Lessons from LEP

Fulvio Piccinini

INFN, Sezione di Pavia

June 22, 2023

ECFA Higgs Factories: 2nd Topical Meeting on Generators, Brussels, 21 - 22 June 2023

F. Piccinini (INFN)

ECFA Topical Meeting on Generators

LEP1-LEP2 Yellow Reports on generators

CERN 89-08 Volume 3 21 September 1989

ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

Z PHYSICS AT LEP 1

Edited by Guido Altarelli, Ronald Kleiss and Claudio Verzegnassi

Volume 3: EVENT GENERATORS AND SOFTWARE

Co-ordinated and supervised by R. Kleiss

CERN 96-01 Theoretical Physics and Particle Physics Experiment: Divisions 19 February 1996 Vol. 2

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

PHYSICS AT LEP2

Editors: G. Altarelli, T. Sjöstrand and F. Zwirner

1996

Vol. 2

ECFA Topical Meeting on Generators

June 22, 2023 2/32

F. Piccinini (INFN)

Electroweak vs QCD

- "EW software can be required to give relatively unambiguous answers, with high implied accuracy"
- "QCD software is still descriptive rather than predictive"

Electroweak (EW)	strong (QCD)			
'new' phenomena	'old' phenomena			
'new' software	'old' software			
rapid evolution	moderate evolution			
theory 'solved'	theory 'unsolved'			
high accuracy	low accuracy			
agreement expected	no agreement expected			

Electroweak vs QCD

- "EW software can be required to give relatively unambiguous answers, with high implied accuracy"
- "QCD software is still descriptive rather than predictive"

Electroweak (EW)	strong (QCD)			
'new' phenomena	'old' phenomena			
'new' software	'old' software			
rapid evolution	moderate evolution			
theory 'solved'	theory 'unsolved'			
high accuracy	low accuracy			
agreement expected	no agreement expected			

given the available computational power: seminalytical vs MC

semianalytical	Monte Carlo
inclusive	exclusive
few cuts allowed	many cuts allowed
not good for experiment	good for experiment
no statistical error	statistical error
fast	not so fast
cross section arbitrary	cross sections positive

From LEP1 YR

- interesting final states
 - target exp precision expected at the % level
 - e.g. 20 MeV at best on M_Z , 0.0012 on $\sin^2 \theta_W$

Pre. level	final state	accuracy (%)
Iligh	$\mu^+\mu^-$	
	hadrons	
	heavy quarks	
	e+e-	0.1-0.3
	$\tau^+ \tau^-$	
	$ u ar{ u} \gamma$	
	Higgs + $f\bar{f}$	
Medium	$2,3 \gamma$	
	$e^+e^-f\bar{f}$	1-3
	e ⁺ e ⁻ +hadrons	
Low	New families	
	Nonminimal Higgses	
	New gauge bosons	10-30
	Supersymmetry	
	Compositness	
	etcetera	

Basic ingredients

- $\mathcal{O}(\alpha)$ weak corrections
- QED corrections exponentiated
 - with YFS (pioneering implementation in KORALZ and BHLUMI)
 - with Structure Functions (LL PDF's)

Basic ingredients

- $\mathcal{O}(\alpha)$ weak corrections
- QED corrections exponentiated
 - with YFS (pioneering implementation in KORALZ and BHLUMI)
 - with Structure Functions (LL PDF's)
- Recognized, already at that time, the importance of comparisons of different predictions

Program name	version number (if any)	last update
ZSHAPE	1.0	July 89
EXPOSTAR		June 89
CALASY	2.6	July 89
MOE	1.0	April 89
MMGE92		September 88
BRENS		October 88
MUONMC		September 88
DYMU2	2.2	June 89
KORALZ	3.6	July 89
FPAIR		August 89

Table 21: Programs for $e^+e^- \rightarrow f\bar{f}$ considered in the comparison

program	88 GeV	92 GeV	96 GeV
EXPOSTAR	0.41	0.40	0.41
MOE	0.19	0.19	0.19
MMGE92	0.17	0.17	0.18
BREN5	0.30	0.29	0.30
MUONHC	0.09	0.10	0.11
DYMU2	1.3	0.28	0.75
KORALZ	49.	11.	30.
FPAIR	3.8	3.1	4.9

