Probing light new physics at the LUXE experiment

RAQUEL QUISHPE* on behalf of the LUXE collaboration

*KIT – Karlsruhe Institute of Technology

Invisibles'23 Workshop

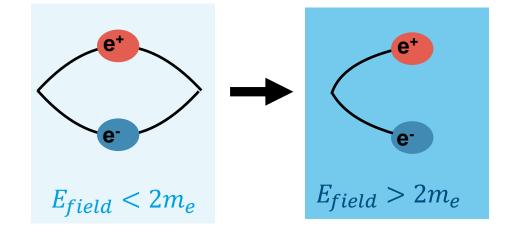
31.08.23 - Göttingen, Germany

Institut für Experimentelle Teilchenphysik

Laser Und XFEL Experiment

Laser Und XFEL Experiment

- LUXE will collide Eu.XFEL electrons and bremsstrahlung photons with a high-intensity laser
- <u>CDR</u> done in 2021, <u>TDR</u> done in 2023, reached CD-1
- First data foreseen in 2026
- Physics goals: study strong-field QED and ALPs searches

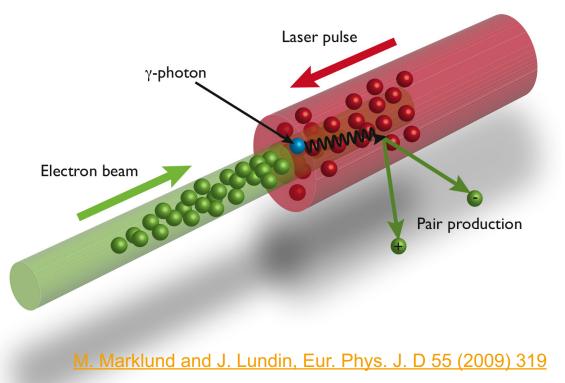


Strong-field QED (SFQED)

- QED is one of the most precisely tested theories in physics in the perturbative regime
- LUXE will probe QED in non-perturbative strongfield regime
- QED is predicted to become non-perturbative above the critical electric field, Schwinger limit

$$\mathcal{E}_{cr} = \frac{m_e^2 c^3}{e \hbar} \approx 1.32 \cdot 10^{18} \, \mathrm{V/m}$$

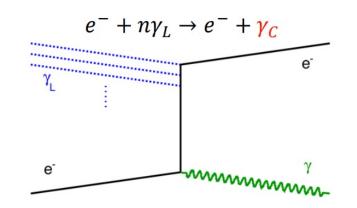
Creation of e⁺e⁻ pair from vacuum in constant field

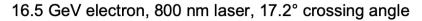

SFQED in the laboratory

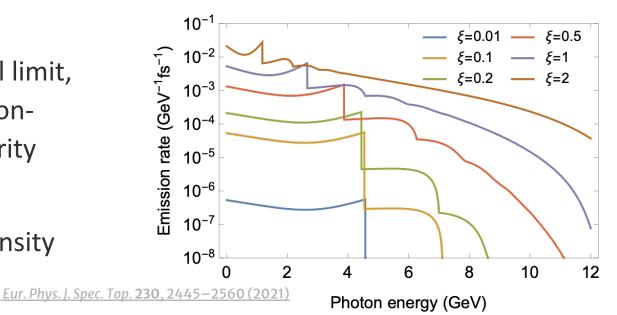
- Existing fields orders of magnitude too small compared to *E_{cr}*
- But, non-linear quantum effects accessible in fields below *E_{cr}* with relativistic probe particles, i.e. fields O(*E_{cr}*) in particle rest frame
- Can be reached with Lorentz boosted electric field

$$E^* = \gamma_e E (1 + \cos\theta)$$
 with $\gamma_e \approx 10^4$

Use multi-GeV electrons and multi-TW laser

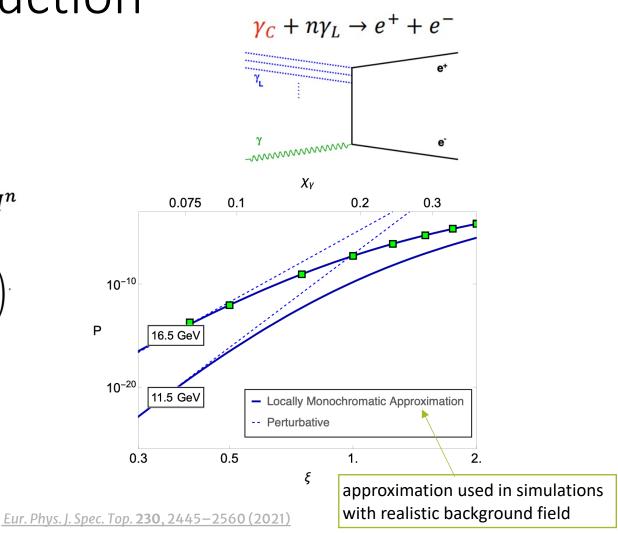





Non-linear Compton scattering

In strong fields, electrons obtain larger effective mass $m_* = m_e \sqrt{1+\xi^2}$

