| essons learnt from H

SF

vectorizing Madgraph5 aMC@NLO
and porting it to GPUs

(NB! This talk focuses on computing issues - performance i.e. generation speed! - not physics)

Andrea Valassi (CERN IT)

Thanks to the whole madgraph4gpu development team!
Thanks to S. Frixione, Z. Was and the Les Houches 2023 participants for many useful discussions!

ECFA Higgs Factories: 2" Topical Meeting on Generators — Bruxelles, 22" June 2023
https://indico.cern.ch/event/1266492

[An update over the previous talk at the ECFA 15t Topical Meeting in November 2021 - https://indico.cern.ch/event/1078675]

https://indico.cern.ch/event/1266492
https://indico.cern.ch/event/1078675

Outline

 Motivation and overview

« Some results
—Performance: throughout speedups on CPU SIMD and on GPUs for LO processes
—Functionality: development status, usability for the experiments

« Some lessons learnt
— Applicability to other (existing and future) Monte Carlo generators
—Do’s and dont’s

« Some future prospects and challenges
—QCD (EWK?) NLO and beyond

—Non-technical challenges

e Conclusions

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 2126

Motivation 1: Monte Carlo Event Generators in WLCG computing

« HL-LHC computing needs are predicted to outpace resource growth: need R&D to improve software

 MC generators are essential for HL-LHC physics and use ~5-20% of ATLAS/CMS WLCG CPU budgets
—Speeding them up helps address the resource gap and may allow more complex (N)NLO multi-jet simulations

Run 4 extrapolations: CPU 24
L WL AU LN B B e e s+ sandors s MZ:::H;,

I ATLASPreliminary
100? CPU resource needs

Computing and Software for Big Science (2021) 5:12

oy
3
&
=
8 H)]
'EL 8020 ;fcef;g‘g‘ﬁ‘fs;sim + standard reco P https://doi.org/10.1007/541781-021-00055-1
2 | _* MC fast calo sim + fast reco Foow S]
§ ool (o) E ORIGINAL ARTICLE =
> - ! . o
5 | — Flat budget model ,« . pdates.
3 40 L (+20%/year) ¥V ra ® s
E o o Challenges in Monte Carlo Event Generator Software
o0l for High-Luminosity LHC

o= el T T T The HSF Physics Event Generator WG - Andrea Valassi' © - Efe Yazgan?(® - Josh McFayden'**® - Simone Amoroso® -
2018 2020 2022 2024 2026 2028 2030 2032 Joshua Bendavid' - Andy Buckley® - Matteo Cacciari’® - Taylor Childers® - Vitaliano Ciulli'® - Rikkert Frederix' -
Year Stefano Frixione'? - Francesco Giuli'® - Alexander Grohsjean® - Christian Giitschow'* - Stefan Hoche'” -
iy Came e (Colol CERH) Alssaieis Gl Grolame (CERR Walter Hopkins® - Philip liten'®'” - Dmitri Konstantinov'® - Frank Krauss'® - Qiang Li?° - Leif Lénnblad" -
WLCG meeting with LHCC referees, Feb. 2020 Fabio Maltoni?"2??. Michelangelo Mangano' - Zach Marshall® - Olivier Mattelaer?? . Javier Fernandez Menendez? -
= Stephen Mrenna'® - Servesh Muralidharan'® - Tobias Neumann'#24 . Simon Plitzer?® . Stefan Prestel' -
Stefan Roiser' - Marek Schénherr'® - Holger Schulz'” - Markus Schulz' - Elizabeth Sexton-Kennedy'” -

This plOt is prObably obsolete by now! Frank Siegert?® - Andrzej Siodmok?’ - Graeme A. Stewart’
Sherpa speedups >>2 were reported at ACAT

Received: 18 May 2020 / Accepted: 2 March 2021/ Published online: 22 May 2021

» Challenges and opportunities to improve MC software have been discussed in the HSF generator WG
—See the WG review paper prepared for the LHCC review in 2020: https://doi.org/10.1007/s41781-021-00055-1

r
A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 3/26

https://doi.org/10.1007/s41781-021-00055-1
https://indico.cern.ch/event/877840/contributions/3698881/subcontributions/296412

Motivation 2: GPUs and vector CPUs are underexploited in HEP

« GPUs provide most of the compute power in recent HPCs (e.g. Summit: 95%)
—Supercomputers at HPC centers are already heavily used by the LHC experiments on an “opportunistic” basis
—But only a small share of HEP software workloads can run on GPUs today

LEONARDO

Summit: NVidia V100 GPUs Aurora; Intel Xe GPUs Leonardo: NVidia A100 GPUs Juwels: NVidia A100 GPUs LUMI: AMD MI250X GPUs

—NB: at Higgs factories, maybe speed will not be an issue? But the need to use GPUs will probably be there!

« Most WLCG CPUs support wide vector registers (SSE4.2, AVX2 or above)
—But only a small share of HEP software workloads efficiently exploit CPU vectorization today

* These architectures are best suited to lockstep processing with limited branching... as in MC generators!
—MC generators are ideal candidates to exploit data parallelism in GPUs (SIMT) and vector CPUs (SIMD)!
—In this talk | describe how we achieved this for Madgraph5 aMC@NLO (via event-level data parallelism)

r
A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 4/26

https://www.top500.org/news/new-gpu-accelerated-supercomputers-change-the-balance-of-power-on-the-top500

Madgraph5 aMC@NLO (MG5aMC)

* One of the workhorses for event generation in ATLAS and CMS! LA
—— RANMAR
%% PUBLISHED FOR SISSA BY) SPRINGER i
o RECEIVED: May 20, 2014

ACCEPTED: June 25, ?014 FORTRAN:
PuUBLISHED: July 17, 2014) MADEVENT
e
The automated computation of tree-level and - ,
. . . . MOMENTA
next-to-leading order differential cross sections, and T
. . . . b
their matching to parton shower simulations S 5 i FORTRAN:
antiproton MATRIX1
J. Alwall,” R. Frederix,” S. Frixione,” V. Hirschi,® F. Maltoni,’ O. Mattelaer,? = u i
H.-S. Shao,® T. Stelzer,” P. Torrielli’ and M. Zaro* v
MATRIX ELEMENTS

https://doi.org/10.1007/JHEP07(2014)079

« MG5aMC production version is in Fortran
— Software outer shell: Madevent (random sampling, integration and event generation + 1/0O, multi-jet merging...)

