Appearance of Majorana phase in two flavor neutrino oscillations with neutrino decay

Akhila Kumar Pradhan Indian Institute of Technology Bombay, India

Based on : *Phys.Rev.D* 107 (2023) 1, 013002 In collaboration with S. Uma Sankar, K. Dixit

Invisibles23 Workshop, Göttingen, Germany 31st August 2023

ting Invisibles: Dark sectors, Dark matter and Neutrinos

Asymmetry Essential Asymmetries of Nature

Motivation

Oscillation probabilities depend on Majorana phases for neutrino decoherence, with an off-diagonal term in decoherence matrix.

> F. Benatti et al. Phys.Rev.D 64(2001),085015 A. capolupo et al. Phys. Lett. B 7929(2019) 298-303

Towards distinguishing Dirac from Majorana with Gravitational waves.

Stephen S. King et al. 2306.05389

Our Proposal

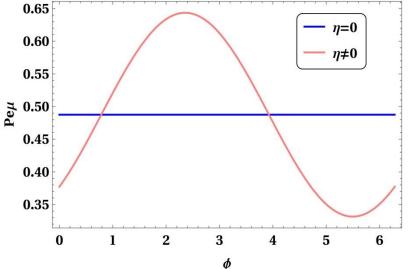
The decay-Hamiltonian $\mathcal{H} = M - i\Gamma/2$,

$$\mathcal{M} = \begin{pmatrix} a_1 & 0\\ 0 & a_2 \end{pmatrix}, \quad \Gamma/2 = \begin{pmatrix} b_1 & \frac{1}{2}\eta e^{i\xi}\\ \frac{1}{2}\eta e^{-i\xi} & b_2 \end{pmatrix}$$
$$a_1 = m_1^2/2E \text{ and } a_2 = m_2^2/2E$$

The time evolution operator for neutrinos in the mass eigenbasis is $\mathcal{U} = e^{-i\mathcal{H}t}$.

$$n_{\mu} = Tr[(-i\mathcal{H}t).\sigma_{\mu}]/2 \quad \mathcal{U} = e^{n_0} \left[\cosh n \ \sigma_0 + \frac{\vec{n}.\vec{\sigma}}{n} \sinh n\right]$$

• In flavor basis


$$\mathcal{U}_f = U\mathcal{U}U^{-1} \qquad P_{\alpha\beta} = |(\mathcal{U}_f)_{\alpha\beta}|^2$$

Nielsen, M., Chuang, I. (2010). Quantum Computation and Quantum Information

Outcomes

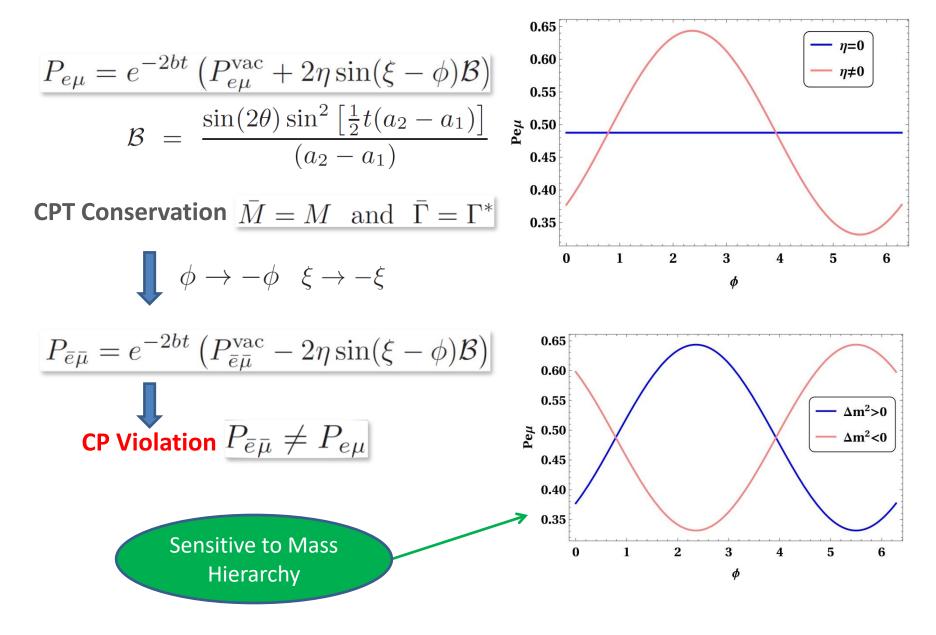
In the limit $b_1 = b = b_2 \text{ and } \eta \ll |a_2 - a_1|$ $P_{e\mu} = e^{-2bt} \left(P_{e\mu}^{\text{vac}} + 2\eta \sin(\xi - \phi) \mathcal{B} \right)$ $\mathcal{B} = \frac{\sin(2\theta) \sin^2 \left[\frac{1}{2} t(a_2 - a_1) \right]}{(a_2 - a_1)}$

