Imprints of ΔN_{eff} in Dirac-Scotogenic framework

Invisibles'23 Workshop Göttingen University, Germany Based on arxiv: 2211.13168

Pritam Das

in collaboration with

Debasish Borah (IITG) & Dibyendu Nanda (KIAS)

August 28, 2023

Indian Institute of Technlogy Guwahati, Assam

Introduction

- We study a Dirac Scotogenic model. This allow us to connect
 - Neutrino mass generation at one loop level
 - A viable Dark matter candidate
- Dirac nature allows right-handed neutrinos (ν_R) to be very light.
- Thermalization of ν_R lead to additional contribution to dark radiation.
- The effective number of neutrino species is defined as:

$$N_{\rm eff} = \left(\frac{7}{8}\right) \left(\frac{11}{4}\right)^{4/3} \left[\frac{\rho_{\rm rad} - \rho_{\gamma}}{\rho_{\gamma}}\right]$$

- For instantaneous neutrino decoupling, $N_{\text{eff}} = 3$, else $N_{\text{eff}} = 3.046^{1}$
- We will be looking for the parameter $\Delta N_{\text{eff}} (\equiv N_{\text{eff}}^{\text{new}} 3.046)$
- Current CMB bound at 2σ CL: $N_{\text{eff}} = 2.99^{+0.34}_{-0.33}$

¹Nucl. Phys. B 729, pp. 221-234

Components of the model

We have three sets of VLFs ($N_{1,2,3}$), three $\nu_R s$, one doublet scalar (ϕ) and a singlet scalar (χ).

	L	Η	ν_R	N	ϕ	χ
SU(2)	2	2	1	1	2	1
$U(1)_Y$	$-\frac{1}{2}$	$\frac{1}{2}$	0	0	$\frac{1}{2}$	0
Z_3	0	0	ω	ω	ω	0
Z_2	+	+	+	-	-	-

$$-\mathcal{L}_{\text{Yukawa}} \supset (\underline{y_{\phi}})_{ij} \overline{L_{i}} \tilde{\phi} N_{j} + (\underline{y_{\chi}})_{ij} \overline{\nu_{R_{i}}} N_{j} \chi + (M_{N})_{ij} \overline{N_{i}} N_{j} + \text{h.c.} \quad (1)$$

The scalar potential of the model can be written as follows,

$$V = -\mu_{H}^{2}H^{\dagger}H + \mu_{\phi}^{2}\phi^{\dagger}\phi + \frac{1}{2}\mu_{\chi}^{2}\chi^{2} + \frac{1}{2}\lambda_{1}(H^{\dagger}H)^{2} + \frac{1}{2}\lambda_{2}(\phi^{\dagger}\phi)^{2} + \frac{1}{4!}\lambda_{3}\chi^{4} + \lambda_{4}(H^{\dagger}H)(\phi^{\dagger}\phi) + \frac{1}{2}\lambda_{5}(H^{\dagger}H)\chi^{2} + \frac{1}{2}\lambda_{6}(\phi^{\dagger}\phi)\chi^{2} + \lambda_{7}(H^{\dagger}\phi)(\phi^{\dagger}H) + \mu(\phi^{\dagger}H + H^{\dagger}\phi)\chi.$$
(2)

Mixing between ϕ_R and χ :

$$\begin{pmatrix} S_1\\ S_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \chi\\ \phi_R \end{pmatrix} \quad \text{where,} \quad \theta = \tan^{-1} \left[\frac{2\sqrt{2}\mu v}{\mu_{\phi}^2 - \mu_{\chi}^2 + (\lambda_4 - \lambda_5)v^2} \right].$$

Neutrino mass & LFV

The one-loop Dirac neutrino mass [Phys. Rev. D86(2012) 033007]:

$$(M_{\nu})_{\alpha\beta} = \frac{\sin 2\theta}{32\pi^2\sqrt{2}} \sum_{k=1}^{3} (\mathbf{y}_{\phi})_{\alpha k} (\mathbf{y}_{\chi}^*)_{\beta k} M_{N_k} \left(\frac{M_{S_1}^2}{M_{S_1}^2 - M_{N_k}^2} \ln \frac{M_{S_1}^2}{M_{N_k}^2} - \frac{M_{S_2}^2}{M_{S_2}^2 - M_{N_k}^2} \ln \frac{M_{S_2}^2}{M_{N_k}^2} \right).$$

The decay branching ratio for $\mu \to e\gamma$ is given by:

$$\begin{aligned} & \text{Br}(\mu \to e\gamma) &= \text{Br}(\mu \to e\nu_{\mu}\bar{\nu_{e}}) \times \frac{3\alpha_{\text{EM}}}{16\pi G_{F}^{2}} \text{Abs} \Big[\sum_{i} \frac{(y_{\phi})_{\mu i}(y_{\phi}^{*})_{ei}}{M_{\phi^{\pm}}^{2}} f\Big(\frac{M_{N_{i}}^{2}}{M_{\phi^{\pm}}^{2}}\Big) \Big]_{\text{Pritam, ITC}}^{2} \\ & \text{with, } f(x) &= \frac{1 - 6x + 2x^{3} + 3x^{2}(1 - \ln x)}{12(1 - x)^{2}}. \end{aligned}$$

We have studied three cases:

- Case-I: $y_{\chi} >> y_{\phi}$ and the mixing angle is tiny $(\sin \theta \le 10^{-4})$.
- Case-II: Similar to previous case however, the mixing angle is large $(\sin \theta \sim 0.7)$.
- Case-III: $y_{\chi} \simeq y_{\phi}$ and the mixing angle is fixed from neutrino mass bound.