— Software inner core: Matrix Element (ME) calculation code, automatically generated for each physics process

» Matrix Element calculations take 95%+ of the CPU time for complex processes (e.g. gg—ttggg)
 And ME calculations are precisely one component that can be “easily” accelerated on GPUs and vector CPUs...

ECFA Workshop, Bruxelles, 22 June 2023 5126

@ ' A. Valassi - Lessons learnt from vectorizing Madgraph5_aMC@NLO

https://doi.org/10.1007/JHEP07(2014)079

MG5aMC and the madgraph4gpu project

« madgraph4gpu: speed up Matrix Element calculation in MG5aMC on GPUs and vector CPUs
—Collaboration of theoretical/experimental physicists and software engineers — born in HSF generator WG
— Extensive details may be found in the vCHEP2021, ICHEP2022 and ACAT2022 conference proceedings
» See also the (Feb 2023) Computing Accelerator Forum presentation, https://indico.cern.ch/event/1207838

EPJ Web of Conferences 251, 03045 (2021) https://doi.org/10.1051/epjconf/202125103045)) PROCEEDINGS
CHEP 2021 JK S NN
Speeding up Madgraph5 aMC@NLO through
Design and engineering of a simplified workflow execution PoS (ICHEP2022) 212 CPU vectorization and GPU offloading:
for the MG5aMC event generator on GPUs and vector CPUs towards a first alpha release
Developments in Performance and Portability for
) _ . 5 MadGraph5_aMC@NLO A Valassi', T Childers?, L Field', S Hagebsck!, W Hopkins?,
Andrea Valassi'"*, Stefun Roiser'", Olivier Mattelaer?, and Stephan Hageboeck' O Mattelaer’, N Nichols?, S Roiser!, D Smith!, J Teig', C Vuosalo,
!CERN, IT-SC group, Geneva, Switzerland L Warteruan
T it 4 : - e Andrea Valassi,“" Taylor Childers,” Laurence Field,” Stefan Hagebéck," Walter .
Universits thonque il BEICI_um - Hopkins," Olivier Matylelaer,‘ Nathan Nichols," Stefan Roiser” a?ld David Smith“ httDS //aI’XIV OI’C]/abS/2303 . 18244
https://doi.org/10.1051/epjconf/202125103045 https:/doi.orq/10.22323/1.414.0212

« Two parallel approaches to reimplement the ME calculation
— (1) “CUDACPP?, initial CUDA/C++ targeting NVidia GPUs and SIMD on CPUS (now extended to AMD GPUs using HIP)

—(2) SYCL (and other Portability Framework: Kokkos, Alpaka) later addition supporting many GPUs/CPUS (now extended to SIMD)

« Several successive development steps over time (in each of cudacpp and PFs)
—(a) standalone applications, our initial prototype — we still use this to optimize the ME calculation alone
—(b) MadEvent-integrated applications, ~final goal — existing Fortran framework, with faster ME!
—(c) orchestration of many MadEvent applications — usable by LHC experiments, same interface with faster ME!

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 6/26

https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212
https://arxiv.org/abs/2303.18244
https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212
https://arxiv.org/abs/2303.18244
https://indico.cern.ch/event/1207838

OLD MADEVENT
(NOW: LHC PROD)
SINGLE-EVENT API

FORTRAN:
RANMAR

|
FORTRAN:
MADEVENT

MOMENTA

FORTRAN:
MATRIX1

MATRIX ELEMENTS

HH

MATRIX ELEMENT:
CPU BOTTLENECK
IN OLD MADEVENT

~
~
~,
~
~
~.
~.
~
~
~.
~
~
~
~.
~
~

First we developed
the new ME engines
in standalone applications

1. STANDALONE
(TOY APPLICATIONS)
MULTI-EVENT AP

MOMENTA

MATRIX ELEMENTS

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

Compute Accelerator Forum, February 2023
https://indico.cern.ch/event/1207838

Then we mOdIerd the existing
all-Fortran MadEvent
into a multi-event framework
and we injected the new MEs into it

2. NEW MADEVENT
(GOAL: LHC PROD)

MULTI-EVENT API

FORTRAN: FORTRAN: (Amdahl...)
SCALAR:
B NEW
FORTRAN: FORTRAN: BOTTLENECK?
MADEVENT MADEVENT

FORTRAN: | PARALLEL:
MATRIX1 MUCH FASTER!
ECFA Workshop, Bruxelles, 22 June 2023 7126

https://indico.cern.ch/event/1207838

MG5AMC+cudacpp: CUDA/C++, Fortran, bash, python...

4. COMPLETE WORKFLOW

3. MADEVENT INCLUDING CODE GENERATION
(N x APPLICATIONS) generate.. output.. launch
Jbin/generate_events SOON! (2023)

FORTRAN:
RANMAR
FORTRAN:
MADEVENT
Y

BEING TESTED (June 2023)

1. STANDALONE 2. MADEVENT
TOY APPLICATION (ONE APPLICATION)

OK! (2020-2021) OK! (2022)
FORTRAN:
RANMAR
MADEVENT Rﬁlil:fﬁ R
FORTRAN:
MADEVENT
i

MOMENTA

MOMENTA

MATRIX ELEMENTS MATRIX ELEMENTS

MG5AMCNLO GITHUB
+

MADGRAPH4GPU GITHUB

MG5AMCNLO GITHUB
A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023

8126

MadEvent with vectorized C++ for gg—ttgg (on a single CPU core)

