamma_{Z_X \to N_1 N_1} \rangle_{\text{NTH}} Y_{Z_X} \right]$$

$$\frac{dY_{N_1}}{dz} = \frac{2 M_{\text{Pl}} z \sqrt{g_{\star}(z)}}{1.66 M_{h_1}^2 g_s(z)} \left[ \sum_{i=1,2} \langle \Gamma_{h_i \to N_1 N_1} \rangle Y_{h_i} + \langle \Gamma_{Z_X \to N_1 N_1} \rangle_{\text{NTH}} Y_{Z_X} \right],$$

- Non-thermal average of gauge boson decay:  $\langle \Gamma_{Z_X \to N_1 N_1} \rangle_{\text{NTH}} = M_{Z_X} \Gamma_{Z_X \to N_1 N_1} \frac{\int \frac{f_{Z_X}(p)}{\sqrt{p^2 + M_{Z_X}^2}} d^3p}{\int f_{Z_X}(p) d^3p}$ .
- DM relic density:  $\Omega_{N_1}h^2 = 2.755 \times 10^8 \left(\frac{M_{N_1}}{\text{GeV}}\right) Y_{N_1}(T_{\text{Now}})$ .

### $N_1$ as FIMP

- In the present work, we can consider one of the RHN as DM which is odd under  $\mathbb{Z}_2$
- Lagrangian for the DM candidate  $N_1$ :  $\mathcal{L}_{N_1} = rac{i}{2} ar{N}_1 \gamma^\mu \left( \partial_\mu i \, g_X^{eff} Z_X 
  ight) N_1 + \lambda ar{N}_1^c N_1 rac{\phi_1^\intercal \phi_2}{M_{Pl}} + h.c.$



- FIMP is produced from the decay of  $h_i$  and  $Z_X$
- $Z_X$  never reaches thermal equilibrium so we have determined its distribution function.

## Analytical estimate of FIMP DM

$$h_i \rightarrow N_1 N_1$$
 decays contribute to the FIMP DM:

$$\Omega_{N_1}^{FIMP} h^2 \sim rac{2.038 imes 10^{27}}{g_s \sqrt{g_{
ho}}} \, \sum_i rac{M_{N_1}^3}{16\pi M_{h_i} \, F_a^2(n_\chi^2 + 1)}$$

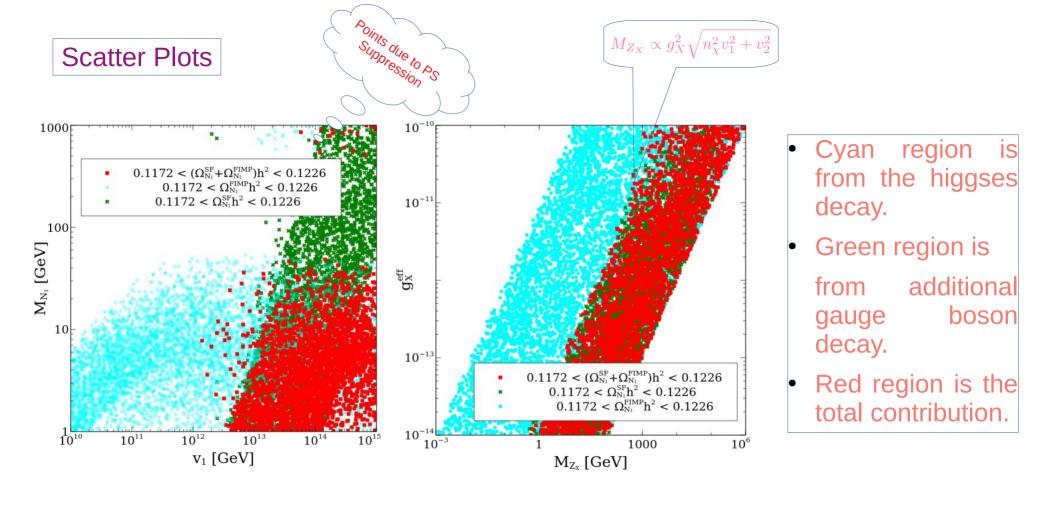
 $h_i \to Z_X Z_X \to N_1 N_1$  decays contribute to the FIMP DM:

$$(\Omega_{N_1}^{SF} h^2) \sim \frac{2.038 \times 10^{27}}{g_s \sqrt{g_\rho}} 2BR_{Z_X \to N_1 N_1} \sum_i \frac{M_{N_1} q_i^2 M_{h_i}}{32\pi q_2^2 (n_\chi^2 + 1)^2 F_a^2}$$