MC speed, msec/generated event (CRAY units)

cross section

Requirements for the "Ultimate Event Generator" (as of 1989)

- invariant mass cut
- Forward-Backward asymmetry
- Higher-Order QED effects
- Multiphoton kinematics
- Interference between initial- and final-state radiation, and box diagrams
- Implementation of weak effects
- Generation of fermion momenta
- Beam Polarization
- Implementation of quark and au production
- Bhabha scattering mode
- Implementation of au decay
- Support

Update on precision at the Z peak

CERN 95-03 31 March 1995

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

REPORTS OF THE WORKING GROUP ON PRECISION CALCULATIONS FOR THE Z RESONANCE

Editors: D. Bardin W. Hollik G. Passarino

GENEVA

In 1994 the experimental accuracy reached a level much higher than originally expected: ~ 0.1 % at the Z-peak

 \implies necessary a new update on the precision of th. predictions

In 1994 the experimental accuracy reached a level much higher than originally expected: ~ 0.1 % at the Z-peak

 \implies necessary a new update on the precision of th. predictions

Electroweak physics

• QCD at Z-resonance

Small Angle Bhabha Scattering

Emphasis on theoretical uncertainties at Z-peak

- parametric and intrinsic
- different seminalytical codes (BHM, WOH, TOPAZO, ZFITTER)
- introduction of "options" for the estimate of the th. uncertainty within each code

Emphasis on theoretical uncertainties at Z-peak

- parametric and intrinsic
- different seminalytical codes (BHM, WOH, TOPAZO, ZFITTER)
- introduction of "options" for the estimate of the th. uncertainty within each code

 still missing a common effort among different generator groups on Small Angle Bhabha

F. Piccinini (INFN)

Emphasis on Monte Carlo EG

- Event generators for WW physics
- QCD event generators
- Gamma-Gamma event generators
- Event generators for Bhabha scattering

The new event generators for WW and ZZ thresholds

- With \sqrt{s} at WW and ZZ thresholds, the new kind of process under study is $e^+e^- \rightarrow 4$ fermions
- challenging even if the precision requirement is one order of magnitude less than LEP1
- many more diagrams, the frontier was the calculation of complete tree-level matrix elements
 - helicity methods to calulate matrix elements

The new event generators for WW and ZZ thresholds

- With \sqrt{s} at WW and ZZ thresholds, the new kind of process under study is $e^+e^- \rightarrow 4$ fermions
- challenging even if the precision requirement is one order of magnitude less than LEP1
- many more diagrams, the frontier was the calculation of complete tree-level matrix elements
 - helicity methods to calulate matrix elements
 - first automated methods to generate amplitudes and MC code: CompHEP and grc4f

The new event generators for WW and ZZ thresholds

- With \sqrt{s} at WW and ZZ thresholds, the new kind of process under study is $e^+e^- \rightarrow 4$ fermions
- challenging even if the precision requirement is one order of magnitude less than LEP1
- many more diagrams, the frontier was the calculation of complete tree-level matrix elements
 - helicity methods to calulate matrix elements
 - first automated methods to generate amplitudes and MC code: CompHEP and grc4f
 - one new numerical method: the ALPHA algorithm (few years later extended to hadronic collisions → ALPGEN), able to calculate numerically the matrix element for aritrary number of external legs
- peaking structure in phase space more complicated, making the semianalytic approach not viable

Requirements for the "Ultimate Monte Carlo" (I)

- treat all possible four-fermion final states with all Feynman diagrams
- produce gauge-invariant results
 - e.g. restricting to double-resonant diagrams close to threshold breaks g.i.
 - correct treatment of bosonic widths
 - dramatic effects in $e^+e^- \rightarrow e\nu W(\rightarrow f\bar{f'})$
 - \rightarrow fermion loop scheme and later the complex mass scheme \implies (later) RACOONWW and YFSWW
- fermion masses taken into account
- explicit p_{\perp} -carrying photons
- higher-order photonic radiation taken into account properly
- good control of non-QED radiative corrections, preferably in the form of complete $\mathcal{O}(\alpha)$ corrections and resummed higher-order effects where necessary

- have a good interface to hadronization packages
- have Higgs production and decay implemented
- have the possibility of anomalous couplings
- incorporate QCD effects, both in W self-energy and in the gluonic corrections to quark final states
 - also, interference between EW and QCD production channels in 4f final states