Compute Accelerator Forum, February 2023

https://indico.cern.ch/event/1207838 ACAT2022 madevent Standalonp |
- MEs ITOT = IMad T IMEs Nevents/ ITOT N events/ IMEs (ONZ%E'E:%E?'TON)
g8 —1gyg .. !
precision [sec] [events/sec] [MEs/sec] e
Fortran(scalar) double | 37.3=1.7+35.6 | 2.20E3 (=1.0) | 2.30E3 (=1.0) — T
C++/none(scalar) double | 37.8=|1.7]+36.0 | 2.17E3J(x1.0)}| 2.28E3 2.37E3 —
C++/sse4(128-bit) | double | 19.4=[1.7|+ 17.8 | 4.22E3}(x1.9)} 4.62E3 4.75E3
C++/avx2(256-bit) | double 05=|1.7+ 7.8 | 8.63E3}(x3.9)}| 1.05E4 1.09E4 “————
512y = AVX512, ymm registers || C++/512y(256-bit) | double 8.9 =[1.8+ 7.1 | 9.29E3kx4.2)}l 1.16E4 1.20E4
P12z = AVXS12, zmmTegiSers ||~y 1/5127(512-bit) | double | 6.1=|1.8}+ 4.3 | 1.35E4lx6.1)]| 1.91E4 2.06E4
The latter is only better on C++/none(scalar) float 36.6 =|1.8+34.9 | 2.24E3)(x1.0)§ 2.35E3 2.45E3
nodes with 2 FMA units . .
(here an Intel Gold 6148) C++/sse4(128-bit) float 10.6 =(1.7+ 8.9 | 7.76E3}(x3.6)) 9.28E3 9.21E3
C++/avx2(256-bit) float 5.7=|1.8+ 3.9 | 1.44E4}(x6.6))| 2.09E4 2.13E4
\ 256-bit) float 53=[1.8+ 3.6 | 1.54E4)(x7.0)}| 2.30E4 §x10.0 2.43F4
Lo C++/512z)512-bit) float 3.9=[1.8/+ 2.1 | 2.10E4 3.92E4 Ix17.1 3.77E4
B FLOMT FLOKT FLOKT FLOAT ME speed_up ~ X8 (double) and_ x16 (float) over scalar Fortran
Our ME engine reaches the maximum theoretical SIMD speedup!

JRVeY FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT | FLOAT FLOAT
DOUBLE DOUBLE DOUBLE DOUBLE

AVX512 FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT | FLOAT FLOAT | FLOAT FLOAT FLOAT |FLOAT FLOAT FLOAT | FLOAT FLOAT
DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

bits

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

(Amdahl’s law)

ECFA Workshop, Bruxelles, 22 June 2023

Overall speedup so far~ x6 (double) and x10 (float) over scalar Fortran

9/26

https://indico.cern.ch/event/1207838

Compute Accelerator Forum, February 2023
https://indico.cern.ch/event/1207838

MadEvent/CUDA for gg—ttggg

madevent standalone 2 MADEVENT
CUDA grid size ACAT2022 8192 16384 ok @z
_ MEs ITOT = tMad + IMEs Nevents/TTOT Nevents /TMEs [ed
88 11888 precision [sec] [events/sec] [MEs/sec] M;o?g;"
Fortran double | 1228.2 95.080+ 1223.2 | 7.34E1 (=1.0) | 7.37El (=1.0) — — i
CUDA double 12.1 § 4.61E3 (x63) § 7.44E3 (x100) | 9.10E3 | 9.51E3 (x129) T
CUDA float 5.4 §7.73E3 (x105) 1.66E4 (x224) | 1.68E4 | 2.41E4 (x326)
CUDA mixed 9.6 | 545E3 (x74) | 9.43E3 (x128) | 1.10E4 | 1.19E4 (x161)

We are lucky! The more complex the physics process, the lower the relative overhead from the scalar Fortran MadEvent - here only 0.5%
Amdahl’s law limits the overall speedup to x200 (parallelizable p=0.5%), and we achieve x60 (double) or x100 (float) in the overall speedup!

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 10/ 26

https://indico.cern.ch/event/1207838

Some very new PRELIMINARY results (last week!...)

grep ELAPSED "1s -tr tlau/logs_ggtt*/*txt"
tlau/logs ggtt CUDA/output.txt:ELAPSED: 24 seconds
tlau/logs_ggtt FORTRAN/output.txt:ELAPSED: 23 seconds

tlau/logs_ggtt CPP/output.txt:ELAPSED: 22 seconds ~ Same physics results in

tlau/logs_ggttg CUDA/output.txt:ELAPSED: 35 seconds FORTRAN. CUDA. CPP

tlau/logs_ggttg FORTRAN/output.txt:ELAPSED: 49 seconds from the same random number

tlau/logs ttg CPP/output.txt:ELAPSED: 36 seconds .

tlau/logs:gzttzé_CUDA/oEtput.txt:ELAPSED: 116 seconds (Some final tests underway...) (N XsAggfli\ll\?l\lgNS)
tlau/logs_ggttgg FORTRAN/output.txt:ELAPSED: 857 seconds _ Jbin/generate_events
tlau/logs_ggttgg CPP/output.txt:ELAPSED: 280 seconds Note: Fortran here is NOT what generate_evenis
tlau/logs ggttggg CUDA/output.txt:ELAPSED: 2705 seconds the LHC experiments are using

tlau/logs_ggttggg FORTRAN/output.txt:ELAPSED: 57322 seconds - It has a multi-event API

tlau/logs _ggttggg CPP/output.txt:ELAPSED: 17034 seconds - It has -O3 —ffast-math |

* On the most complex gg to ttggg !

« CPP with “512y” SIMD ‘ RANMAR
—around x 3.4 faster than FORTRAN ‘ ‘ ‘ FORTRAN:
| MADEVENT
+ CUDA (V100 GPU vs 4-core CPU “"’”r 1 ‘ ‘
(Vs 4-core) u""r e 4/50, “1
—around x 21 faster than FORTRAN o b@tteo‘”d e —
—(was ~ x 60 over a single CPU core) =
"I A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 11/26

For very brave alpha testers...