Outcomes

In the limit
$$b_1 = b = b_2$$
 and $\eta \ll |a_2 - a_1|$

$$\frac{P_{e\mu} = e^{-2bt} \left(P_{e\mu}^{vac} + 2\eta \sin(\xi - \phi)\mathcal{B}\right)}{B} = \frac{\sin(2\theta)\sin^2\left[\frac{1}{2}t(a_2 - a_1)\right]}{(a_2 - a_1)} \xrightarrow{\mathbf{a}} 0.50$$

$$\mathbf{CPT \ Conservation} \ \underline{M} = M \ \text{and} \ \overline{\Gamma} = \Gamma^*$$


$$\phi \rightarrow -\phi \quad \xi \rightarrow -\xi$$

$$P_{\overline{e}\overline{\mu}} = e^{-2bt} \left(P_{\overline{e}\overline{\mu}}^{vac} - 2\eta \sin(\xi - \phi)\mathcal{B}\right)$$

$$\mathbf{CP \ Violation} \ \overline{P_{\overline{e}\overline{\mu}}} \neq P_{e\mu}$$

Outcomes

Do we ever observe this effect ??

• Supernova 1987A, $\tau_{\nu} \geq 5.7 \times 10^5 \ {
m s} \ (m_{\nu}/{
m eV})$ $\Gamma_{\nu} \equiv b \approx 10^{-21}$ for m_{ν} =1eV.

J.A.Frieman et al. Phys.Lett.B 200(1988) 115-121

The new effects considered in this work are of order

$$\frac{\eta/(a_2-a_1)=\eta E/\Delta m^2}{\text{Effects are of order 10\% for }\Delta m^2\approx 10^{-4}\,\mathrm{eV^2}}$$
 if **E=10^7 GeV**

Ultra high energy neutrinos from astrophysical sources provide a platform to study the effect.