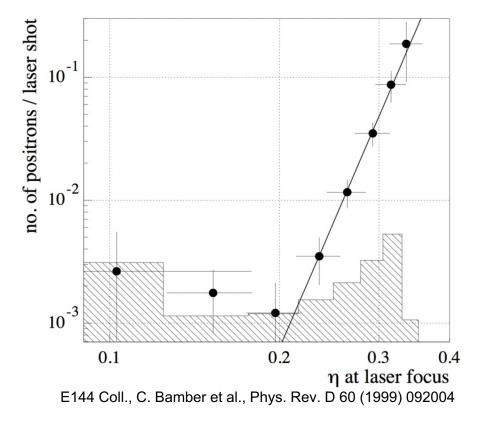
- Compton edge shifts as a function of the laser intensity parameter ξ
- Higher harmonics appear, i.e. interaction with n laser photons
- Non-linear Compton scattering has a classical limit,
 i.e. deviation between non-linear QED and non-linear classical Compton: quantum non-linearity
 parameter χ
- Parameters ξ and χ determined by laser intensity and electron beam energy

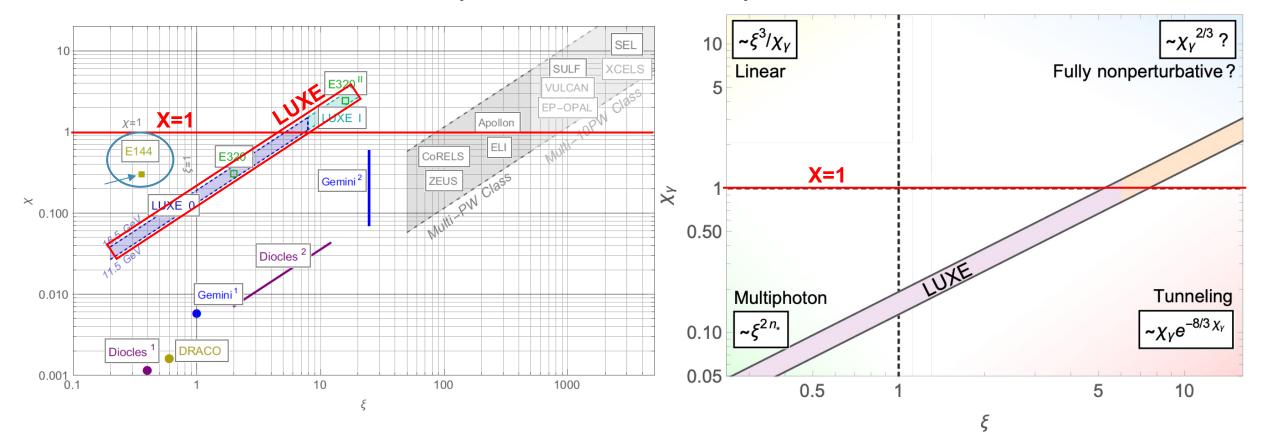

Breit-Wheeler pair production

 $\xi \gg 1: R_{e^+} \propto \chi_{\gamma} \exp\left(-\frac{8}{3\chi_{\gamma}}\right)^2$

 Dependency of positron emission probability as a function of laser intensity

Perturbative regime: power law $\xi \ll 1$: $R_{e^+} \propto \xi^{2n} \propto I^n$


- Non-perturbative regime
- First experiment to measure Breit-Wheeler pair production with real photons

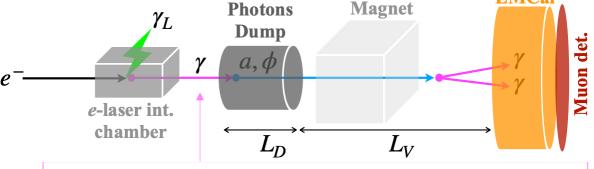

Previous experiment in SFQED

- Predecesor: E144 experiment at SLAC in the 90s
 - Used 1 TW laser and 46.6 GeV electron beam
 - Reached $\chi \sim 0.25$, $\xi \sim 0.4$
 - Observed process $e^- + n\gamma_L \rightarrow e^- + e^+ + e^-$
 - Observed start of ξ^{2n} power law, but not departure from it
- LUXE has a three orders of magnitude more powerful laser

