

Dark Matter Generation Mechanisms of the Model CP In The Dark

Invisibles23 Johann Plotnikov

DEPARTMENT OF PHYSICS, INSTITUTE OF THEORETICAL PHYSICS

www.kit.edu

《曰》 《圖》 《圖》 《圖》

The Potential of CP in the Dark

[D. Azevedo et al. 2018]

- Extension of the scalar sector by a complex scalar doublet Φ₂ and a real scalar singlet Φ_S
- Impose a \mathbb{Z}_2 symmetry of the form

$$\Phi_1
ightarrow \Phi_1$$
 , $\Phi_2
ightarrow -\Phi_2$, $\Phi_S
ightarrow -\Phi_S$

Most general scalar potential

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} + \frac{1}{2} m_{S}^{2} \Phi_{S}^{2} + (A \Phi_{1}^{\dagger} \Phi_{2} \Phi_{S} + h.c.)$$

+ $\frac{1}{2} \lambda_{1} |\Phi_{1}|^{4} + \frac{1}{2} \lambda_{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} |\Phi_{1}^{\dagger} \Phi_{2}|^{2}$
+ $\frac{1}{2} \lambda_{5} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + h.c. \right] + \frac{1}{4} \lambda_{6} \Phi_{S}^{4} + \frac{1}{2} \lambda_{7} |\Phi_{1}|^{2} \Phi_{S}^{2}$
+ $\frac{1}{2} \lambda_{8} |\Phi_{2}|^{2} \Phi_{S}^{2}$

CP in the Dark Model ●○ Freeze-In in CP in the Dark

Results

Johann Plotnikov - DM Generation Mechanisms of the model CP in the Dark

The Potential of CP in the Dark

[D. Azevedo et al. 2018]

- Extension of the scalar sector by a complex scalar doublet Φ₂ and a real scalar singlet Φ_S
- Impose a \mathbb{Z}_2 symmetry of the form

$$\Phi_1 \rightarrow \Phi_1 \ , \ \Phi_2 \rightarrow -\Phi_2 \ , \ \Phi_{\mathcal{S}} \rightarrow -\Phi_{\mathcal{S}}$$

Most general scalar potential

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} + \frac{1}{2} m_{S}^{2} \Phi_{S}^{2} + (A \Phi_{1}^{\dagger} \Phi_{2} \Phi_{S} + h.c.)$$

+ $\frac{1}{2} \lambda_{1} |\Phi_{1}|^{4} + \frac{1}{2} \lambda_{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} |\Phi_{1}^{\dagger} \Phi_{2}|^{2}$
+ $\frac{1}{2} \lambda_{5} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + h.c. \right] + \frac{1}{4} \lambda_{6} \Phi_{S}^{4} + \frac{1}{2} \lambda_{7} |\Phi_{1}|^{2} \Phi_{S}^{2}$
+ $\frac{1}{2} \lambda_{8} |\Phi_{2}|^{2} \Phi_{S}^{2}$

Freeze-In in CP in the Dark

Results 00000000000000

Johann Plotnikov - DM Generation Mechanisms of the model CP in the Dark

The Potential of CP in the Dark

[D. Azevedo et al. 2018]

- Extension of the scalar sector by a complex scalar doublet Φ₂ and a real scalar singlet Φ_S
- Impose a \mathbb{Z}_2 symmetry of the form

$$\Phi_1 \rightarrow \Phi_1 \ , \ \Phi_2 \rightarrow -\Phi_2 \ , \ \Phi_{\mathcal{S}} \rightarrow -\Phi_{\mathcal{S}}$$

Most general scalar potential

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} + \frac{1}{2} m_{S}^{2} \Phi_{S}^{2} + (A \Phi_{1}^{\dagger} \Phi_{2} \Phi_{S} + h.c.)$$

+ $\frac{1}{2} \lambda_{1} |\Phi_{1}|^{4} + \frac{1}{2} \lambda_{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} |\Phi_{1}^{\dagger} \Phi_{2}|^{2}$
+ $\frac{1}{2} \lambda_{5} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + h.c. \right] + \frac{1}{4} \lambda_{6} \Phi_{S}^{4} + \frac{1}{2} \lambda_{7} |\Phi_{1}|^{2} \Phi_{S}^{2}$
+ $\frac{1}{2} \lambda_{8} |\Phi_{2}|^{2} \Phi_{S}^{2}$

