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Introduction

• We study a Dirac Scotogenic model. This allow us to connect

• Neutrino mass generation at one loop level
• A viable Dark matter candidate

• Dirac nature allows right-handed neutrinos (νR) to be very light.

• Thermalization of νR lead to additional contribution to dark radiation.

• The effective number of neutrino species is defined as:

Neff =
(7

8

)(11
4

)4/3[
ρrad − ργ

ργ

]
• For instantaneous neutrino decoupling, Neff = 3, else Neff = 3.0461

• We will be looking for the parameter ∆Neff(≡ Nnew
eff − 3.046)

• Current CMB bound at 2σ CL: Neff = 2.99+0.34
−0.33

1Nucl. Phys. B 729, pp. 221–234
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Components of the model

We have three sets of VLFs (N1,2,3), three νRs, one doublet scalar (ϕ) and
a singlet scalar (χ).

L H νR N ϕ χ

SU(2) 2 2 1 1 2 1
U(1)Y − 1

2
1
2 0 0 1

2 0
Z3 0 0 ω ω ω 0
Z2 + + + - - -

−LYukawa ⊃ (yϕ)ijLiϕ̃Nj + (yχ)ijνRiNjχ

+(MN )ijN̄iNj + h.c. (1)

The scalar potential of the model can be written as follows,

V = −µ2
HH†H + µ2

ϕϕ†ϕ + 1
2µ2

χχ2 + 1
2λ1(H†H)2 + 1

2λ2(ϕ†ϕ)2 + 1
4!λ3χ4

+λ4(H†H)(ϕ†ϕ) + 1
2λ5(H†H)χ2 + 1

2λ6(ϕ†ϕ)χ2 + λ7(H†ϕ)(ϕ†H)

+µ(ϕ†H + H†ϕ)χ. (2)

Mixing between ϕR and χ:(
S1

S2

)
=

(
cos θ sin θ

− sin θ cos θ

) (
χ

ϕR

)
where, θ = tan−1 [ 2

√
2µv

µ2
ϕ − µ2

χ + (λ4 − λ5)v2

]
.
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Neutrino mass & LFV

The one-loop Dirac neutrino mass [Phys. Rev.D86(2012) 033007]:

(Mν)αβ = sin 2θ

32π2
√

2

3∑
k=1

(yϕ)αk(y∗
χ)βkMNk

( M2
S1

M2
S1

− M2
Nk

ln
M2
S1

M2
Nk

−
M2
S2

M2
S2

− M2
Nk

ln
M2
S2

M2
Nk

)
. (3)

νcN c

SiSi

ν N

〈H〉

lβ

φ−

lα

γ

N

φ−

The decay branching ratio for µ → eγ is given by:

Br(µ → eγ) = Br(µ → eνµν̄e) × 3αEM

16πG2
F

Abs
[ ∑

i

(yϕ)µi(y∗
ϕ)ei

M2
ϕ±

f
( M2

Ni

M2
ϕ±

)]2
.

with, f(x) = 1 − 6x + 2x3 + 3x2(1 − lnx)
12(1 − x)2 . 4



Pritam, IITG

We have studied three cases:

• Case-I: yχ >> yϕ and the mixing angle is tiny (sin θ ≤ 10−4).
• Case-II: Similar to previous case however, the mixing angle is large

(sin θ ∼ 0.7).
• Case-III: yχ ≃ yϕ and the mixing angle is fixed from neutrino mass

bound.
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νR

νR

χ N

νR

νR
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χ
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νR

χ

N1

N1

Li
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Scenario for Case-I and Case-II (yχ >> yϕ)

L ⊃ (yϕ)ijLiϕ̃Nj + (yχ)ijνRiNjχ + ...

  

After
decoupling
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Working formulas

• Dark matter: There are two regions separated by T Dec
νR

.
We defined a quantity ξ = TνR

Tγ
and the coupled Boltzmann equations

as follows [JCAP 10 (2021) 002]

dY

dx
= −1

2
βs

Hx
⟨σv⟩eff

[
Y 2 − Y 2

eq
]
, (4)

x
dξ

dx
+ (β − 1)ξ = 1

2
βx4s2

4αξ3HM4
0

⟨Eσv⟩eff
[
Y 2 − Y 2

eq
]
. (5)

The respective parameters are well defined.