LUXE in SFQED parameter space

- LUXE will precisely map parameter space (ξ, χ) in transition region
- Continuous data-taking with variable laser spot size (unique in LUXE)

ALPs searches

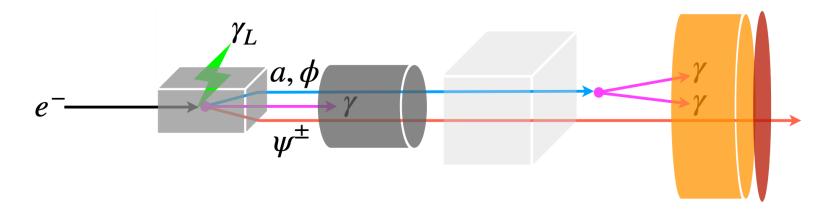

New physics (NP) production mechanisms

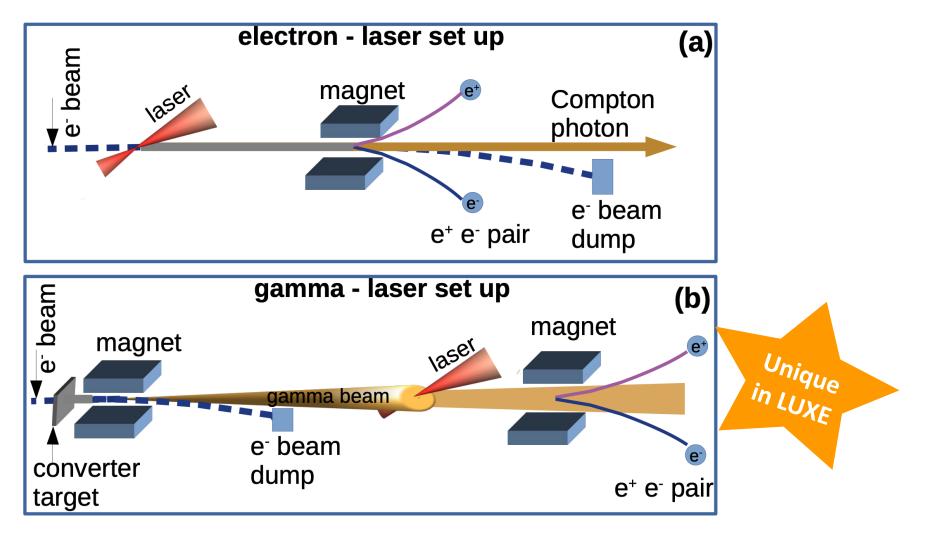
- Secondary NP production:
 - Axion-like particles (ALPs) and scalar ($X = a, \phi$) production through Primakoff mechanism with a displaced decay to 2 hard photons

$$\mathcal{L}_{a,\phi} = \frac{a}{4\Lambda_a} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{\phi}{4\Lambda_\phi} F_{\mu\nu} F^{\mu\nu}$$
• ALP mass up to $\mathcal{O}(1)$ GeV

$$\gamma \sim \gamma \sim \gamma^*$$

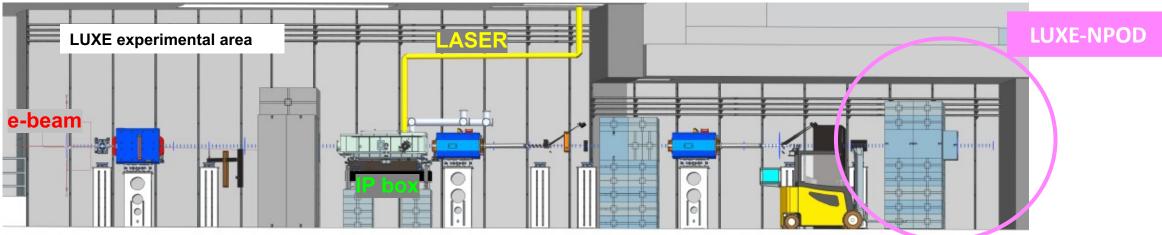
$$N \sim N$$

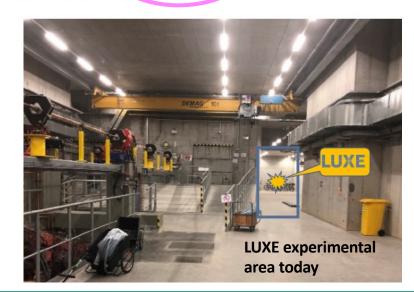

Photons produced in the e-laser collisions are freely propagating to collide with the nuclei of the material of the dump