Thank you for your attention

Appearance of Majorana phase in two flavour neutrino oscillations with neutrino decay			HIDDe D
Akhila Kumar Pradhan', Khushboo Dixiti', S. Uma Sankari Topoutnean of Physics. India Umbate of Pothologic (Browky, Pavak Munhai 400%) Iodia Centre for Astor-Particle Physics. ICAPP) and Department of Physics. University of Johannesburg			
Introduction			
The fundamental nature of most intriguing particle neutrinos, whether they are Dirac or Majorana fermions, is still an open question. To probe Majorana nature, many esperiments looking for sigmatic strain of neutrinoless n a strain of source wikipedia Source: wikipedia	• The matrix F needs to be positive semi-definite. i.e., non negative $\Longrightarrow b_{1}b_{2} \ge 0$ and $\eta^{2} \ge 4b_{2}b_{3}$. • The mass eigenstates are not decay eigenstates $(\eta \neq 0)$ and evolution equation: $i\frac{d}{dt}\nu_{n}(t) = \left[\frac{(a_{1}+a_{2})}{2}v_{1} - \frac{(a_{2}-a_{3})}{2}O\sigma_{1}O^{T} - \frac{1}{2}(b_{1}+b_{2})\sigma_{0} - \frac{f_{2}}{2}OF_{1}\delta(t^{T})U_{\mu}^{h}O^{T}\right]\nu_{n}(t)$ where $f^{T} = [p\cos\xi, -\eta\sin(t, -(b_{2}-b_{3})]$. Since σ_{μ} and σ_{μ} don to commute with $U_{\mu h}$ matrix, the Majoran phase ϕ remains in the evolution equation.	 The terms with B, prese probabilities, have opported and the probabilities, have opported and the probability is sensitive of the probability is sensitive and the probability is sensitive of the probability o	site signs for the two and $a_2 < a_1(m_2 < m$ ility (Not the survival to mass hierarchy.
Objective of our work	Evolution Operator and Probabilities	(a) due to the Majorana CP-violation in mass	
Well established fact: Vacuum oscillation probabilities do not depend on the Majorana phases. The oscillation probabilities depend on Majorana phases for neutrino decoherence, with an of diagonal term and also these probabilities are <i>QP</i> -violation? Flemati et <i>QPN</i> , <i>Rev 0.6468015</i> The question we ask: "what are the other possibilities under which the Majorana phases appear in neutrino oscillation probabilities and lead to <i>CP</i> -violation?"	• Time evolution operator in the mass eigenbasis is $U = e^{-Rt}$, a_n be expanded in the basis spanned by a_n and Pauli matrices. $n_\mu \equiv (n_0, \vec{n}), n_\mu = Tr((-iHt) \sigma_\mu)/2$. $U = e^n \left[\cosh n \sigma_0 + \frac{d}{n} \sinh n \right],$ $n = \sqrt{n_e^2 + n_e^2 + n_e^2}$ • Oscillation probabilities can be obtained as $P_{\alpha_0} = U(T_{\alpha_0}) ^2 M_f = UUU^{-1}$ • In the limit $h_n = h = b_n$ and $\eta \ll a_2 - a_1 $,	(b) due to the phase ξ o <i>CP</i> -violation in deca; φ ≠ 0, In this case, we due to both mass and the to both mass and in two special cases, wh ξ = 0, there is no <i>CP</i> -vio such a situation, the flas probabilities are insensit elements of <i>I</i> but the flap probabilities do depend	y. ifly is $\eta \neq 0, \xi \neq 0$ and if $\phi \in P$ -violation d decay provided $\phi \neq$ ien $\phi = \xi$ or when $\phi =$ iolation even if $\eta \neq 0$. your conversion tive to off-diagonal avour survival
Vacuum neutrino oscillations	$P_{ee} = e^{-2bt} \left(P_{ee}^{vac} - \eta \cos(\xi - \phi)A\right)$ $P_{\mu\mu} = e^{-2bt} \left(P_{\mu\mu}^{vac} + \eta \cos(\xi - \phi)A\right)$	Observation	nal effects
• Neutrino mass eigenstates ν_i mix via a unitary matrix with flavour states ν_a as $\nu_a = U \nu_i = O U_{a} \nu_i$ where, $\nu_a = (\nu_i - \nu_a)^T$, $\nu_i = (\nu_1 - \nu_2)^T$ and $O = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$ $U_{\mu h} = \begin{pmatrix} 1 & 0 \\ \alpha_i e^{i\theta} \end{pmatrix}$ The traditional diagonal Hamiltonian in	$\begin{split} & \mathcal{P}_{g_{g_{g_{g_{g_{g_{g_{g_{g_{g_{g_{g_{g_$	 Supernova 1987A, τ_ν ≥ → Γ_ν ≡ b ≈ 10⁻²¹ eV JAFreman et al. Phy of order η/(a₂ - a₁) = η ₽₁ of order 10% for Δm² ≈ GeV. Ultra high energy neutr sources provide a platfi 	for $m_{\nu} \sim 1 \text{ eV}$ s.Lett.B 200(1988) ered in this work are (Δm^2 . These effects a $\approx 10^{-4} \text{ eV}^2$ if $E \approx 10^7$ inos from astrophysic
mass-basis that governs the time evolution of neutrino mass eigenstates	CP-violation		
$ \begin{split} \mathcal{H} &= \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} = \frac{(a_1 + a_2)}{2} \sigma_{a_1} - \frac{(a_2 - a_1)}{2} \sigma_{a_2} \\ \text{where, } a_1 &= m_1^2/2E \text{ and } a_2 = m_2^2/2E \\ \bullet \text{ In flavour basis, evolution Hamiltonian becomes} \\ H_a &= \begin{bmatrix} (a_1 + a_2)}{2} \sigma_{a_1} - \frac{(a_2 - a_1)}{2} OU_\mu \sigma_a U_\mu^\dagger O^T \end{bmatrix} \\ \bullet \text{ since, } U_\mu \text{ and } \sigma_a \text{ are diagonal matrices they commute and σ_a term simplifies to σ_a. } \end{split} $	• We assume CPT -conservation which implies $\hat{M} = M$ and $\hat{\Gamma} = \Gamma^*$. • For antineutrino probabilities, substitute $\phi \rightarrow -\phi$ and $\xi \rightarrow -\xi$. $P_{ijk} \neq P_{i\mu} \Rightarrow $ CP-violation $P_{i\mu} \neq P_{\mu e} \Rightarrow$ T-violation	Conclusions • We have shown that, in addition to the off-diagonal dissipator matrix, the off-diagonal dissipator matrix, the off-diagonal dissipator matrix, the off-diagonal dissipator di	
and the phase ϕ disappears from the evolution equation.	Results and Discussions	is also sensitive to the r	neutrino mass orderir
 Also Majorana phases do not appear for the matter effects (pure SM interactions or nonstandard interactions). 	 When decay eigenstates are not aligned with the mass eigenstates (off-diagonal term in Γ), probability expressions are sensitive to Majorana phase φ. 	 We have given a short of of parameters for which in this work are likely to The extension of this we oscillations is straightfor 	the effects described be observable. ork for three flavour
Oscillations with decay-Hamiltonian		Acknowled	
• The general decay-Hamiltonian $\begin{split} \mathcal{H} &= M - i\Gamma/2, \\ M &= \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}, \Gamma/2 = \begin{pmatrix} b_1 & \frac{1}{2}\eta e^{i\xi} \\ \frac{1}{2}\eta e^{-i\xi} & b_2 \end{pmatrix} \end{split}$		The authors thanks the Government of India, for fi Institute of Eminence fund	Ministry of Education
System of two particles which can oscillate into each other, these matrices can have off-diagonal terms, as in the case of neutral meson system.	 Figure 1. P_{pe} as a function of φ. Presence of η violates the equalities P_{pµ} = P_{ee} and P_{pe} = P_{ep} that we see in the case of two flavour vacuum oscillations. 	A.K. Pradhan et al. Phys.	
		Aux Fraunance un Phys.	

For any discussions come to my

poster #7