Scenario for Case-I and Case-II $(y_{\chi} >> y_{\phi})$

 $\mathcal{L} \supset (y_{\phi})_{ij}\overline{L_{i}}\tilde{\phi}N_{j} + (y_{\chi})_{ij}\overline{\nu_{R_{i}}}N_{j}\chi + ...$

Working formulas

• Dark matter: There are two regions separated by $T_{\nu_R}^{\text{Dec}}$. We defined a quantity $\xi = \frac{T_{\nu_R}}{T_{\gamma}}$ and the coupled Boltzmann equations as follows [JCAP 10 (2021) 002]

$$\frac{dY}{dx} = -\frac{1}{2}\frac{\beta s}{\mathbf{H}x}\langle \sigma v \rangle_{\text{eff}} \left[Y^2 - Y_{\text{eq}}^2 \right], \tag{4}$$

$$x\frac{d\xi}{dx} + (\beta - 1)\xi = \frac{1}{2}\frac{\beta x^4 s^2}{4\alpha\xi^3 \mathbf{H}M_0^4} \langle E\sigma v \rangle_{\text{eff}} \left[Y^2 - Y_{\text{eq}}^2\right].$$
(5)

The respective parameters are well defined.

• For N_{eff} :

$$N_{\text{eff}} = \frac{\rho_{\text{rad}} - \rho_{\gamma}}{\rho_{\nu_L}}$$
$$\Delta N_{\text{eff}} = \frac{\sum_{\alpha} \rho_{\nu_R^{\alpha}}}{\rho_{\nu_L}} = 3 \left(\frac{\rho_{\nu_R}}{\rho_{\nu_L}}\right) \Big|_{T > T_{\nu_L}^{\text{Dec}}} = 3 \times \left(\frac{T_{\nu_R}}{T_{\gamma}}\right)^4 \Big|_{T > T_{\nu_L}^{\text{Dec}}}$$
$$\implies \Delta N_{\text{eff}} = 3 \times \xi^4. \qquad [\text{since,} \quad \rho \propto T^4] \qquad (6)$$

Thermalization of ν_R

Pritam, IITG

Thermalization profile for ${\bf case-I}$ is more prominent

8

Results - Dark matter

Pritam, IITG

9

Neutrino mass and dark matter co-relation in Case-I

Cosmological signature of Case-I

Cosmological signature of Case-III

Results: Lepton Flavour Violation

LFV restricts larger y_{ϕ}

Results: ΔN_{eff} **Direct Detection**

Allowed parameter space from $\Delta N_{\rm eff}$ and direct detection bounds

Conclusion

- A minimal Dirac Scotogenic model was studied with a singlet scalar (χ) , a doublet scalar (ϕ) and three massless right handed neutrinos (ν_R) .
- The study was divided into three categories depending on Yukawa couplings and the mixing angle, consistent with neutrino mass.
- In every case, we discuss and show the detection prospects of the model while being consistent with the desired DM phenomenology and neutrino mass constraints.
- While direct detection prospects remain low for such fermion singlet DM due to radiative suppression of DM-nucleon scattering cross-section, some part of the parameter space is already ruled out by constraints from charged lepton flavour violation.

Thank you slide is under construction Hope you enjoyed the talk.

After electroweak symmetry breaking, can be obtained as follows:

$$M_h^2 = 2\lambda_1 v^2; (7)$$

$$M_{\phi^{\pm}}^{2} = \mu_{\phi}^{2} + \lambda_{4} v^{2}; \qquad (8)$$

$$M_{\phi_I}^2 = \mu_{\phi}^2 + (\lambda_4 + \lambda_7)v^2;$$
(9)

$$M_{\chi,\phi_R}^2 = \begin{pmatrix} \mu_{\chi}^2 + \lambda_5 v^2 & \sqrt{2}\mu v \\ \sqrt{2}\mu v & \mu_{\phi}^2 + (\lambda_4 + \lambda_7)v^2 \end{pmatrix};$$
 (10)