NP production mechanisms

- Primary NP production:
 - NP is directly produced at the e-laser interaction region
 - X has couplings to electrons only : $e_V^- \rightarrow e_V^- + X$
 - X has couplings to photons only: $e_V^- \rightarrow e_V^- + \gamma^* \rightarrow e_V^- + \gamma + X$
 - mCP pairs direct production: $\gamma(\gamma^*) \rightarrow \psi^+ + \psi^-$
 - New particle mass limited to $m_{X,\psi} \leq \mathcal{O}(100) \text{ keV}$

LUXE experimental setups


LUXE laser parameters


- active medium: Ti:Sa
- wavelength (energy): 800 nm (1.55 eV)
- crossing angle: 17.2°
- pulse length: 30 fs
- spot size: \geq 3 μ m
- power:
 - phase-0: 40 TW (JETI40, Jena or new)
 - phase-1: upgrade to 350 TW

LUXE experimental area

- LUXE uses high-quality 16.5 GeV EuXFEL e-beam before undulators
- #electrons/bunch: $1.5 \cdot 10^9$
- Repetition rate: 10 Hz
- Location at the annex for future second EuXFEL fan(~2030's+)
 - LUXE can be built and operated before that
- Extract 1 bunch (out of 2700 bunches) per XFEL train for LUXE
 - No impact on photon science program

dum

LUXE-NPOD

Phys. Rev. D 106, 115034

detector (TBD

y-profiler

Dipole magnet 2

Shielding

7 ALPS

Backscattering calorimeter

physical dump

Shielding

Scint. screen

LUXE-NPOD project

- NPOD: New Physics searches with an Optical Dump
- Collide a beam of 16.5 GeV electrons with the laser
- The laser behaves as a thick medium, leading to the production of a large flux of hard photons O(GeV)
- Photons see the laser as a transparent medium and can reach the physical dump
- v-converter Electron beam dump Compton y's Lower background from gamma photons Calorimeter Cherenkov counter Pixel tracker behind a Scint. screen Laser pulse tical Dump² Laser pulse Dipole magnet 1 ,z Electron beam Beam from the XFE electron Free GeV photons Laser repetition rate 1Hz \rightarrow 10⁷ bunch-crossings (BX) per year

e-laser setup

(Not in scale)

LUXE-NPOD (work in progress)

0.2

0.4

mass = 0.346737 - coupling = 5.25e-06 - decay volume = 2.5

mass = 0.346737 - coupling = 5.25e-06 - decay volume = 2.0
 mass = 0.346737 - coupling = 5.25e-06 - decay volume = 1.5

0.6

0.8

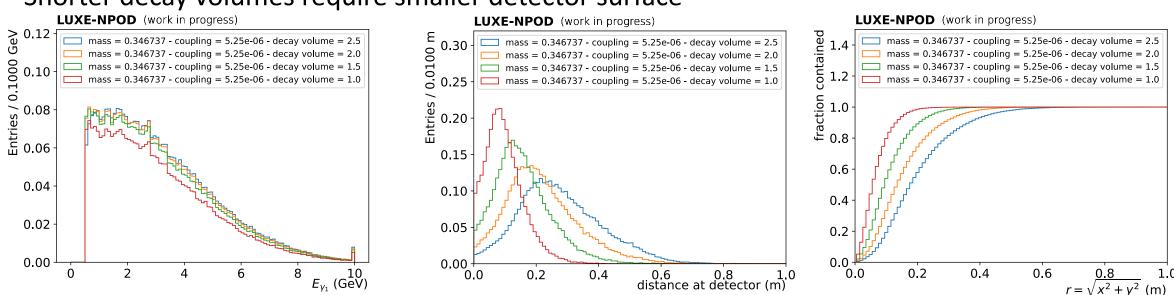
1.0 *r_{max}* (m)