MG5AMCNLO GITHUB
+
1. Dounload mgdamcnlo MADGRAPH4GPU GITHUB

cd <userdir>
git clone -b gpucpp --zingle-branch git@gzithub,com:mngbanchlo/mghancnlo

export. MGEAMC_HOME=#{pwd ! /mg5anchlo

2, Download madgraphdgpu) L)
g <usardird NB: There are still many process-specific issues to debug!
git clone -b master --zingle-branch git@gzithub,com:madgraphS/madgraphdgpu,zit

od madgraphdgpu/spochi/cudacer/ Color mismatch in LHE files for gg to ttggg (internal test process)
3. Generate your favorite process Wrong he||c|ty f||ter|ng in gg to uu

./CODEGEN/generatefndConpare sh —-nad USER_gg_tt -c 'generate g g > £ t*' Floating point exceptions in pp to ttW (suggested by Francesco)

cd USER_gz_tt.,mad Generation and build errors for SUSY, EFT and no-b-mass-loop

da, Launch your procesz for FORTRAM
ged -1 "s/.* = cudacpp_backend/FORTRAN = cudacpp_backend/" Cards/run_card,dat And need tunlng Of hOW many events are Used In Survey/reflne StepS

echo "r=21" » SubProcesses/randinit
Jbinfgenerate_events -f

b, Lanch uour process Far CFP teith FH2) We have some testing, tuning and debugging to do...

zed -i "s/.% = cudacpp_backend/CPFP = cudacpp_backend/" Cards/ run_card,dat
echo "r=21" > SubProcesses/randinit
AVH=avx2 MGEAMC_CARD_PATH=#${puwd?/Cards ,/bin/generate_events -f

dc, Launch your processz for CUDA
sed -i "s/,* = cudacpp_backend/CUDA = cudacpp_backend/" Cards/run_card.dat

echo "r=21" » SubProceszses/randinit
MEEAMC_CARD_PATH=#{pud) Cards , binfgenerate_svents -f

For more details:
https://github.com/madgraph5/madagraph4qgpu/blob/
master/epochX/cudacpp/README CODEGEN.txt

@ ' A. Valassi - Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 12 /26

https://github.com/madgraph5/madgraph4gpu/blob/master/epochX/cudacpp/README_CODEGEN.txt

What is a MC ME generator? A simplified computational anatomy

Monte Carlo sampling: randomly generate and process (at least at LOY)

MANY different events (‘phase space points”) 0 G
This can be parallelized (SIMT/SIMD and multithreading)

For each event:

MC MATRIX
1 . PSEUDO\RANDOM ELEMENT
O' tout: d b : GENERATOR
utput: random numbers (e.g. MG5aMC)
2. ., PHASE SPACE
Input: random numbers SAMPLING SHOWERING AND
Output: particle 4-momenta : + optional t cut HADRONIZATION
optional event cuts GENERATORS
3. B (e.g. PYTHIA)
Input: particle 4-momenta s T PARTON
Output: Matrix Element (ME) : e E SHOWERS
CPU BOTTLENECK PHASE SPACE T w
SAMPLING WEIGHTED EVENTS e HADRONISATION
OPTIMISATION {EVT i, W_i} i AND DECAY
. e PARﬁCLE
. MONTE CARLO MONTE CARLO = e
INTEGRATION UNWEIGHTING :
(NB: “Matrix Element” is an v W = DETECTOR
element of the scattering matrix... CROSS-SECTIONS etc... UNWEIGHTED EVENTS ::3: SIMULATION
not a linear algebra concept!) (AVG W_i, MAX W_i) {EVT i, W_i=1} :
: (GEANT4)

Physics output: cross-section and LHE event file

,' A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 13/ 26

MG5aMC data parallelism: design for lockstep processing!

* In MC generators, the same function is used to compute the Matrix Element for many different events
—ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)
—Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)

PSEUDO RANDOM Py
g NUMBERS
9| esosc00e [\ ~]]
g +
= PHASE SPACE Lo
%5 SAMPLING | i
: MOMENTA
—]
5 GPU \ time | It
n
SIMT CPU I A1 ‘ A2 ‘ A3 ‘ Ad I A+4
X ELEMENS | SIMD R ||
| (I [eo el med] o]
GPU SIMT (Single Instruction Multiple Threads) CPU SIMD (Single Instruction Multiple Data)
Lockstep: all threads in a warp follow the same branch Lockstep: same op for all data in a vector register
Minimum parallelism: 32 threads in a warp (NVidia) Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 14/ 26

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

ANY MC event generator Is a great fit for GPUs and vector CPUS!

(at least at LOY)

» Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw

* From a software workflow point of view, these are used in two rather different cases:

g

—| Dataparallelism (NB: MULTI-EVENT API) |

MC SAMPLING

INPUT 0@

ME event generators*
(before ME calculation):
- MC integration
(cross sections)
- MC generation
(event samples)

SAME CALCULATION
ON DIFFERENT DATA!

OUTPUT

[@ Lockstep processing
Good for SIMT/SIMD

*NB: the CPU-intensive ME calculation comes
before PS, fragmentation, detector simulation

INPUT MC DECISIONS [@
Detector simulation (Geant4)
- Particle/matter interaction
DECISION

(when? how?)

@ - Particle decays (when?)

»

A 4

OUTPUT

_ _ Event generators*
Stochastic branching I (after ME calculation):
Bad for SIMT/SIMD_§ _ MC unweighting (keep/reject)

Parton showers (PS)
- Fragmentation and decays

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

~Z

ECFA Workshop, Bruxelles, 22 June 2023 15/ 26

Do's and dont's - two simple recommendations

* (1) Design computational units with well-defined inputs and outputs!
—Beware of hidden inputs and outputs from common blocks and static data...

/JCOMMON/... mp | S ON m—) /COMMON/...

REENTRANT FUNCTION
N q (NO STATE! THREAD SAFE!) ‘ ouT

* (2) Keep data parallelism in mind from the start: move from single-event APIs to multi-event APIs!
—Well-defined input array of many events, well-defined output array of many events

1IN mmmp | PROCESS-eN==vENT | @) 1 OUT
An additional technicality: prefer Structure-of-Array
‘ (SOA) memory layouts for the inputs and outputs!
[Strictly needed only internally for SIMD and useful for
N IN PROCESS N EVENTS N OUT GPUs, but good to have also in the API of the function]

If vou design a new Monte Carlo from scratch, these are MUST's, not SHOULD's!