- Tuned comparisons for selected processes (to check the technical precision)
 - for inclusive event selection
 - with ADLO/TH (Aleph, Delphi L3, Opal) canonical event selection
- "best you can do", to have an idea of the extent to which the predictions depend on the various physical ingredients
- "all you can do" comparisons an all four-fermion processes

Codes involved in the comparisons

Program	Type	Diagrams	ISR	FSR	NQCD	Coul.	AC	m_{f}	Hadr.
ALPHA	MC	all	BME	_	_	-	_	+	_
CompHEP	EG	all	SF	-	-	-	_	+	
ERATO	MC	CC11/CC20	\mathbf{SF}	—	+	—	+	—	+
EXCALIBUR	MC	all	SF	—	+	+	+	—	-
GENTLE	SA	CC11/NC32	SF/FF	-	+	+	_	±	
grc4f	EG	all	SF/PS	PS	+	+	+	+	+
HIGGSPV	EG	NNC	$SF(p_T)$	-	+		_	±	
KORALW	$\mathbf{E}\mathbf{G}$	CC11	YFS	$_{\rm PH}$	+	+	+	±	+
LEPWW	EG	CC03	REMT	PH	+	_	+	—	+
LPWW02	EG	CC03	SF	PH	+	+	_	±	+
PYTHIA	$\mathbf{E}\mathbf{G}$	CC03	SF+PS	PS	+	+	—	±	+
WOPPER	EG	CC03	PS	-	+	+	_	±	+
WPHACT	MC	all	SF	_	+	+	+	+	
WTO	Int.	NCC	SF	_	+	+	—	—	_
WWF	EG	CC11	SF+ME	ME	+	+	+	+	+
WWGENPV	EG	CC11/CC20	$SF(p_T)$	$SF(p_T)$	+	+	—	±	+

Example of tuned comparisons

Figure 6: Tuned predictions for the total cross section for $e^+e^- \rightarrow \mu^- \bar{\nu}_{\mu} u \bar{d}$ after canonical (ADLO/TH) cuts.

Example of unleashed comparisons

Figure 7: Unleashed predictions for the total cross section for $e^+e^- \rightarrow \mu^- \bar{\nu}_{\mu} u \bar{d}$ without cuts. The transparent, framed error bars are theoretical errors (cf. page 72).

and similar ones for exclusive observables

Example of unleashed comparisons

final state	ALPHA	EXCALIB	GE/4fan	grc4f	HIGGSPV	WPHACT	WTO
Born, without gluon exchange diagrams							
$\mu^+\mu^-\tau^+\tau^-$	10.06(9)	10.08(0)	10.07(0)	10.07(0)	10.07(0)	10.07(0)	10.14(7)
$ u_{ au} \bar{ u}_{ au} \mu^+ \mu^-$	9.894(10)	9.872(3)	9.871(0)	9.875(4)	9.872(3)	9.873(3)	9.884(10)
$ u_{\mu} \bar{ u}_{\mu} u_{ au} \bar{ u}_{ au}$	8.245(4)	8.242(3)	8.241(0)	8.240(4)	8.237(6)	8.241(1)	8.241(1)
$\mu^+\mu^-uar{u}$	23.99(2)	24.04(1)	24.03(0)	24.04(2)	24.03(1)	24.04(1)	-
$\mu^+\mu^- d\bar{d}$	23.46(2)	23.45(1)	23.45(0)	23.46(2)	23.45(1)	23.46(1)	—
$ u_{\mu} \bar{ u}_{\mu} u \bar{u}$	21.59(2)	21.59(1)	21.59(0)	21.58(1)	21.58(1)	21.59(1)	21.63(3)
$ u_{\mu} \bar{\nu}_{\mu} d\bar{d}$	20.00(2)	19.99(1)	19.99(0)	20.00(1)	20.00(1)	19.99(1)	20.00(1)
$u\bar{u}c\bar{c}$	54.80(5)	54.75(2)	54.74(0)	54.73(4)	54.69(4)	54.74(2)	—
$u\bar{u}s\bar{s}$	51.83(5)	51.86(1)	51.86(0)	51.85(2)	51.85(5)	51.87(2)	l
$d\bar{d}s\bar{s}$	48.30(5)	48.33(2)	48.33(0)	48.34(1)	48.27(6)	48.34(1)	ļ
		With ISR, v	with gluon	exchange d	liagrams		
$\mu^+\mu^-\tau^+\tau^-$	—	10.29(0)	10.30(0)	10.29(1)	10.30(0)	10.30(0)	—
$\nu_{ au} \bar{\nu}_{ au} \mu^+ \mu^-$	—	9.279(3)	9.284(1)	9.278(7)	9.283(3)	9.284(4)	-
$ u_{\mu} \bar{ u}_{\mu} u_{\tau} \bar{ u}_{\tau}$	-	6.379(3)	6.376(1)	6.373(4)	6.377(5)	6.377(1)	6.379(2)
$\mu^+\mu^-uar{u}$	—	23.74(1)	23.76(0)	23.77(2)	23.75(1)	23.75(1)	—
$\mu^+\mu^- d\bar{d}$	_	22.31(1)	22.34(0)	22.33(1)	22.33(1)	22.34(1)	-
$ u_{\mu} \bar{ u}_{\mu} u \bar{u}$	_	18.83(1)	18.84(0)	18.84(1)	18.85(1)	18.84(1)	
$\nu_{\mu}\bar{\nu}_{\mu}d\bar{d}$	-	16.00(1)	15.99(0)	15.99(1)	16.00(1)	15.99(0)	
$u\bar{u}c\bar{c}$	—	272.6(9)	272.3(0)	271.4(9)	272.1(1)	272.2(1)	—
$u\bar{u}s\bar{s}$	_	267.0(10)	266.8(0)	266.5(6)	266.8(1)	266.8(1)	
$d\bar{d}s\bar{s}$	—	240.7(11)	240.8(0)	240.5(6)	240.6(4)	240.8(1)	-