mass = 0.346737 - coupling = 5.25e-06 - decay volume = 1.0

Ε

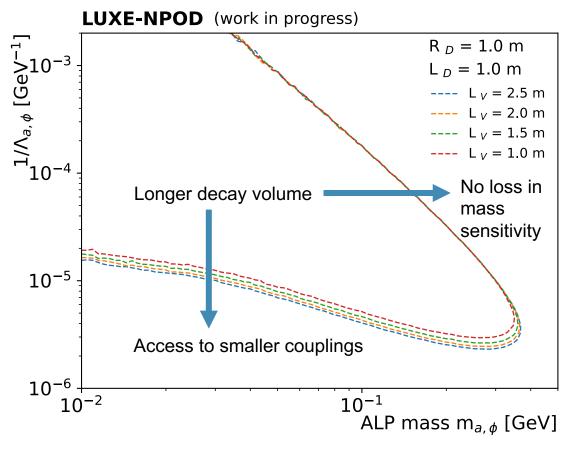
0.0100

0.2

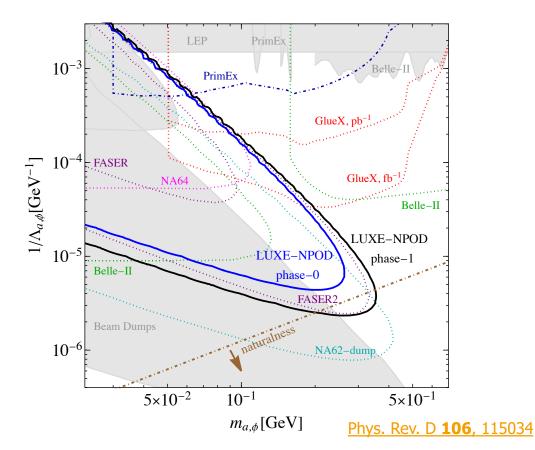

0.1

0.0

0.0


Signal efficiency

- ALPs production within the first mm of the dump
- Boosted $c\tau_{a/\phi}$ randomly drawn from $\exp(-L/L_{a/\phi})$ distribution $\frac{9}{22}$ 0.3
- ALP decay inside the decay volume
- E_γ > 0.5 GeV
- No photon separation requirement yet
- Shorter decay volumes require smaller detector surface



Expected results in phase-1

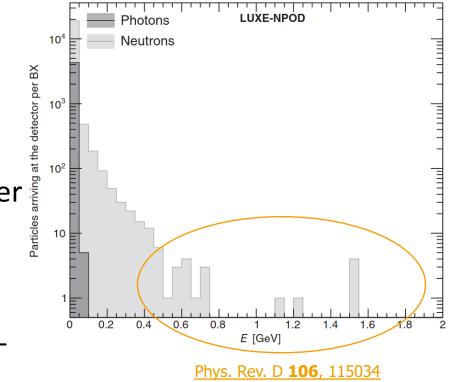
- Ongoing signal efficiency simulation studies
- LUXE phase-1 competitive with FASER2 or NA62-dump

 e, μ, π, K, p .

LUXE-NPOD background

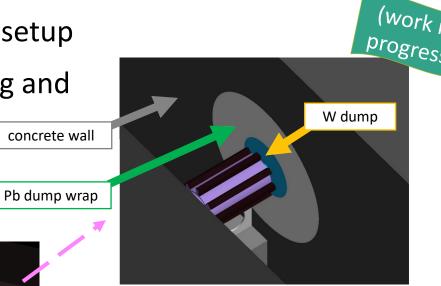
- Types of background:
 - Fake photons: misidentified neutrons
 - Charged particles: electrons, muons, hadrons
 - Real photons: from EM/hadronic interactions at the end of the dump or from meson decays in the volume