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 16/ 26

What about loops? And how many are N events?

 You will still need to loop over multiple sets of N events
—And the internal implementation of N-event processing may still involve some loops!

(N x M EVENTS)
4 NIN PROCESS N EVENTS

LOOP OVER 1..M //

"Process N events": three implementation examples (there can be more!)

1. CPU scalar: internally loop over N events, process each one individually

2. CPU vector: hold the events in a SIMD vector of size N,

3. GPU kernel: each of the N events is processed by one of N GPU threads

N OUT

1111

* N should be at least as big as the number needed to "fill" the GPU or the CPU vector register
—On a vector CPU: at most 16 floats in a 512-bit AVX512 register
—On a GPU: we need ~16k threads for complex processes (500k for simpler ones!)

Matrix
5E5 . | Double precision
NVidia V100

s . | (2560 FP64 cores)
Tl

PPPPPPP
3E5

* NB: | focus on event-level parallelism, but other options exist :
—In MG5AMC we will investigate using 1 GPU thread per helicity per event... et et

1ES.

nnnnnnnnnnnnnnnnnnnnnnnnn

,' A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 17126

Helicity amplitudes — same code in CUDA and in vectorized C++

- CUDA: scalar complex —

- C++, no SIMD: scalar complex —

- C++, with SIMD: vector complex —
P X 2,

Formally the same code for three back-ends (cxtype sv represents three types)

typedef thrust::complex<fptype> cxtype; // two doubles: RI
typedef std::complex<fptype> cxtype; // two doubles: RI
class cxtype_v { fptype v m_real, m_imag; // RRRRIIII (SOA)

const cxtype_sv V3[], // input:
const cxtype COUP,

cxtype sv*® vertex) [/ output: amplitude
{

mghebug(@, _ FUNCTION__);
const cxtype cI(©., 1.);

(Fifa] = (F2[2] = (v3[2]

(*vertex) = COUP * - cI * TMPO;
mghebug(1, _ FUNCTION _);
return;

}

__device
void FFV1_8(cnnchcxtype_svlFl[]; // input: wavefunctioni[e]
const cxtype_sv F2[], f/ input: wavefunction2[6]

wavefunction3[6]

—

1. IXXXXX

1. OXXXXX

2. FFV1PO_3
1.

1 FFV1_0:
- DRXXRX helicity amplitude
% revi o || for the yp*u- vertex
OXXXXX Automatically
al generated!

const cxtype sv TMPO = (F1[2] * (F2[4] * (v3[2] + V3[5]) + F2[5] * (V3[3] + cI = (v3[4]))) +
(F1[3] * (F2[a] * (v3[2] - cT * (v3[4])) + F2[5] * (v3[2]
- v3[5])

- V3[5])) +
- F2[3] * (v3[3] + cI * (v3[4]))) +

“+" is the usual sum of two
(thrust/std) scalar complex,
or the user defined sum of
two vector complex

F1[5] = (F2[2] * (-V3[3]_CI ¥ (va[4])) + F2[3] * (v3[2] + v3[5])))));

inline
cxtype_v operator+(const cxtype v& a, const cxtype v& b)
{

return cxmake(a.real() + b.real(), a.imag() + b.imag{));

}

#ifdef __clang__

C++ SIMD: gcc / clang

. . 1
compiler vector extensions ****

#endif

typedef fptype fptype_v _ attribute_ ((ext_vector_type(neppV))); //

typedef fptype fptype v _ attribute ((vector_size (neppV*sizeof(fptype)))); //

RRRR

/

RRRR

7
w A. Valassi — Reengineering MadgraphS_aMC@NLO for GPUs and vector CPUs

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

* Old slide! The new code is
different, the idea is the same!

 Formally the same code for
CUDA and scalar/vector C++

—hide type behind a typedef
—add a few missing operators

SIMD in CUDA/C++ uses
compiler vector extensions!

Flexible design: being reused

vCHEP — 19 May 2021 13

also for vectorized SYCL!

tvpedes sycl:vec<fptyvpe, MGONGPU_MARRAY_DIM> fptvpe_sv;

ECFA Workshop, Bruxelles, 22 June 2023 18/ 26

MG5AMC is not alone — SHERPA on GPU (BlockGen)

107! g

T T T T T
BlockGen-COx, 7|

el * Note: unlike MG5aMC, based on Feynman diagrams,
[e SHERPA uses ~Berends-Giele recursion relations

—Allows computations with more final-state jets

1074

107 F

Time per event [s]

oo * No ongoing effort on CPU vectorization (yet)

1077 F

1078 it

5 * Planned Les Houches project: a detailed comparison
! of software performances of MG5AMC and SHERPA

— Tentative process list: pp to tt(0-3jets) or Z(0-3jets)
Figure 7: The timings for various GPU-based algorithms are compared as a function . .
ofggluon rnultiplicitff. All algorithms were rungon an NVIDIA Vp100 (16 GB global - PreVIOUSIy; an Old WISh Of the HSF generator WG

, S, 6 he). : : L
memory, 5,120 CUDA cores, 6144 KB L2 cache) —(NB: not a comparison of physics results or distri M

10—9 I 1 | l |
2 3 E 5] 6

Nout

-1

From http://dx.doi.orq/10.21468/SciPostPhysCodeb.3

ECOLE DE

PHYSIQUE
More recent results were presented this week DES HOUCHES

in Les Houches by Max Knobbe

,' A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 19/ 26

http://dx.doi.org/10.21468/SciPostPhysCodeb.3

MC@NLO: https://doi.org/10.1088/1126-6708/2002/06/029
N LO Ioops Z. Wettersten (+ OM, SR, AV, R. Schoefbeck) Matching NLO QCD and parton showers (avoid double counting)
)

Marco Zaro — https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Pavia2015
- So far we have only worked on LO QCD processes! NG parton shower >
. . . n _ n . . n . I'rH—l
« NLO QCD processes are more computationally intensive donio = doio + doy f dby o,
—More Feynman dlag rams —deggNW . ['/d‘I)ﬂ(B+V+./d(P1MC‘)] I (O '/dtﬁnﬂ(RfMC‘) 15 0)
—And especially, loop diagrams! (quad precision needed?) S:events H-events
—-A matChing procedure (MC@NLO) must also be applled S and H events: two separate sets of events (different matrix elements)

Integral = S+H is positive — but individual events can have negative weights

* We should be able to compute Born and Real emission contributions in our vectorized C++ and CUDA
—We should also be able to handle NLO matching using the current MadEvent based infrastructure
—The main challenge will be understanding the computational impact of loops (Amdahl bottleneck?)