Table 24: NC32, NC24, NC10, NC06 family. Cross sections in fb.

F. Piccinini (INFN)

Update on 4f physics (and generators) in 1999

Editors: S. Jadach, G. Passarino and R. Pittau

ECFA Topical Meeting on Generators

"in order to avoid confusion among experimentalists required to run a moltitude of different codes"

Interfaces to electroweak generators

"it would therefore be advantageous if the event generator authors involved could agree on a common approach: EW authors provide the four-fermion configuration in a standards format and QCD authors provide a standard interface that converts this to a set of final hadrons... In this section we propose such a standard..."

- The World Wide Web offers new opportunities to make programs accessible
 - A common practice of having a "home page" for each generator will allow the construction of useful generator directories

SABS event selections: CALO1

- fiducial θ range: $\theta_{\min}^{f} = 0.024$ rad, $\theta_{\max}^{f} = 0.058$ rad, $\theta_{\min}^{W} = \theta^{f} + \delta\theta$, $\theta_{\max}^{W} = \theta^{f} - \delta\theta$ • $\delta_{\theta} = (\theta_{\max}^{f} - \theta_{\min}^{f})/16$
- $\theta_{\min}^N = \theta^f + 2\delta\theta$, $\theta_{\max}^N = \theta^f 2\delta\theta$
- cone with a radius of 0.010 rad

• The previously estimated 0.16% precision at *Z*-peak in SABS was becoming a limiting factor (notably on σ_{had}^0 and N_{ν})

- The previously estimated 0.16% precision at *Z*-peak in SABS was becoming a limiting factor (notably on σ_{had}^0 and N_{ν})
- **new round of detailed comparisons** performed during 1994/1995 among different codes in order to quantify the physical precision

- The previously estimated 0.16% precision at *Z*-peak in SABS was becoming a limiting factor (notably on σ_{had}^0 and N_{ν})
- **new round of detailed comparisons** performed during 1994/1995 among different codes in order to quantify the physical precision
- four independent codes
 - BHAGEN95: MC integrator with $O(\alpha)$ and $O(\alpha^2 L^2)$ and resummation with LL structure functions
 - BHLUMI (with OLDBIS and LUMLOG): MC event generator with $\mathcal{O}(\alpha)$ and $\mathcal{O}(\alpha^2 L^2)$ matrix elements plus YFS exclusive exponentiation
 - NLLBHA: fixed order $\mathcal{O}(\alpha^2) + \mathcal{O}(\alpha^3 L^3)$ seminalytical code
 - SABSPV: MC integrator with O(α) for t-channel matrix elements matched, in factorized form, to LL resummation with structure functions

