
How to Reconstruct the Axion Velocity from CASPEr

Cedric Quint Institute for Theoretical Physics Heidelberg University

Invisibles'23 Workshop

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

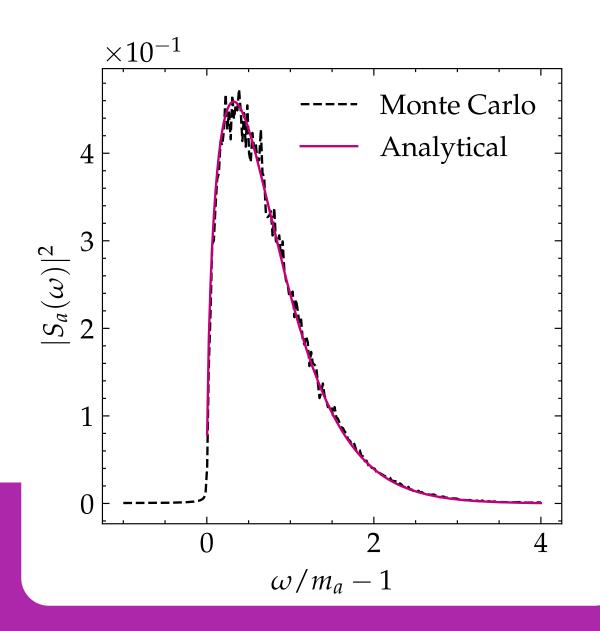
Coupling frequency ω_c

Larmor frequency

 $\omega_L \sim B$

But what about velocities?

$$m_a \longrightarrow m_a(1+v^2/2)$$


Broadening of the Axion PSD

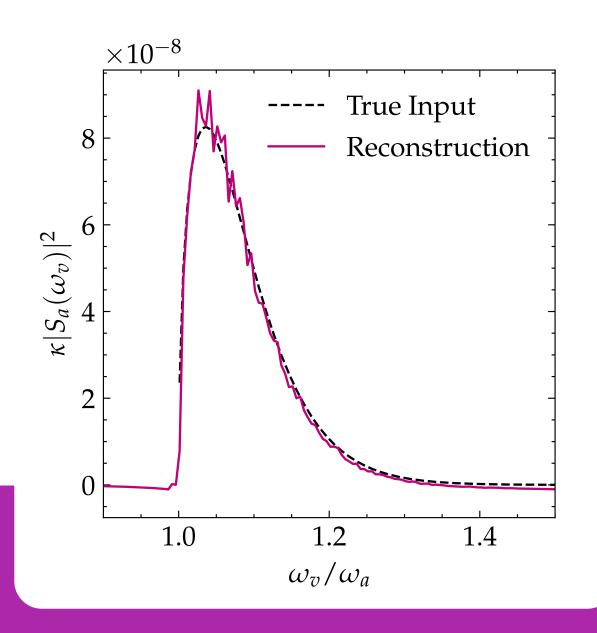
$$a(t) \sim \sum_i a_i(t, v_i)$$

Velocities distributed via SHM

 $f(\boldsymbol{v}) \sim e^{-\alpha \boldsymbol{v}^2}$

Can we measure this with CASPEr?

Dynamics governed by Bloch equations


 $\dot{\boldsymbol{M}}(t) = \boldsymbol{A}(t) \cdot \boldsymbol{M}(t)$

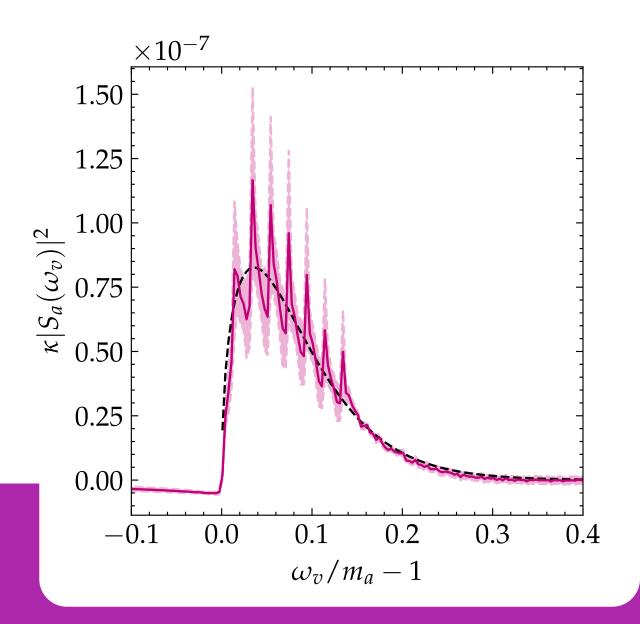
Linearize by using ω_c/m_a

$$\boldsymbol{M}(t) \approx (1 + \int_0^t \boldsymbol{A}(t') \, dt') \cdot \boldsymbol{M}_0$$

