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� Cross sections stemming from e+e− collisions are plagued by

large logs that must be resummed

� One way to do that is by means of collinear factorisation;

another, with YFS

� Either way, the so-called precision tools currently available are not

sufficiently accurate to meet the expected precision targets



Consider a generic cross section, sufficiently inclusive:

σ = αb
∞
∑

n=0

αn
n
∑

i=0

n
∑

j=0

ςn,i,jL
iℓj

This is symbolic, and only useful to expose the presence of:

ℓ = log
Q2

〈Eγ〉2
, L = log

Q2

m2

Numerology: consider the production of Z → ll at:

•
√

Q2 = mZ

L = 24.18 =⇒
α

π
L = 0.06

0 ≤ mll ≤ mZ , ℓ = 6.89 =⇒
α

π
ℓ = 0.017

mZ − 1 GeV ≤ mll ≤ mZ , ℓ = 10.60 =⇒
α

π
ℓ = 0.026
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This is symbolic, and only useful to expose the presence of:

ℓ = log
Q2

〈Eγ〉2
, L = log

Q2

m2

Numerology: consider the production of Z → ll at:

•
√

Q2 = 500 GeV

L = 27.59 =⇒
α

π
L = 0.069

0 ≤ mll ≤ mZ , ℓ = 1.449 =⇒
α

π
ℓ = 0.0036

mZ − 1 GeV ≤ mll ≤ mZ , ℓ = 1.453 =⇒
α

π
ℓ = 0.0036



It takes a lot of brute force (i.e. fixed-order results to some O(αn)) to overcome

the enhancements due to L and ℓ.

It is always convenient to first improve by means of factorisation formulae:

dσ(L, ℓ) = Ksoft(ℓ;L)β(L)dµ (1)

= Kcoll(L; ℓ) ⊗ dσ̂(ℓ) (2)

Use of:

(1) YFS (resummation of ℓ)

(2) collinear factorisation (resummation of L)

Common features: K is an all-order universal factor; β and dσ̂ are
process-specific and computed order by order
(still brute force, but to a lesser extent)



YFS

Aim: soft resummation for:
{

e+(p1) + e−(p2) −→ X(pX) +
n
∑

i=0

γ(kn)

}∞

n=0

Achieved with:

dσ(L, ℓ) = Ksoft(ℓ;L)β(L)dµ

= eY (p1,p2,pX)
∞
∑

n=0

βn (Rp1,Rp2,RpX ; {ki}
n
i=0) dµX+nγ

This is symbolic, and stands for both the EEX and CEEX approaches
[hep-ph/0006359 Jadach, Ward, Was] that build upon the original YFS work [Ann.Phys.13(61)379]

EEX: exclusive (in the photons) exponentiation, matrix element level

CEEX: coherent exclusive (in the photons) exponentiation, amplitude level,

including interference



YFS

Aim: soft resummation for:
{

e+(p1) + e−(p2) −→ X(pX) +
n
∑

i=0

γ(kn)

}∞

n=0

Achieved with:

dσ(L, ℓ) = eY (p1,p2,pX)
∞
∑

n=0

βn (Rp1,Rp2,RpX ; {ki}
n
i=0) dµX+nγ

• Y essentially universal (process dependence only through kinematics); resums ℓ

• The soft-finite βn are process-specific, and are constructed by means of local

subtractions involving matrix elements and eikonals (i.e. not BN)

βn = αb
n
∑

i=0

αi
i
∑

j=0

cn,i,jL
j

• For a given n, matrix elements have different multiplicities, hence the need for

the kinematic mapping R



Collinear factorisation

Aim: collinear resummation for:
{

k(pk) + l(pl) −→ X(pX) +

n
∑

i=0

ai(kn)

}∞

n=0

ai = e± , γ . . .

with initial-state particles stemming from beams:

(k, l) = (e+, e−) , (k, l) = (e+, γ) , (k, l) = (γ, e−) , (k, l) = (γ, γ) , . . .