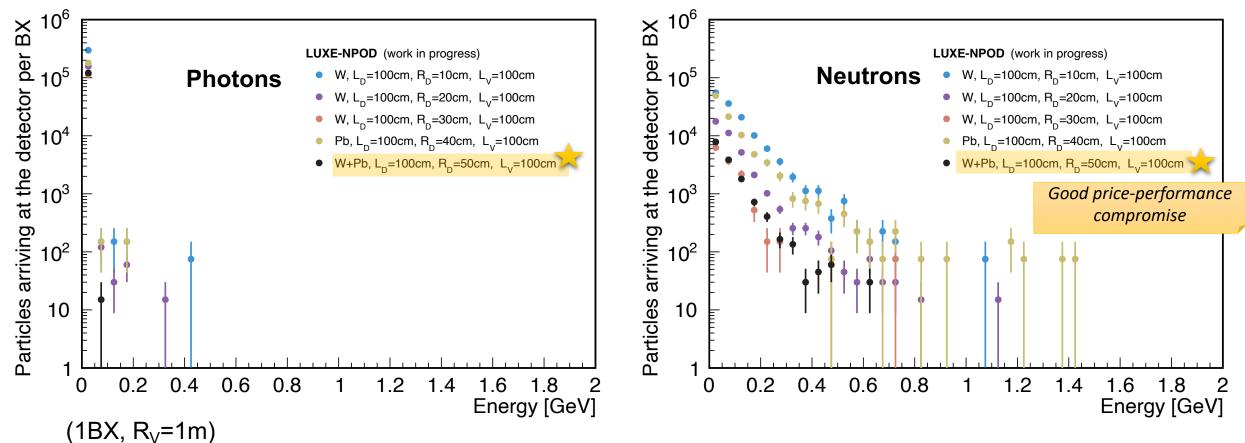
Background

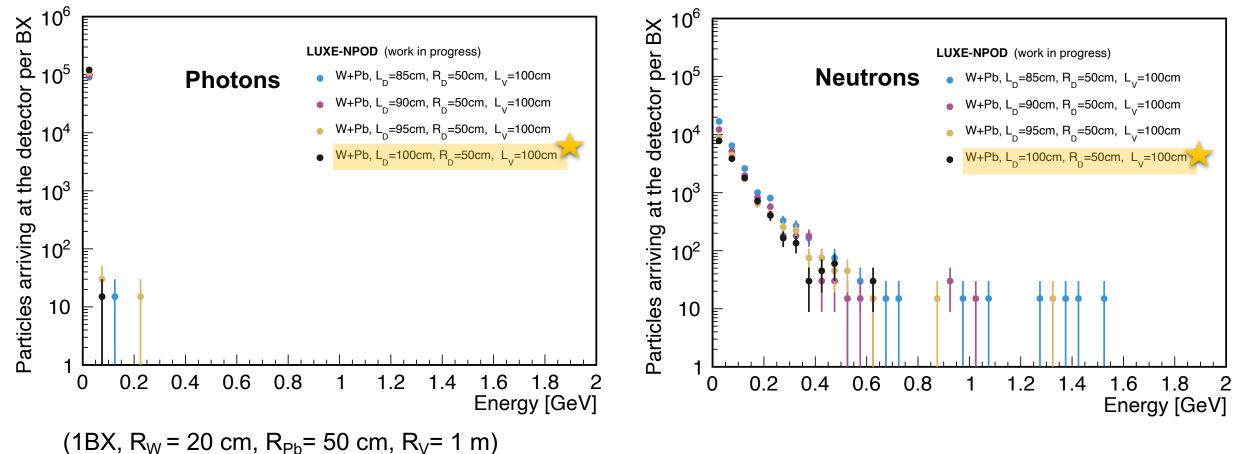

Production

 γ_L

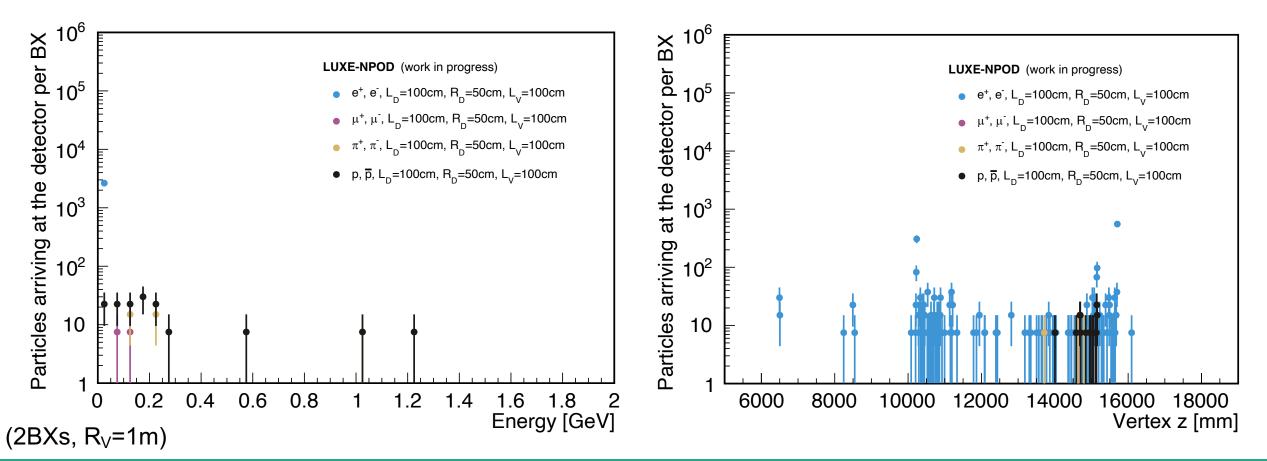
- Background mostly neutrons and photons
- Softer background effects in phase-0 compared to phase-1
- The expected results are obtained assuming zero background


- Background estimated using GEANT4 simulations for phase-1
- First studies done with a *dummy detector* configuration (Tungsten beam dump, $L_D = 1$ m, $L_y = 2.5$ m, $R_y = 1$ m)
- Photons seem too soft to be a source of background
- Neutrons statistics in E > 0.5 GeV is extremely low
- Simulated 10¹⁰ photons (~2BXs), need many more for proper estimate
 - Computationally challenging
 - Ongoing GEANT4 simulation studies for different dumpdetector geometry to reduce background