* News (for me!) from some discussions last week at Les Houches

—Branching should not be an issue at NLO, but will be at NNLO? Local subtraction schemes...

» What the code does depends on where you are in phase space...
—NLO and NNLO needs “complicated” functions like polylogarithms (are these supported in SIMD and CUDA?)
—Libraries exist to emulate quad precision (even for SIMD and CUDA), we can look at these (strip them down?)

« What about EWK beyond-LO corrections?
—If I understand correctly, our approach would be portable, and the same types of challenges would apply?

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 20/ 26

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Pavia2015
https://doi.org/10.1088/1126-6708/2002/06/029

Z. Wettersten (+ OM, SR, AV, R. Schoefbeck)

ALEPH Collaboration, Measurement of the W mass by

R n I t n
direct reconstruction in eTe” collisions at 172 GeV, Phys

1_ Generate S|gna| Sample at Href’ Wlth WI(Href):l Lett. B 422 (1998) 384. doi:10.1016/S0370-2693(98)00062-8 B
I D e wi(my, Iy) =
(By definition, background does not depend on 0) _ | ALEPH el

2. Full detector simulation
(MC truth event properties x,("'¢) — observed event properties Xx;) N

3. Reweight each event by matrix element ratio
Probg) (x{™)) | M (6, x{"™)? iy
Prob g

|%(HEW9FW9pflapf29pf3:pf) | 2

L (myC Ty pl.p7.pl.pt)1?

s
=]

Old technique, renewed interest!

Events per 1.5 GeV/c’
.
5

68 70 72 74 76 78 80 82 84 86

(x9)) M (Oror, X[TTUO) 2

w; () =

ref)

« Advantages of reweighting: savings in computing costs (no detector simulation), fewer statistical fluctuations

* In practice for MG5AMC: read in an LHE file, add weights, write back the modified LHE file

— Will use the new matrix element engine in CUDA/C++
— For further details and a status report: Zenny’s poster at CHEP 2023

« Theoretical and technical challenges
— NLO reweighting (see O. Mattelaer, https://arxiv.org/abs/1607.00763)
— Coverage of phase space in the new parameter set
— Reweighting for a given event-by-event helicity and color

@ ' A. Valassi - Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 21/ 26

https://arxiv.org/abs/1607.00763

AV

Reweighting and weight derivatives in parameter estimation

1 8"&)?;
« Weight derivative: event-by-event sensitivity to the measured parameter Yilo = (J 89)
v 0

 First: makes it possible to determine the limit error with an ideal detector, and how much (0 to 1) we do worse
—with a given luminosity at a FCC-ee, what is the best theoretically achievable measurement on Higgs couplings?

Knowing one’s limits: maximum achievable

information with an ideal detector Niot Stot e
|:> . _ ideal) __ 2 __ 2 FIp— 2 _ (49 S o 100%
- ldeal acceptance, select all signal events S_ =S, Z = Y = Y Z{ideal) (A0 — ¢
- Ideal resolution, measured v; is that from MC truth i—1 i—1

(implies ideal rejection of background events, »=0)

» Second: can be used as a basis for an “improved optimal observable” ML method

Data observable

Weight Derivative event properties xPATA _ _
Regression https://doi.org/10.1051/epjconf/202024506038
|:> |:> Fit WDR regressor https://zenodo.org/record/3715951
,Yi(MC truth) — q(Xi(MC)) qi(DATA) = q(Xi(DATA))

qM9 = q(M)

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 22 [26

https://doi.org/10.1051/epjconf/202024506038
https://zenodo.org/record/3715951

23 /26

gse|dsun uo JIap] ap uelan Ag oloyd

ECFA Workshop, Bruxelles, 22 June 2023

@)
.|
&
O
=
a_
o)
<
o
©
S
(=)
°
@
=
o
£
N
S
o
+—
O
o
>
£
o
=
+—
m
@
k)
(%))
c
o
(79}
(72}
e
-
|
‘»
0
@
@
>
<

https://unsplash.com/@gerandeklerk?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/images/animals/elephant?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Scientific Computing and Software Collaborations
(or: working on the bridge between different units and communities)

* A big lesson learnt from porting MG5AMC to GPUs: you need collaborations with a mix of skills!

* Developing Monte Carlo generator software: which kind of job is this? In which box should it be?

— A scientist’s job? A theorist’s job? An experimentalist’s job? A computing engineer’s job? R

—Do we need dedicated Scientific Computing units in our labs and universities? 7

—Do we need to have dedicated career paths similar to Research Software Engineers? T
B |

 The challenge: attracting, training, retaining people with the right competencies and interests

— Can we attract and motivate young theorists to work on software and computing optimizations?

* A theorist colleague | was recently talking to: “We had an opening for working on software optimizations for our Monte
Carlo generator. The only suitable candidates were two theorists. But they were concerned that working on software
optimizations would harm their future careers as theorists and refused the job. In the end, we did not hire anyone.”

— Can we attract and motivate young software engineers to work with us instead of tech or finance companies?

| am only reporting a problem here... | do not have a magic-wand solution ®

,' A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 24 1 26

... and finally...

» Upcoming: Workshop on software acceleration of MC event generators
—Where? at CERN

—When? in ~October-November 2023 (any time constraints with important MC events?)
—Organised together with LPCC, MCnet, HSF...