Result is a linear inverse Problem

$$|S_{meas}(\omega_m)|^2 = K_{m,n} \cdot \kappa |S_a(\omega_n)|^2$$

Dynamics governed by Bloch equations

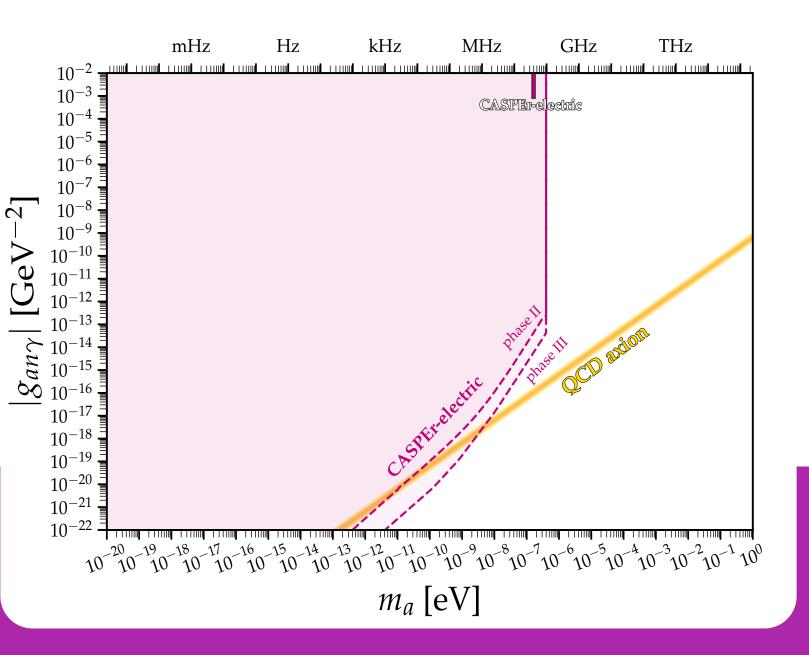

 $\dot{\boldsymbol{M}}(t) = \boldsymbol{A}(t) \cdot \boldsymbol{M}(t)$

Linearize by using ω_c/m_a

$$\boldsymbol{M}(t) \approx (1 + \int_0^t \boldsymbol{A}(t') \, dt') \cdot \boldsymbol{M}_0$$

Result is a linear inverse Problem

$$|S_{meas}(\omega_m)|^2 = K_{m,n} \cdot \kappa |S_a(\omega_n)|^2$$


Now to reality...

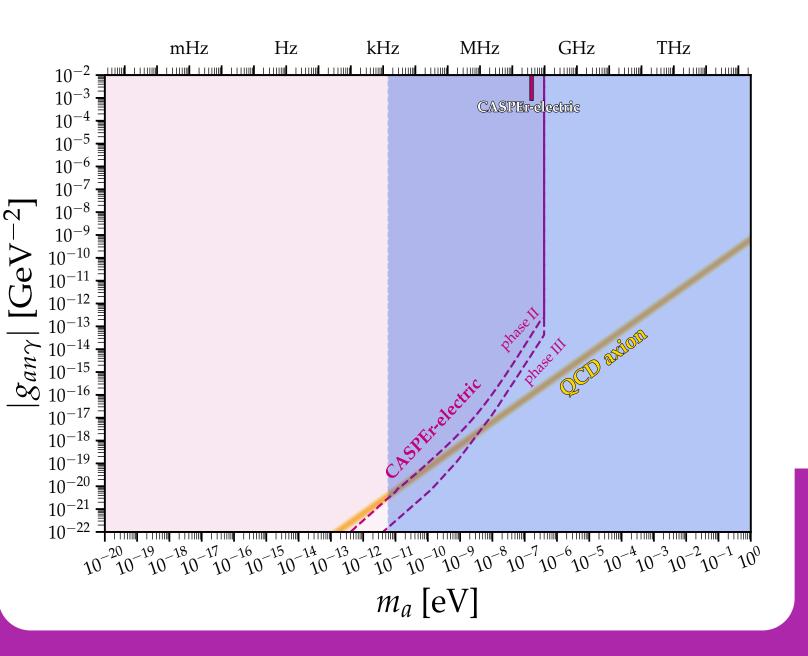
- For which masses?
- What about noise?

$$\tau_a \sim m_a^{-1} \ll T_{meas}$$

1

Analysis w.r.t noise will yield g_d sensitvity

Now to reality...