Master formula:

dσ(L, ℓ) = Kcoll(L; ℓ) ⊗ dσ̂(ℓ)

−→ dσkl =
∑

ij

∫

dz+dz− Γi/k(z+, µ
2,m2) Γj/l(z−, µ

2,m2)

× dσ̂ij(z+pk, z−pl, µ
2; pX , {ki}

n
i=0)

• Γα/β universal (the PDF); resums L

• The collinear-finite dσ̂ij are process-specific, and are the standard short-distance

matrix elements, constructed order by order (with BN). May or may not include

resummation of other large logs (including ℓ)



YFS vs collinear factorisation

Both are systematically improvable in perturbation theory:

in YFS the βn’s (fixed-order), in collinear factorisation both the PDFs

(logarithmic accuracy) and the dσ̂’s (fixed-order, resummation)

+ YFS: very little room for systematics. Exceptions are the kinematic mapping R, and

the quark masses (when the quarks are radiators). Renormalisation schemes??

– Collinear factorisation: systematic variations much larger. At the LL (used in

phenomenology so far) a rigorous definition of uncertainties is impossible

(parameters are arbitrary), and comparisons with YFS are largely fine tuned

– YFS: the computations of βn are not standard (EEX) and highly non-trivial (CEEX)

+ Collinear factorisation: the computations of dσ̂ij are standard



COLLINEAR FACTORISATION



Collinear factorisation

=

dσ = PDF ⋆ PDF ⋆ dσ̂

PDFs collect (universal) small-angle dynamics



All physics simulations based on collinear factorisation done so far are based

on a LL-accurate picture

This is not tenable at high energies/high statistics:

� accuracy is insufficient (see e.g. W+W− production)

� systematics not well defined

Step 0 was to upgrade PDFs from LL to NLL accuracy: increase of
precision, and meaningful systematics, in particular factorisation-scheme
dependence



z-space LO+LL PDFs (α log(Q2/m2))
k
:

∼ 1992

◮ 0 ≤ k ≤ ∞ for z ≃ 1 (Gribov, Lipatov)

◮ 0 ≤ k ≤ 3 for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)

◮ matching between these two regimes

◮ for e−

z-space NLO+NLL PDFs (α log(Q2/m2))
k

+ α (α log(Q2/m2))
k−1

:
−→ 1909.03886, 1911.12040, 2105.06688, 2207.03265 (Bertone, Cacciari, Frixione, Stagnitto, Zaro, Zhao)

◮ 0 ≤ k ≤ ∞ for z ≃ 1

◮ 0 ≤ k ≤ 3 for z < 1 ⇐⇒ O(α3)

◮ matching between these two regimes

◮ for e+, e−, γ, and light quarks

◮ both numerical and analytical

◮ factorisation schemes: MS and ∆ (that has DIS-like features)



Bear in mind that PDFs are fully defined only after adopting a definite

factorisation scheme, which is the choice of the finite terms associated

with the subtraction of the collinear poles

� 1911.12040 −→ MS

� 2105.06688 −→ a DIS-like scheme (called ∆)

At variance with the QCD case, there is also an interesting

renormalisation-scheme dependence of QED PDFs



Asymptotic MS solution

Non-singlet ≡ singlet; photon is more complicated

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1 − z)−1+ξ1
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log(1 − z) − log2(1 − z)

]}

where L0 = log µ2
0/m
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with:
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.



Asymptotic ∆ solution

Non-singlet ≡ singlet; photon is trivial

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1 − z)−1+ξ1

×

[

(

1 +
3α(µ0)

4π
L0

) ∞
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S1,p(z) −
α(µ0)

π
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∞
∑
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S2,p(z)

]

The Si,p(z) functions are increasingly suppressed at z → 1 with growing p.
The dominant behaviour is:

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1 − z)−1+ξ1

×

[

α(µ)

α(µ0)
+
α(µ)

π
L0

(

A(ξ1) + log(1 − z) +
3

4

)]

A vastly different logarithmic behaviour w.r.t. the MS case

However, Γ
(MS)
NLL − Γ

(∆)
NLL = O(α2)
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Key facts

� Both MS and ∆ results feature an integrable singularity at z → 1,

basically identical to the LL one

� In addition to that, in MS there are single and double logarithmic terms

� We believe that the ∆ scheme resums also soft logs

(to some unknown accuracy)

� Owing to the integrable singularity, it is essential to have large-z

analytical results: the PDFs convoluted with cross sections are obtained

by matching the small- and intermediate-z numerical solution with the

large-z analytical one



On top of increased precision, for sensible phenomenology we need:

[2207.03265; Bertone, Cacciari, Frixione, Stagnitto, Zaro, Zhao]

◮ evolution with all fermion families (leptons and quarks), including their respective

mass thresholds

◮ renormalisation schemes other than MS: α(mZ) and Gµ

◮ assess implications by studying realistic observables in physical processes



Sample results for:

e+e− −→ qq̄

e+e− −→ tt̄

e+e− −→ W+W−

with qq̄ production (massless quarks) restricted to ISR QED radiation.