CP in the Dark Model ●○ Freeze-In in CP in the Dark

Results

Johann Plotnikov - DM Generation Mechanisms of the model CP in the Dark

Features of CP in the Dark

Features of CP in the Dark

- 5 Dark Sector (DS) particles *H*[±], *h*₁, *h*₂, *h*₃
- Yukawa sector identical to the SM
- No tree-level flavour changing neutral currents
- Additional CP violation only through the DS

Johann Plotnikov - DM Generation Mechanisms of the model CP in the Dark

The problem with freeze-in and gauge couplings

Typical couplings between DM and the bath for freeze-in are $\lambda_{FI} \leq 10^{-10}!~_{[Hall \, et \, al., \, 2010]}$

 $\underset{00}{\text{CP in the Dark Model}}$

Freeze-In in CP in the Dark

Results

Johann Plotnikov - DM Generation Mechanisms of the model CP in the Dark

Making Freeze-in Possible

Reduce the gauge couplings:

$$\begin{array}{l} \mathrm{V}\left(h_{1},h_{2},Z\right)=& \displaystyle \frac{g}{cos\Theta_{W}}c_{\alpha_{2}}c_{\alpha_{3}}\\ \mathrm{V}\left(h_{1},h_{3},Z\right)=& \displaystyle \frac{g}{cos\Theta_{W}}c_{\alpha_{2}}s_{\alpha_{3}} \end{array}$$

$$\Rightarrow \alpha_2 = \pi/2$$

Mass eigenstates become:

$$h_1 = s$$

$$h_2 = -s_{\alpha_1 + \alpha_3}\rho + c_{\alpha_1 + \alpha_3}\eta$$

$$h_3 = -c_{\alpha_1 + \alpha_3}\rho - s_{\alpha_1 + \alpha_3}\eta$$

h_1 has been decoupled from the SU(2) doublet

CP in the Dark Model

Freeze-In in CP in the Dark

Results

Johann Plotnikov - DM Generation Mechanisms of the model CP in the Dark

nac

Implications of the Decoupling

$$V = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 + \frac{1}{2} m_S^2 \Phi_S^2$$

+ $\frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2$
+ $\frac{1}{4} \lambda_6 \Phi_S^4 + \frac{1}{2} \lambda_7 |\Phi_1|^2 \Phi_S^2 + \frac{1}{2} \lambda_8 |\Phi_2|^2 \Phi_S^2$

Red terms are responsible for freeze-out of $h_{2/3}$ and H^{\pm} Blue terms are responsible for freeze-in of h_1

CP in the Dark Model

Freeze-In in CP in the Dark

Results

Johann Plotnikov - DM Generation Mechanisms of the model CP in the Dark

Results

CP in the Dark Model

Freeze-In in CP in the Dark

E Results

< □ > < □ > < □ > < □ > < □ > < □ >

Johann Plotnikov - DM Generation Mechanisms of the model CP in the Dark

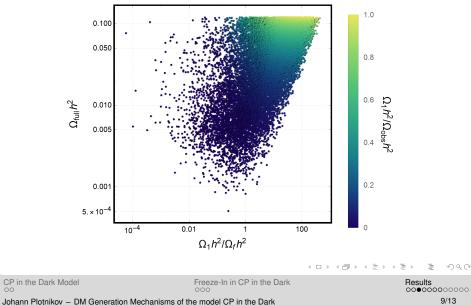
7/13

5900

Constraints on Parameter Scan

The scan is performed using ScannerS to check following constraints

[Coimbra, Sampaio, and Santos, 2013; Mühlleitner et al., 2020]


- Tree-level pertubative unitarity
- Boundedness from below
- Peskin-Takeuchi electroweak precision parameters S, T and U [M. Peskin and T. Takeuchi., 1992]
- We choose $m_{h_1} > 70 \text{ GeV}$
- HiggsSignals [Heinemeyer, et al., 2014] and HiggsBounds [P. Bechtle et al., 2010] is used to check with collider Higgs data
- Freeze-out contribution to relic density via MicrOMEGAs [G. Belanger et al., 2013]
- Freeze-in contribution to relic density ourselves
- Direct detection constraints by LZ [J. Aalbers et al., 2022]