« Contact me if you are interested and/or if you have any suggestions

H F LPCC
LHC Physics Centre at CERN

_;-s\’/f///
—MCnet

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 25/ 26

Conclusions

* The (LO?) Matrix Element calculation in any generator can be efficiently parallelized in SIMD or GPUs

« Our reengineering of MG5aMC is close to a first fully functional alpha release for LO QCD processes
—The new ME calculation is integrated in MadEvent — we get the same cross section and LHE files as in Fortran!
—We are now completing and testing the full integration in MG5AMC's multi-channel bash/python machinery

* On CPUs, in vectorized C++ we reach the maximum x8/x16 (double/float) SIMD speedup for MEs alone
—The speedups achieved for the overall workflow are slightly lower due to Amdahl's law, but not much
—Example: our current overall speedup is x6/x10 (double/float) for gg—ttgg (on one CPU core)

* On GPUs, using CUDA we achieve O(100-1000) speedups for MEs alone over one no-SIMD CPU core
—The speedups may be much lower due to Amdahl's law, but we are improving on that
—Example: our current overall speedup is x60/x100 (double/float) for gg—ttggg on an NVidia V100

 Future plans include QCD NLO (as well optimizations for heterogenous GPU+CPU systems)
—Our approach (with similar limitations and challenges) should also apply to EWK higher-order corrections

And don't forget the elephant in the room: attract and motivate young competent people at the interface of science and software!

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 26/ 26

BACKUP
SLIDES

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 27 1 26

Our Iinternal Fortran-to-C++ interface: multi-event and stateless!

O O O 0O O 0O O O O O 60O 60O

PBRIDGE: the
MOMENTA: the
GS: the
RNDHEL: the
RNDCOL: the
CHANID: the
MES: the
SELHEL: the
SELCOL: the

INTERFACE

Execute the matrix-element calculation "sequence" via a Bridge on GPU/CUDA or CUDA/C++.

memory address of the C++ Bridge

input 4-momenta Fortran array

input Gs (running QCD coupling constant alphas) Fortran array
input random number Fortran array for helicity selection

input random number Fortran array for color selection

input Feynman diagram to enhance in multi-channel mode if 1 to n (disable multi-channel if @)

output matrix element Fortran array
output selected helicity Fortran array

output selected color Fortran array

SUBROUTINE FBRIDGESEQUENCE(PBRIDGE, MOMENTA, GS,
& RNDHEL, RNDCOL, CHANID, MES, SELHEL, SELCOL)
INTEGER*8 PBRIDGE
DOUBLE PRECISION MOMENTA(*)
DOUBLE PRECISION GS(*)
DOUBLE PRECISION RNDHEL(*)
DOUBLE PRECISION RNDCOL(*)
INTEGER*4 CHANID
DOUBLE PRECISION MES(*)
INTEGER*4 SELHEL(*)
INTEGER*4 SELCOL(*)
END SUBROUTINE FBRIDGESEQUENCE
END INTERFACE

This outputs the squared sum of
amplitudes (real number)

As discussed with Simon, for
HERWIG and other generators
it may be useful to also expose
an API that gives the patrtial
amplitude (complex number) for
a given colour structure

r
A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

ECFA Workshop, Bruxelles, 22 June 2023 28126

: : (3) Outlook
The (Very) Iong VerSIOn! _ Outllne Towards the upcoming first LO alpha release

WIP, plans, ideas for more speed and features

(1) Inception Multithreading and heterogeneous strategies
Motivation, overview, how it all started More compilers, more CPU and GPU architectures
Why speed up MC generators? Eeyc’”d LO: loops and NLO

vent-by-event reweighting
Why Madgraph5_aMC@NLO (MG5aMC)? Faster smaller kernels, faster builds
Why GPUs and vectorization? Tensor cores, CUBLAS

Other ME generators? Parton showers?

| | o
Q4)\Q Q3 Q4) g 202 Ql Q2 Q3 Q4N\QL Q2 Q3 Q4
20 Q 5 (D LINCHNCE) D 2023 2024
| I
(2) Implementation

Architecture design, technical choices, progress so far

Beyond e*e”—u*tu~ : from discrete “epochs” to fast-turnaround code generation
Standalone CUDA/C++, memory layout, SIMD, GPU kernels

Beyond standalone toys: full functional integration with Fortran MadEvent
Recent performance improvements: AVX512, Amdahl, mixed precision...
Alternative to CUDA/C++: abstraction layers (Alpaka, Kokkos, Sycl)

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 29/ 26

|
1 Q2

20

202 20
1 Q2 Mol Q2
|

(1) Inception: motivation, overview, how it all started HSF

Apr 2020: HSF Generator WG review paper vl
May 2020: start of LHCC review of HL-LHC Software and Computing

Mar 2019: HSF/OSG/WLCG “HOW” workshop JLAB Sep 2020: HSFE generator WG presentation to LHCC
review of KEK GPU work on MG5AMC
N\
Q4 Q1 Q21 Q3JQ4)

2080 2018, T L S >

01 2020: start of madgraph4gpu project (Stefan Roiser, Olivier Mattelaer, AV)
Feb 2020: Stefan’s first commits on gitlab, first standalone cuda/C++ executable

Nov 2018: HSF Generator Worksﬁw

N\

* The work on generators triggered by the HSF and the LHCC review created many opportunities
— A heightened sensitivity to the need to modernize and speed up HEP software (including generators)
— A breakdown of the computational anatomy of ME event generators and of the ways they can be improved
— A review of previous work on porting Madgraph5 aMC@NLO to GPUs (2008-2013, mainly at KEK)
—An opportunity for theorists, experimentalists and software engineers to meet and start collaborating...

