Populating a dark sector from neutrinos after BBN, H₀ & S8

Martin Schmaltz 8/30/2023

Daniel Aloni Harvard postdoc

Melissa Joseph Utah postdoc

NYU - grad student

Cara Giovanetti Eashwar Sivarajan Boston - grad student

Asher Berlin Fermilab staff

Neal Weiner NYU faculty

Outline

- the ΛCDM "desert"
- populating a dark sector from the neutrinos
- applications:
 Neff with a step, H₀ and S8,
 neutrino cooling and BBN
- summary

The ACDM desert

empty?

What's in the eV-MeV desert?

What's in the eV-MeV desert?

data!

data in the eV-MeV desert

CMB

data in the eV-MeV desert

Large Scale Structure

data in the eV-MeV desert?

BBN

This is the era of the experimental exploration of the desert

today: WMAP, SDSS, Planck, BOSS, ACT, SPT,...

This is the era of the experimental exploration of the desert

today: WMAP, SDSS, Planck, BOSS, ACT, SPT,...

future: Rubin, EUCLID, Roman, Simon's O, CMB-S4, ...

What else is in the eV-MeV desert?

data - anomalies

What else is in the eV-MeV desert?

data - anomalies

H₀ Hubble Tension

S8 LSS Tension

D/H Deuterium abundance

 The desert provides a great opportunity to probe and discover new physics thresholds between eV-MeV scales

What new physics might we expect to see?

The universe is radiation dominated for T > eV

Most natural expectation:

a dark sector with radiation

Want the extra radiation to have observable consequences (e.g. for H_0) but not ruled out -> $N_{eff} \sim 1$.

How can this be natural?

Idea: populate the dark sector by thermalizing with the neutrinos after neutrino decoupling

A.Berlin, N.Blinov 1807.04282 D.Aloni, M.Joseph, M.Schmaltz, N.Weiner 2301.10792

ACDM cosmological history

Alternative cosmological history

Alternative cosmological history

A very simple model

(Aloni, Joseph, Schmaltz, Weiner 2301.10792)

$$2 - m_{\psi} + m_{mix} v + \lambda \phi + \lambda \phi$$

Thermalizing through the neutrino portal

(c.f. Dodelson-Widrow with secret interactions B.Dasgupta, J.Kopp)

Thermalizing through the neutrino portal

Equilibration is generic and occurs at $\sqrt{\frac{\theta_0^2 M_{pe}}{m_{\psi}}}$

Aloni, Joseph, Schmaltz, Weiner 2301.10792

Alternative cosmological history

Recap:

· Con generically thermalize a dark radiation sector below MeV via newtrino portal

· massive particles in dark sector annihible and produce a 'step' in Neff

Applications - Signatures

· a sep in Neff reduces the Hubble

tension Ho

Aloni,Berlin,Joseph,Schmaltz,Weiner 2111.00014

• dark Matter-dark radiation interaction with a step improves 58

Joseph, Aloni, Schmaltz, Sivarajan, Weiner 2207.03500

· a skep during BBN ~ 100 KeV modifies D/H

Giovanetti, Schmaltz, Weiner in progress

SUMMAN

ACDM desert

no thresholds

Desert populated through the V-portal

This is the era of the experimental exploration of the desert

today: WMAP, SDSS, Planck, BOSS, ACT, SPT,...

future: Rubin, EUCLID, Roman, Simon's O, CMB-S4, ...

Back up!

aside on BBN

- Two public codes: PRIMAT and PArthENoPE
- different input values for d+d->n+3He and d+d -> p+3H
- No clear reason to prefer one or the other right now
- New data needed to clarify

Steps in BBN

If a dark sector equilibrates and goes through a step before
Deuterium freeze out but after neutrino decoupling, it will
affect D and He differently (Berlin, Blinov + Li)

PArthENoPE

Giovanetti, Schmaltz, Weiner in progress