- The previously estimated 0.16% precision at *Z*-peak in SABS was becoming a limiting factor (notably on σ_{had}^0 and N_{ν})
- **new round of detailed comparisons** performed during 1994/1995 among different codes in order to quantify the physical precision
- four independent codes
 - BHAGEN95: MC integrator with $O(\alpha)$ and $O(\alpha^2 L^2)$ and resummation with LL structure functions
 - BHLUMI (with OLDBIS and LUMLOG): MC event generator with $\mathcal{O}(\alpha)$ and $\mathcal{O}(\alpha^2 L^2)$ matrix elements plus YFS exclusive exponentiation
 - NLLBHA: fixed order $\mathcal{O}(\alpha^2) + \mathcal{O}(\alpha^3 L^3)$ seminalytical code
 - SABSPV: MC integrator with O(α) for t-channel matrix elements matched, in factorized form, to LL resummation with structure functions
- Comparisons according to different event selections, with increasing complexity in order to match the real event selections of the experiments (QED corr. critically dependent on ev. selection)

F. Piccinini (INFN)

SABS event selections: BARE1

• $\delta_{\theta} = (\theta_{\max}^{W} - \theta_{\min}^{W})/16$ • $\theta_{\min}^{N} = \theta_{\min}^{W} + \delta\theta, \ \theta_{\max}^{N} = \theta_{\max}^{W} - \delta\theta$

F. Piccinini (INFN)

SABS event selections: CALO1

- fiducial θ range: $\theta_{\min}^{f} = 0.024$ rad, $\theta_{\max}^{f} = 0.058$ rad, $\theta_{\min}^{W} = \theta^{f} + \delta\theta$, $\theta_{\max}^{W} = \theta^{f} - \delta\theta$ • $\delta_{\theta} = (\theta_{\max}^{f} - \theta_{\min}^{f})/16$
- $\theta_{\min}^N = \theta^f + 2\delta\theta$, $\theta_{\max}^N = \theta^f 2\delta\theta$
- cone with a radius of 0.010 rad

SABS event selections: CALO2

• fiducial θ range: $\theta_{\min}^{f} = 0.024$ rad, $\theta_{\max}^{f} = 0.058$ rad, $\theta_{\min}^{W} = \theta^{f} + \delta\theta$, $\theta_{\max}^{W} = \theta^{f} - \delta\theta$ • $\delta_{\theta} = (\theta_{\max}^{f} - \theta_{\min}^{f})/16$ • $\theta_{\min}^{N} = \theta^{f} + 2\delta\theta$, $\theta_{\max}^{N} = \theta^{f} - 2\delta\theta$

SABS event selections: SICAL2

Results for Wide-Wide ES's with NLO matr. el.

Results for Wide-Wide ES's with complete matr. el.

F. Piccinini (INFN)

ECFA Topical Meeting on Generators

Final results with complete matr. el.

F. Piccinini (INFN)

ECFA Topical Meeting on Generators

	LE	LEP2		
Type of correction/error	Ref. [6]	Ref. [6] Present		
(a) Missing photonic $\mathcal{O}(\alpha^2 L)$	0.15%	0.10%	0.20%	
(a) Missing photonic $\mathcal{O}(\alpha^3 L^3)$	0.008%	0.015%	0.03%	
(c) Vacuum polarization	0.05%	0.04%	0.10%	
(d) Light pairs	0.04%	0.03%	0.05%	
(e) Z-exchange	0.03%	0.015%	0.0%	
Total	0.16%	0.11%	0.25%	

see talk by M. Skrzypek of yesterday for the present status

 Bhabha scattering is the example where the theoretical uncertainty has been a large source of systematics in the LEP physics analysis

F. Piccinini (INFN)

• it is never underestimated the importance of having predictions from different event generators, necessary for a robust assessment of the th. uncertanty

• even if several years ahead, it is never too early to start working on the next step in precision (see e.g. the case of SABS)

• it is never underestimated the importance of having predictions from different event generators, necessary for a robust assessment of the th. uncertanty

• even if several years ahead, it is never too early to start working on the next step in precision (see e.g. the case of SABS)

see next talk by Alan!