CP in the Dark Model

Freeze-In in CP in the Dark

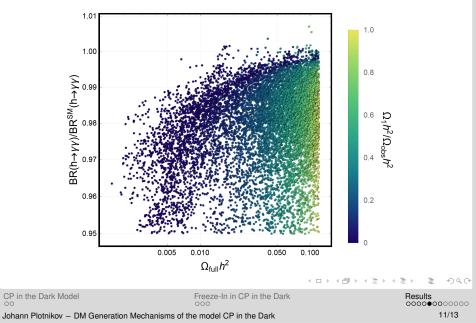
Relic Denstiy Contributions

9/13

The additional charged Higgs H^{\pm} adds an additional loop contribution to the leading order di-photon decay of the Higgs boson measured by ATLAS at [ATLAS Collaboration, 2022]

$$rac{{
m BR}(h o \gamma\gamma)}{{
m BR}^{SM}(h o \gamma\gamma)}=1.04^{+0.10}_{-0.09}$$

CP in the Dark Model


Freeze-In in CP in the Dark

Johann Plotnikov - DM Generation Mechanisms of the model CP in the Dark

DQ C

Di-Photon Branching Ratio

Di-Photon Branching Ratio

CP in the Dark Model

Freeze-In in CP in the Dark

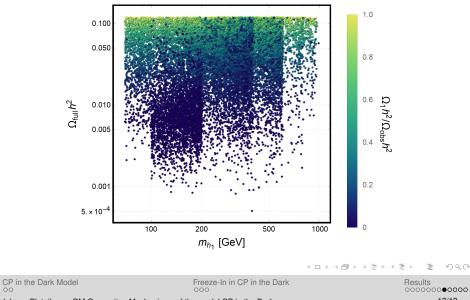
Results ooooo●oooooo

Johann Plotnikov - DM Generation Mechanisms of the model CP in the Dark

nan

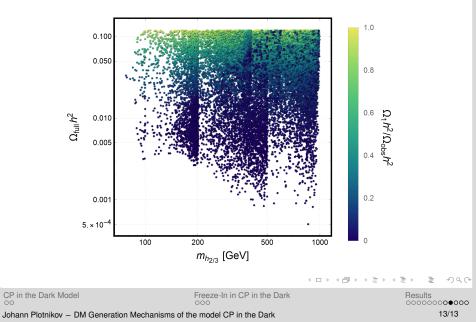
Conclusions

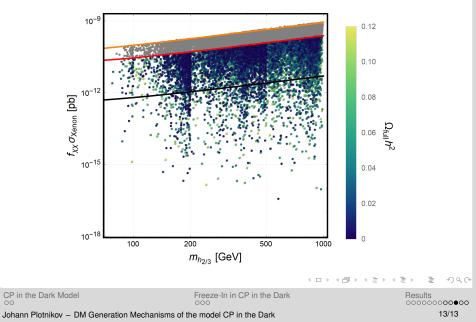
- Freeze-in and freeze-out are simultaneously possible in CP in the Dark
- However, the additional CP violating properties are lost
- If we assume that the model accounts for the full observed relic density then it is possible to differentiate between a freeze-out dominated and a freeze-in dominated relic density
- The freeze-in contribution is able to fill the relic density to the observed one independently of experimental constraints

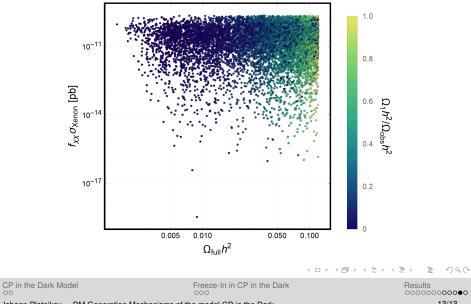

CP in the Dark Model

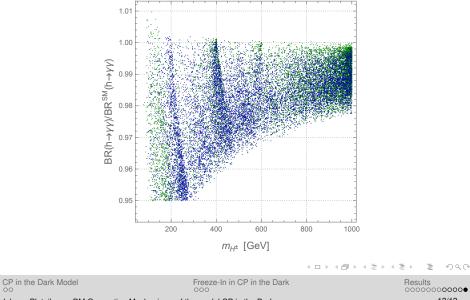
Freeze-In in CP in the Dark

Results 00000000000000


Mass Spectrum


Mass Spectrum


Direct Detection


Direct Detection

Di-Photon Branching Ratio