The contribution to the spin-independent scattering cross-section for the dark matter-nucleon scattering is given by

$$\sigma_{\rm SI} = \left(\frac{m_n}{v}\right)^2 \frac{\mu_{DMn}^2 g_{\bar{\psi}\psi h}^2}{\pi M_h^4} f_n^2 \tag{11}$$

where $f_n = 0.3$ depends on the quark content within a nucleon for each quark flavour, $\mu_{\text{DMn}} = \frac{M_{\text{DM}}m_n}{M_{\text{DM}}+m_n}$. The effective coupling between DM and Higgs can be written as

$$g_{\overline{N}Nh} = \frac{i}{16\pi^2} \times \frac{y_{\chi} \lambda_5 v}{M_{\rm DM}} \times \left[1 + \left(\frac{M_{\chi}^2}{M_{\rm DM}^2} - 1 \right) \ln \left(1 - \frac{M_{\rm DM}^2}{M_{\phi}^2} \right) \right].$$
(12)

Backup slides

Pritam, IITG

Figure 1: Scattering processes associated with thermalisation of χ with the SM bath.

18

Neutrino cosmology

Image: Pritam, IITG

Planck 2018

Back to Slide 8

Back to Slide 8

Back to Slide 8

Back to Slide 8

Backup slides-Thermalization in case-III

Pritam, IITG

Backup Slides- parameters in BE

We have defined the effective thermal averaged cross-section as

$$\langle E\sigma v \rangle_{\text{eff}} = \frac{\langle E\sigma v \rangle_{\nu_R \bar{\nu_R} \to \text{DM}\overline{\text{DM}}}' (Y_{\text{DM}}^{\text{eq}})^2 + \langle E\sigma v \rangle_{\nu_R \bar{\nu_R} \to \chi\chi}' (Y_{\chi}^{\text{eq}})^2}{(Y_{\text{DM}}^{\text{eq}} + Y_{\chi}^{\text{eq}})^2}, \qquad (13)$$

where, $\langle E\sigma v \rangle'_{x\bar{x} \to y\bar{y}}$ is the thermal average of $E \times \sigma v_{x\bar{x} \to y\bar{y}}$ normalized by the product of equilibrium number densities of the final state particles *i.e.*, $n_y^{eq} n_{\bar{y}}^{eq}$.

$$\begin{aligned} \alpha &= g_i \frac{7}{8} \frac{\pi^2}{30}; \ s(T) = g_*(T) \frac{2\pi^2 T^3}{45}; \ \mathbf{H}(T) = \sqrt{\frac{8g_*(T)}{\pi}} \frac{T^2}{M_{\rm Pl}}; \\ \beta(T) &= \frac{g_*^{1/2}(T)\sqrt{g_\rho(T)}}{g_s(T)}; \\ g_*^{1/2} &= \frac{g_s}{\sqrt{g_\rho}} \left(1 + \frac{1}{3} \frac{T}{g_s} \frac{dg_s}{dT} \right). \end{aligned}$$

The effective annihilation cross-section for the combined processes are given by [*Phys. Rev. D 43 (1991) 3191*]

$$\langle \sigma v \rangle_{\text{eff}} = \frac{\langle \sigma v \rangle_{\text{DMD}\bar{\text{M}} \to \nu_{\text{R}} \bar{\nu_{\text{R}}}} (Y_{\text{DM}}^{\text{eq}})^2 + \langle \sigma v \rangle_{\chi\chi \to X\bar{X}, \nu_{R} \bar{\nu_{R}}} (Y_{\chi}^{\text{eq}})^2}{(Y_{\text{DM}}^{\text{eq}} + Y_{\chi}^{\text{eq}})^2}.$$
(14)
Pritam, IITO

Back to slide 7

Cases	Parameters	Chosen range		
	Dark matter mass	$M_{\rm DM} = [1, 250] {\rm GeV}$		
All	Singlet scalar mass	$M_{\chi} = [1, 350] \text{GeV}$		
	Doublet masses (For ϕ^{\pm}, ϕ^{0})	$M_{\phi} = [1, 350] \text{ GeV}$		
	Mass separation $(M_i - M_{\rm DM})$	$\Delta M = [1, 100] \text{ GeV}$		
	Higgs portal coupling	$\lambda_5 = [10^{-4}, 10^{-1}]$		
Case-I	Yukawa coupling with χ	$y_{\chi} = 0.2$ (fixed)		
&Case-II	Yukawa coupling with ϕ	$y_{\phi} \simeq 10^{-6} \text{ (fixed)}$		
	Mixing angle (Case-I)	$\sin\theta \sim 10^{-6}$		
	Mixing angle (Case-II)	$\sin\theta \sim 10^{-2}$		
	1. Yukawa coupling with $\chi \& \phi$	$y_{\chi} \sim y_{\phi} = 0.2$ (fixed)		
Case-III	Mixing angle	$\sin\theta \sim 10^{-5}$		
	2. Yukawa coupling with $\chi \& \phi$	$y_{\chi} \sim y_{\phi} = 0.02$ (fixed)		
	Mixing angle	$\sin\theta \sim 10^{-4}$		

 Table 1: The choice of parameter ranges for all three cases in our study.