• For Neff:
Neff = ρrad−ργ

ρνL

∆Neff =
∑

α
ρνα

R

ρνL

= 3
(

ρνR

ρνL

)∣∣
T>TDec

νL

= 3 ×
(

TνR

Tγ

)4∣∣
T>TDec

νL

=⇒ ∆Neff = 3 × ξ4. [since, ρ ∝ T 4] (6)
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Thermalization of νR

Thermalization profile for case-I is more prominent 8
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Results - Dark matter

Neutrino mass and dark matter co-relation in Case-I 9
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Results: ∆Neff

Cosmological signature of Case-I
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Results: ∆Neff

Cosmological signature of Case-III
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Results: Lepton Flavour Violation

LFV restricts larger yϕ
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Results: ∆Neff Direct Detection

Allowed parameter space from ∆Neff and direct detection
bounds
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Conclusion

• A minimal Dirac Scotogenic model was studied with a singlet scalar
(χ), a doublet scalar (ϕ) and three massless right handed neutrinos
(νR).

• The study was divided into three categories depending on Yukawa
couplings and the mixing angle, consistent with neutrino mass.

• In every case, we discuss and show the detection prospects of the
model while being consistent with the desired DM phenomenology
and neutrino mass constraints.

• While direct detection prospects remain low for such fermion singlet
DM due to radiative suppression of DM-nucleon scattering
cross-section, some part of the parameter space is already ruled out by
constraints from charged lepton flavour violation.
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Thank you slide is under construction

Hope you enjoyed the talk.
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The Model-II

After electroweak symmetry breaking, can be obtained as follows:

M2
h = 2λ1v2; (7)

M2
ϕ± = µ2

ϕ + λ4v2; (8)

M2
ϕI

= µ2
ϕ + (λ4 + λ7)v2; (9)

M2
χ,ϕR

=
(

µ2
χ + λ5v2 √

2µv√
2µv µ2

ϕ + (λ4 + λ7)v2

)
; (10)
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The contribution to the spin-independent
scattering cross-section for the dark
matter-nucleon scattering is given by

σSI =
(

mn

v

)2 µ2
DMng2

ψψh

πM4
h

f2
n (11)

where fn = 0.3 depends on the quark content
within a nucleon for each quark flavour,
µDMn = MDMmn

MDM+mn
.

The effective coupling between DM and Higgs can
be written as

gNNh = i

16π2 ×yχλ5v

MDM
×

[
1 +

(
M2
χ

M2
DM

− 1
)

ln
(

1 − M2
DM

M2
ϕ

)]
.

(12)

N1 N1νR

χ χ

h
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Backup slides
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Figure 1: Scattering processes associated with thermalisation of χ

with the SM bath. 18
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Neutrino cosmology

Image:

Planck 2018
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Backup slides-Thermalization in case-III
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Backup Slides- parameters in BE

We have defined the effective thermal averaged cross-section as

⟨Eσv⟩eff =
⟨Eσv⟩′

νRν̄R→DMDM(Y eq
DM)2 + ⟨Eσv⟩′

νRν̄R→χχ(Y eq
χ )2

(Y eq
DM + Y eq

χ )2 , (13)

where, ⟨Eσv⟩′
xx̄→yȳ is the thermal average of E × σvxx̄→yȳ normalized by

the product of equilibrium number densities of the final state particles
i.e., neqy neqȳ .

α = gi
7
8
π2

30 ; s(T ) = g∗(T ) 2π2T3

45 ; H(T ) =
√

8g∗(T )
π

T2

MPl
;

β(T ) = g
1/2
∗ (T )

√
gρ(T )

gs(T ) ;

g
1/2
∗ = gs√

gρ

(
1 + 1

3
T
gs

dgs
dT

)
.

The effective annihilation cross-section for the combined processes are given
by [Phys. Rev. D 43 (1991) 3191]

⟨σv⟩eff =
⟨σv⟩DMD̄M→νRν̄R

(Y eq
DM)2 + ⟨σv⟩χχ→XX̄,νRν̄R

(Y eq
χ )2

(Y eq
DM + Y eq

χ )2 . (14)

Back to slide 7 26
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Cases Parameters Chosen range
Dark matter mass MDM = [1, 250] GeV

All Singlet scalar mass Mχ = [1, 350]GeV
Doublet masses (For ϕ±, ϕ0) Mϕ = [1, 350] GeV

Mass separation (Mi − MDM) ∆M = [1, 100] GeV
Higgs portal coupling λ5 = [10−4, 10−1]

Case-I Yukawa coupling with χ yχ = 0.2 (fixed)
&Case-II Yukawa coupling with ϕ yϕ ≃ 10−6 (fixed)

Mixing angle (Case-I) sin θ ∼ 10−6

Mixing angle (Case-II) sin θ ∼ 10−2

1. Yukawa coupling with χ & ϕ yχ ∼ yϕ = 0.2 (fixed)
Case-III Mixing angle sin θ ∼ 10−5

2. Yukawa coupling with χ & ϕ yχ ∼ yϕ = 0.02 (fixed)
Mixing angle sin θ ∼ 10−4

Table 1: The choice of parameter ranges for all three cases in our
study.
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