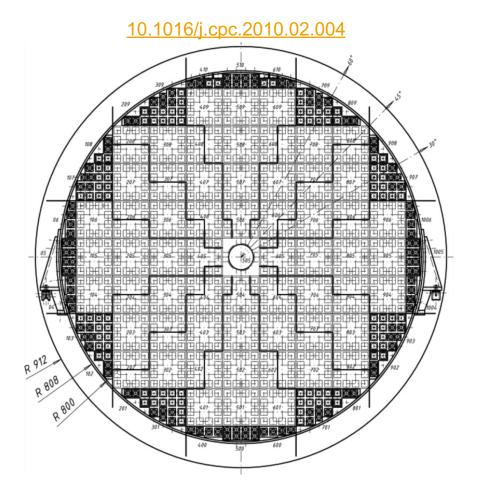

- Ongoing new GEANT4 simulations including full LUXE setup
- Presence of low-energy particles due to backscattering and particles escaping through the sides of the dump
 - not spotted by the previous simplified experimental model
- New dump-detector design under study



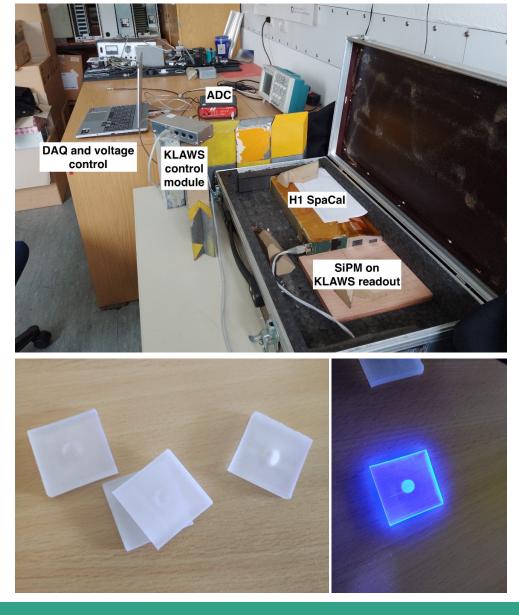
- High number of neutrons with energy >0.5 GeV seen for dump made of only W or Pb
- Number of neutrons decrease for W(R = 20 cm) + Pb (R = 50cm) dump



 Shorter dump lengths would enhance the signal acceptance but also introduce more background

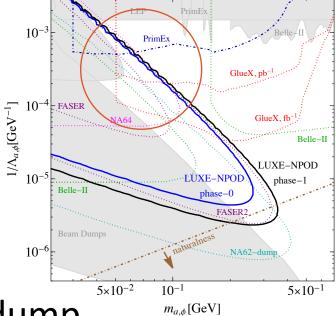

- No significant background coming from charged particles above 0.5 GeV
- Background can be handled with a magnet

BSM detector requirements


- Signal efficiency
 - Photons shower separation (~1 cm)
- ALP invariant mass reconstruction
 - Good energy and vertex resolution
- Background suppresion (photons and neutrons)
 - Vertex resolution (non-resonant photons)
 - Shower shape determination (neutrons)
 - Good time resolution (< 1 ns) (neutrons)
- Ideal candidate: tracking calorimeter

BSM detector proposal

- H1 lead/scintillating-fiber calorimeter:
 - One module currently tested at KIT
- Tile calorimeter:
 - e.g. Calice detector prototype
 - Currently studied at Mainz as a candidate for the SHADOWS calorimeter
- ALPIDE:
 - Silicon tracker
 - Same technology as the LUXE tracking detector or ALICE forward calorimeter



Summary

- LUXE will explore QED in uncharted regime
- LUXE-NPOD acts as an optical dump allowing the

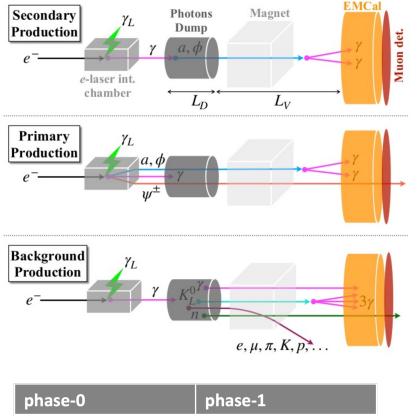
production of light ALPs with large couplings

- LUXE phase-1 competitive with FASER2 or NA62-dump
- Data taking foreseen for 2026
- Exciting windows of opportunities and challenges ahead