- For which masses?
- What about noise?

$$\tau_a \sim m_a^{-1} \ll T_{meas}$$

 $\sim \Pi$

__1

Analysis w.r.t noise will yield g_d sensitvity

The Takeaway:

One can measure the axion DM velocity with CASPEr

(In principle)

TODO: Include experimental noise

Ask me about oscillations

Motivation	The Stochastic Axion & Objectives
Axion DM originates from solution to strong CP problem	• Investigating the axion for $T >> \tau_a$ resolves its
(QCD) Axion DM naturally couples to neutron electric displayment (EDM)	 velocity spectrum ⇒ can we measure it with CASPEr? Velocity spectrum can be modeled using the
dipole moment (EDM) Axion presumed to oscillate coherently $a(t) \sim \cos(m_a t)$	standard halo model
\Rightarrow Investigate coupling using NMR techniques	Monte Carlo Monte Carlo Andrial
$H_{\text{int}} = 2g_d a(t) \boldsymbol{E} \cdot \boldsymbol{S}$ $a(t) = a_0 \cos(m_a t)$ $\boldsymbol{E} = E \boldsymbol{e}_x$	$a(t) = \sum_{i=1}^{N_a} a_0 \cos(\omega_i t + \phi_i) \qquad 4$
$\boldsymbol{E} = E \boldsymbol{e}_x$	$\omega_i = m_a(1 + v_i^2/2)$ $(a) = \frac{\omega_i}{3} = \frac{1}{2}$
	Analytical:
 The goal is measuring an oscillating neutron EDM This is done using NMR techniques ⇒ we want to induce 	- Fixed velocity interval
resonant enhancement of the axion's oscillation	- Occupation no. $\sqrt{f(v_i)}\Delta v$ 0 2 4 ω/m_a-1
• Done in the cosmic axion spin precession experiment (CASPEr)	Results
	(1) Linear Inverse Problem
Resonance & Scales	 Linearized time evolution leads to a linear inverse problem for the axion velocity spectrum
Introduce magnetic field $\pmb{B}=B\pmb{e}_z\Rightarrow$ Larmor freq. $\omega_L=\gamma_n B$	$ S_{\text{meas}}(\omega_n) ^2 = K_{n,m} \cdot \kappa S_a(\omega_m) ^2$
Amplitude of the axion induced oscillation: $\omega_c = g_d E a_0 \ll 1$	to memory with the wine of the metodation of the
Matching ω_L to $m_a \Rightarrow$ Resonance	2 Off-Resonance
Nuclear Magnetic Resonance (NMR)	Good agreement with the
oscillation with ω_c transverse oscillation with m_a	• Reconstructed via simple $3 4$
$ \land \qquad \bigotimes $	SVD 50
Turning on B-field	0
at resonance	1.0 1.2 1.4 ω_v/ω_e
	(3) On-Resonance
Axion freq. $m_a \gtrsim 10^{-20} \mathrm{eV}$	Peaked deviations at 125 Larmor frequencies 100
Coupling freq. $\omega_c \lesssim 10^{-49} [m_a]$ Axion coherence time $\tau_a \sim 10^6 m^{-1}$	Position of error is
Takin concrete time $\tau_a \rightarrow \tau_b m_a$	given by experimental input $\frac{2}{\kappa}_{0.50}$ \Rightarrow average over multiple runs
Linearized Time Evolution	Enough statistics give
Dynamics of the Magnetization governed by Bloch equations	good agreement $-0.1 0.0 0.1 0.2 0.3 0.4 \\ \omega_{\nu}/m_s - 1$
	Conclusion
$\dot{oldsymbol{M}}(t) = oldsymbol{A}(t) \cdot oldsymbol{M}(t)$	We can reconstruct the velocity spectrum! (without noise)
Hierarchy of scales & smallness of coupling frequency	References
⇒ linearized time evolution (in rotating frame!)	 J. Jaeckel, V. Montoya and C. Quint, A Quantum Perspective on Oscillation Frequencies in Axion Dark Matter Experiments, 2023, arXiv: 2304.02523 A. V. Gramolin et al., Spectral Signatures of Axionlike Dark Matter, 2022,
$\boldsymbol{M}(t) \approx (1 + \int_0^T \boldsymbol{A}(\tau) \mathrm{d}\tau) \cdot M_0 \boldsymbol{e}_z$	PhysRevD 105 [3] A. Garcon et al., Constraints on Bosonic Dark Matter from Ultralow-Field
	Nuclear Magnetic Resonance, 2019, Science Advances 5