 $Z_X \to N_1 N_1$  branching analytically can be approximated as

$$2BR_{Z_X \to N_1 N_1} = \frac{2}{24} \frac{(n_\chi + 1)^2}{n_\chi^2 - 8n_\chi + 28/3} \to \frac{1}{12}, \text{ for } n_\chi \gg 1$$

In the DM scatter plots, we have considered contribution both axion and FIMP DM



Higher values of FIMP DM mass are ruled out due to over production of DM

## Neutrino Oscillation Parameters Range

#### NuFIT 5.2 (2022)

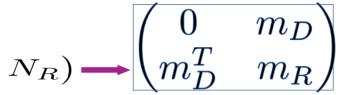
 $heta_{13}$  Narrow range

|                          |                                                   |                                            |                             |                                             | NuF11 5.2 (2022)            |  |  |  |
|--------------------------|---------------------------------------------------|--------------------------------------------|-----------------------------|---------------------------------------------|-----------------------------|--|--|--|
|                          |                                                   | Normal Ord                                 | dering (best fit)           | Inverted Ordering ( $\Delta \chi^2 = 2.3$ ) |                             |  |  |  |
|                          |                                                   | bfp $\pm 1\sigma$                          | $3\sigma$ range             | bfp $\pm 1\sigma$                           | $3\sigma$ range             |  |  |  |
| _                        | $\sin^2 \theta_{12}$                              | $0.303^{+0.012}_{-0.011}$                  | $0.270 \rightarrow 0.341$   | $0.303^{+0.012}_{-0.011}$                   | $0.270 \rightarrow 0.341$   |  |  |  |
| date                     | θ <sub>12</sub> /°                                | $33.41^{+0.75}_{-0.72}$                    | $31.31 \rightarrow 35.74$   | $33.41^{+0.75}_{-0.72}$                     | $31.31 \rightarrow 35.74$   |  |  |  |
| neric                    | $\sin^2 \theta_{23}$                              | $0.572^{+0.018}_{-0.023}$                  | $0.406 \rightarrow 0.620$   | $0.578^{+0.016}_{-0.021}$                   | $0.412 \rightarrow 0.623$   |  |  |  |
| SK atmospheric data      | $\theta_{23}/^{\circ}$                            | $49.1^{+1.0}_{-1.3}$                       | $39.6 \rightarrow 51.9$     | $49.5^{+0.9}_{-1.2}$                        | $39.9 \rightarrow 52.1$     |  |  |  |
|                          | $\sin^2 \theta_{13}$                              | $0.02203_{-0.00059}^{+0.00056}$            | $0.02029 \to 0.02391$       | $0.02219_{-0.00057}^{+0.00060}$             | $0.02047 \to 0.02396$       |  |  |  |
|                          | - θ <sub>13</sub> /°                              | $8.54^{+0.11}_{-0.12}$                     | $8.19 \rightarrow 8.89$     | $8.57^{+0.12}_{-0.11}$                      | $8.23 \rightarrow 8.90$     |  |  |  |
| without                  | δ <sub>CP</sub> /°                                | $197^{+42}_{-25}$                          | $108 \rightarrow 404$       | 286 <sup>+27</sup> <sub>-32</sub>           | $192 \rightarrow 360$       |  |  |  |
| w                        | $\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$    | 7.41 <sup>+0.21</sup> <sub>-0.20</sub>     | $6.82 \rightarrow 8.03$     | 7.41 <sup>+0.21</sup> <sub>-0.20</sub>      | $6.82 \rightarrow 8.03$     |  |  |  |
|                          | $\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$ | +2.511 <sup>+0.028</sup> <sub>-0.027</sub> | $+2.428 \rightarrow +2.597$ | -2.498 <sup>+0.032</sup> <sub>-0.025</sub>  | $-2.581 \rightarrow -2.408$ |  |  |  |
|                          |                                                   | Normal Oro                                 | dering (best fit)           | Inverted Ordering ( $\Delta \chi^2 = 6.4$ ) |                             |  |  |  |
|                          |                                                   | bfp $\pm 1\sigma$                          | $3\sigma$ range             | bfp $\pm 1\sigma$                           | $3\sigma$ range             |  |  |  |
|                          | $\sin^2 \theta_{12}$                              | $0.303^{+0.012}_{-0.012}$                  | $0.270 \rightarrow 0.341$   | $0.303^{+0.012}_{-0.011}$                   | $0.270 \rightarrow 0.341$   |  |  |  |
| lata                     | θ <sub>12</sub> /°                                | $33.41^{+0.75}_{-0.72}$                    | $31.31 \rightarrow 35.74$   | $33.41^{+0.75}_{-0.72}$                     | $31.31 \rightarrow 35.74$   |  |  |  |
| ric                      | $\sin^2\theta_{23}$                               | $0.451^{+0.019}_{-0.016}$                  | $0.408 \rightarrow 0.603$   | $0.569^{+0.016}_{-0.021}$                   | $0.412 \rightarrow 0.613$   |  |  |  |
| sphe                     | θ <sub>23</sub> /°                                | 42.2 <sup>+1.1</sup> <sub>-0.9</sub>       | $39.7 \rightarrow 51.0$     | $49.0^{+1.0}_{-1.2}$                        | $39.9 \rightarrow 51.5$     |  |  |  |
| with SK atmospheric data | $\sin^2 \theta_{13}$                              | $0.02225^{+0.00056}_{-0.00059}$            | $0.02052 \to 0.02398$       | $0.02223^{+0.00058}_{-0.00058}$             | $0.02048 \to 0.02416$       |  |  |  |
|                          | θ <sub>13</sub> /°                                | $8.58^{+0.11}_{-0.11}$                     | $8.23 \rightarrow 8.91$     | 8.57 <sup>+0.11</sup> 0.11                  | $8.23 \rightarrow 8.94$     |  |  |  |
|                          | $\delta_{\mathrm{CP}}/^{\circ}$                   | 232+36                                     | $144 \rightarrow 350$       | 276 +22 29                                  | $194 \rightarrow 344$       |  |  |  |
|                          | $\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$    | 7.41 <sup>+0.21</sup> <sub>-0.20</sub>     | $6.82 \rightarrow 8.03$     | 7.41 <sup>+0.21</sup> <sub>-0.20</sub>      | $6.82 \rightarrow 8.03$     |  |  |  |
|                          | $\Delta m_{3\ell}^2$                              | +2.507 <sup>+0.026</sup> <sub>-0.027</sub> | $+2.427 \rightarrow +2.590$ | -2.486 <sup>+0.025</sup> <sub>-0.028</sub>  | $-2.570 \rightarrow -2.406$ |  |  |  |