LUXE webpage LUXE CDR

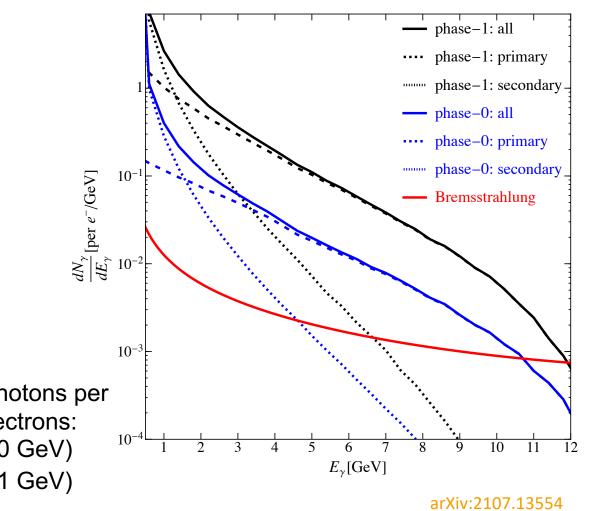
Thanks!

Backup



DESY: CRITICAL DECISION (CD) PROCESS

CD-Level	Voraussetzungen	Voraussetzungen werden festgestellt durch
CD 0: Mission Need	 The plan is presented in sufficient detail so that the scientific and strategic purpose as well as the resource requirements can be assessed It is clear how it relates to the DESY strategy In case there are constructions costs, they were estimated by BAU No decision yet about the allocation of resources 	Decision by Direktorate – after discussion in Klausur.
CD 1: DESY-Roadmap	 Project, time and resource planning available (specifically financial, personnel and space/rooms required) => resource loaded schedule Risk assessment available Future costs clear Vetting of resource estimates by relevant DESY technical groups (BAU, MKK, MVS, safety, IT,) available Project is generally recommended for inclusion in the overall resource planning (potentially to the disadvantage of other projects) Possibly external evaluation 	Decision by directorate after discussion in Klausur
CD 2: Resource planning	Identification/Verification of Resources	Decision of directorate following proposal for financing by strategic controlling and financial controlling
CD 3: Approaval of oversight committees	 Endorsement by Stiftungsrat and Wissenschaftlicher Rat 	Decision by SR/WR.
CD 4: Project launch	Release of Direktorate	Strategic Controlling

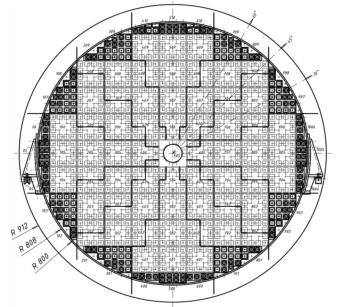


ALPs production photons spectra

phase-0	phase-1
$\tau_{pulse} = 25 fs$	$ au_{pulse} = 120 fs$
$w_0 = 6.5 \ \mu m$	$w_0 = 10 \ \mu m$
$\xi = 2.4$	$\xi = 3.4$

For phase-1, photons per incoming electrons: ~ 3.5 (E_{γ} > 0 GeV) ~ 1.7 (E_{γ} > 1 GeV)

Photons separations at detector surface


$m_X [{ m MeV}]$	$\Lambda_X [{ m GeV}^{-1}]$	$<20\mathrm{mm}~[\%]$	$<40\mathrm{mm}~[\%]$	$<50\mathrm{mm}$ [%]
50	10^{-4}	13	30	38
100	10^{-5}	8.4	17	22
150	$6 imes 10^{-6}$	5.2	11	13
200	4×10^{-6}	3.8	7.6	9.7

- -

BSM detector proposal

- Detector requirements:
 - Good energy and vertex resolution
 - ALPs invariant mass reconstruction
 - Background suppression (photons and neutrons)
 - Neutron rejection with calorimeter shower and time of arrival
- phase-0:
 - reuse existing calorimeter, e.g. spaghetti calorimeter (SpaCal) from H1
 - lead/fiber(2.3:1)
 - 4x4x25cm³ cells
 - energy resolution 7.5%/ \sqrt{E} +2%
 - time resolution < 1ns
- phase-1:
 - Preshower and vetoes
 - Tracking calorimeter, e.g. high granularity calorimeter (HGCal)

10.1016/j.cpc.2010.02.004

Additional links

- SHADOWS Summary 2022: <u>https://indico.cern.ch/event/1137723/contributions/4773516/attachments/2404601/4152201/shadows_SP</u> <u>SC_April2022_Lanfranchi.pdf</u>
- ALPIDE detector at LUXE: <u>https://indico.cern.ch/event/882870/contributions/3720001/attachments/1974963/3286730/The_LUXE_G_G_Seminar.pdf</u>