The other two are in the SM

NLO accuracy, automated generation with MG5 aMC@NLO

(this version is now public, v3.5.0) [2108.10261; Frixione, Mattelaer, Zaro, Zhao]

What is plotted:

σ(τmin) =

∫

dσΘ

(

τmin ≤
M2

pp̄

s

)

, p = q , t ,W+

τmin ∼ 1 is sensitive to soft emissions (not resummed)



Dependence of PDFs on factorisation scheme

z < 1 z ≃ 1

Very large dependence at the NLL at z → 1 (O(1)); this is particularly significant

(but unphysical!) since the electron has an integrable divergence there

Electron at NLL in the Delta scheme close to the LL result (differences of O(5%))



Dependence of observables on factorisation scheme

qq̄ tt̄ W+W−

O(1) differences for PDFs down to O(10−4 − 10−3) for observables

In the MS scheme, huge cancellations between PDFs and short-distance cross sections

Behaviour qualitatively similar for different renormalisation schemes



Factorisation vs renormalisation scheme dependence

qq̄ tt̄ W+W−

Renormalisation-scheme dependence much larger than factorisation-scheme dependence,

with process-dependent pattern

Depending on the precision, renormalisation scheme is an informed choice; factorisation

scheme always induces a systematic



NLL vs LL

qq̄ tt̄ W+W−

Effects are non trivial

Pattern dependent on the process (and on the observable) as well as on the

renormalisation scheme



Impact of γγ channel

tt̄ W+W−

Essentially independent of factorisation and renormalisation schemes: a genuine physical

effect

Utterly negligible for tt̄, significant for W+W− – process dependence is not surprising



Thus:

◮ The inclusion of NLL contributions into the electron PDF has an impact

of O(1%) (precise figures are observable and renormalisation-scheme dependent)

◮ This estimate does not include the effects of the photon PDF

◮ The comparison between MS- and ∆-based results shows differences

compatible with non-zero O(α2) effects, as expected

(but: these are potentially large in the soft region)

◮ Renormalisation-scheme dependence is of O(0.5%)

If the target is a 10−some large number relative precision, these effects must be

taken into account



The power of automation

MG5 aMC@NLO, EW(+QCD) NLO accurate results, NLL PDFs

A few days of work (Selvaggi, Zaro)
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A few days of work (Selvaggi, Zaro)



Are we done?

Not quite

� What was done at the NLL gives one a blueprint to go to NNLL, if need

be. Most of the ingredients are available from QCD, but one still has to

figure out the z → 1 behaviour analytically

� In an orthogonal direction, one must achieve an exclusive generation,

at the desired logarithmic accuracy



Exclusive means the ability to retain the information on the dof’s of the

particles stemming from the (ISR) branchings that do not enter the

hard process

� Well established within YFS; not so much within collinear factorisation

� We cannot blindly apply MC@NLO or Powheg: hadron and lepton

PDFs have dramatically different behaviours

� Besides, there is currently no NLL-accurate ISR hadronic shower



A possible approach: follow BabaYaga (Carloni Calame, Montagna, Nicrosini, Piccinini)

◮ α is small

◮ Thus, resumming to all orders is not that different w.r.t. to summing

to a fairly high order (say, ∼ 15)

◮ First step: write the PDFs as recursive, MC-compatible, solutions of the

evolution equations, whose individual contributions can be associated

with events (i.e. with given number and types of branchings)

This now works for the non-singlet at the NLL accuracy
(Carloni Calame, Frixione, Montagna, Piccinini, Stagnitto)



MC vs analytical

This is the fractional difference between the known PDFs and those

generated exclusively

Agreement of O(10−7) up to z ≃ 1 − 10−10 (cutoff ǫ = 10−14)

This is NLL ∆; NLL MS and LL are analogous



Optimistic conclusions

There has been significant progress recently towards increasing the

precision of factorisation-based simulations

A lot remains to be done (e.g. exclusive simulations), but we are a
generation away: there is plenty of time



Pessimistic conclusions

There has been significant progress recently towards increasing the

precision of factorisation-based simulations

A lot remains to be done (e.g. exclusive simulations), but we are a
generation away: there is

�
�

�
�
�

plenty of too much time