Associated model parameters are tightly constrained by the neutrino oscillation data

# **Neutrino Mass**

ullet Neutrino mass matrix in the basis  $(
u^c_L)$ 



→ Dirac mass matrix takes the form:

$$m_d = m_{d f i} = \begin{pmatrix} \frac{y_{e2}vv_1}{2M_{\rm Pl}} & \frac{(y_{e3}^R + iy_{e3}^I)vv_1}{2M_{\rm Pl}} \\ \\ \frac{y_{\mu 2}v}{\sqrt{2}} & \frac{(y_{\mu 3}^R + y_{\mu 3}^I)v}{\sqrt{2}} \\ \\ \frac{y_{\tau 2}v}{\sqrt{2}} & \frac{(y_{\tau 3}^R + y_{\tau 3}^I)v}{\sqrt{2}} \end{pmatrix} ,$$

→ Right handed neutrino mass matrix:

$$m_R = \begin{pmatrix} M_{22} & M_{23}^R + iM_{23}^I \\ M_{23}^R + iM_{23}^I & M_{33} \end{pmatrix}$$

→ Neutrino mass is generated by Type-I Seesaw mechanism

$$m_{\nu} = -m_D^T M_R^{-1} M_D$$

Parameters range:

$$10^{-6} \,\text{GeV} \le m_{dfi} \le 10^{-3} \,\text{GeV},$$
  
 $1 \,\text{GeV} \le m_R \le 100 \,\text{GeV}.$ 

#### **Neutrino mass**



- Present model can generate oscillation parameters in the correct range by varying the model parameters
- The lightest eigenvalue among the active neutrinos is zero since the mixing involves only two RHN

## Conclusion

- Present model can accommodate neutrino mass with the allowed range of the neutrino oscillation parameters.
- $^{\flat}$  It also explain the smallness of the  $\theta$ -parameter and solves the strong CP problem naturally.
- Ye With asymptotic freedom, we could have a not so small contribution to  $\theta$  which corresponds to small  $F_a$  and may be measured in near future experiments.
- > Unless we choose very high value of  $n_{\chi}$  ( $\geq 12$ )which might ruin the asymptotic freedom of QCD coupling, axion can not accommodate whole amount of DM relic density.
- ADMX, MADMAX, babyIAXO can explore the present model for axion mass range from  $\mu e V$  and above, even if axion is not the total DM density.
- One of the right handed neutrino can be a FIMP DM and fill the deficit in the total DM relic density.
- > RH FIMP DM is produced from the decay of thermal Higgses and non-thermal gauge boson.

# Thank you for your attention

# Back up Slides