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 30/ 26

https://indico.cern.ch/event/751693
https://arxiv.org/abs/2004.13687
https://cds.cern.ch/record/2725487
https://indico.cern.ch/event/759388/contributions/3303060
https://zenodo.org/record/4028835

(2) Implementation: design, technical detalls, progress so far

PSS
LY OF SCIENCE

PoS (ICHEP2022) 212

Developments in Performance and Portability for
MadGraph5_aMC@NLO

i,“* Taylor Childers,” Laurence Field,” Stefan Hageback,’ Walter

Andrea Valassi,
Hopkins,” Olivier Mattelaer,” Nathan Nichols,” Stefan Roiser” and David Smith

https://doi.orq/10.22323/1.414.0212

Jul 2022 ICHEP:
CUDA/C++ madevent gg—ttgg
Kokkos/SYCL standalone gg—ttgg

Oct 2021: full code generation
CUDA/C++ standalone gg—ttgg

Oct 2022 ACAT: CUDA/C++ madevent gg—ttgg
performance studies (Amdahl, MT, heterogeneous)

NEW!
Jan 2023: CUDA/C++ madevent gg—ttgg
functionally complete LHE files

Feb 2020: project starts
CUDA and (scalar) C++
standalone ete”—putu~

Jun 2021 vCHEP:

Dec 2020: C++ vectorization

CUDA/C++ standalone ete™—u*tu~

EPJ Web of Conferences 251, 03045 (2021) https://doi.org/10.1051/epjconf/202125103045

CHEP 2021

Design and engineering of a simplified workflow execution
for the MG5aMC event generator on GPUs and vector CPUs

Andrea Valassi'**, Stefun Roiser'", Olivier Mattelaer?, and Stephan Hageboeck'

!CERN, IT-SC group, Geneva, Switzerland
Université Catholique de Louvain, Belgium

https://doi.org/10.1051/epjconf/202125103045

 Disclaimer - again! Above and in the rest of this talk | focus on the CUDA/C++ implementation

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

ECFA Workshop, Bruxelles, 22 June 2023

31/26

https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212

(3) Outlook: WIP, plans, ideas for more speed and features

Q1-Q2 alpharelease?...

2022 Q1 Q2 03 04\0Ql 02 Q3 04
s/ 2023 2024
From Q3 2022: Zenny’s PhD work g

(reweighting, NLO...)

Sep 2022 HEPscore
benchmarking workshop

Sep 2022 Lugano hackathon
(sub-event-level parallelism...)

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 32126

https://indico.cern.ch/event/1170924/contributions/4954511/

CUDA/C++: a single source code approach (so far...)

« The main difference between our CPU (C++) and GPU (CUDA) implementations is the following
—on the CPU, all computations and all memory access takes place on the host
—on the GPU, it is necessary to distinguish computations and memory accesses on the host and on the device

« Within the GPU code, the amount of code that is specific to NVidia/CUDA is minimal
—Memory allocations (cudaMalloc), encapsulated within host/device buffer classes
—Kernel executions (<<<...>>>), encapsulated within very few specific classes
— A few specific types or features (thrust::complex, curand, cuBLAS), also encapsulated in specific classes

* The rest of the code is (at least formally — see example later) ~identical for C++ and CUDA!
—There are almost more differences between scalar and vector C++ code...

» Therefore, we presently use a single source code approach for CUDA/C++ (with #ifdef CUDA)
—We might review this later on — as it sometimes imposes slightly unnatural choices, and may hinder readability
—But so far it has allowed us to make rapid progress for both CUDA and C++ in parallel!

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 33/26

— Memory layouts — AOS, SOA, AOSOA

CUDA/C++: Matrix element calculation (simplified example)

MEKERNELS — inputs[4*Npar*Nevt] = (X,y,z,E)-momentum of Npar particles for Nevt events (n-dim array, substructure)
— outputs[Nevt] = matrix element for Nevt events (1-dim array, no substructure)

MATRIX ELEMENTS

Example: Npar=6 patrticles for the 2—4 process gg—ttgg

We have experimented with three possible memory layouts for momenta

(1) Array-of-Structures AOS: momenta[Nevt][Npar][4]

(2) Structure-of-Arrays SOA: momenta[Npar][4][Nevt]

(3) AOSOA: momenta[Npag][Npar][4][Nepp] with Nevt = Npag (“pages”) * Nepp (“events per page”)
We are using AOSOA’s as the current default — but this is still largely configurable

* For CPU vectorization, AOSOAs (or SOAs) are absolutely mandatory!
—We use an AOSOA with Nepp equal to the SIMD vector size NeppV — and an aligned malloc is needed too!
—For performance comparison we also build a no-SIMD mode with Nepp=1, which is effectively an AOS

* For GPUs (1 event per thread), AOSOAs are faster (fewer memory accesses) but not strictly necessary
—We use Nepp=4(8) for doubles(floats) so that each page is 32 bytes (the “sector” size, or L2 cache line size)
—For a given number of “requests”, AOS uses 4 times more “sectors” (transactions) than AOSOA with Nepp=4

« Coding for SIMD is more complex than coding for GPUs...

,' A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 34/ 26

7

Monitoring GPU memory access — NSight Compute

» Explicitly collect two relevant profiler metrics in NSight Compute
—“requests” : [1tex__t requests_pipe_Isu_mem _global op Id.sum
—“sectors” (i.e. transactions, network roundtrips): [1tex_ t sectors pipe Isu_mem_global op ld.sum
—this is from old tests in August 2020 (issue #16), the profiler metrics names may have changed since then

'b eemumuAY_cu_0814_1726_b16384 t32 i12_BASELINE.ncu-rep X :'.b eemumuAV_cu_0814_1725_b16384_t32 i12 SOA.ncutep X l':beemmmAV_cu_Oe14_1721_b16384_t32_i12_AOS.ncufep X

Page: Details v | Launch: 3- 502 -sigmaKin v ¥ ~ AddBaseline |~ | ApplyRules Copy as Image

oS

Current 502 - sigmaKin (16384, 1, 1)x(32, 1, 1) Time: 632.13usecond Cycles: 775,713 Regs: 152 GPU: Tesla V100-PCIE-32G8 SM Frequency: 1,23 cydefnsecond CC: 7.0 Process: [22259] gcheck.exe ® © 0
BASELINE ASA 502 - sigmakKin (16384, 1, 1)x(32, 1, 1) Time: 584.90 usecond Cycles: 716,813 Regs: 152 GPU: Tesla V100-PCIE-32G8 SM Frequency: 1.22 cydefnsecond CC: 7.0 Process: [22731] gcheck.exe

-

~ Command line profiler metrics O

11tex__t_requests_pipe 1lsu _mem_global op_ld.sum [request] 1,527,808 (+0.00%) litex_t_sectors_pipe_lsu_mem_global op_ld.sum [sector] 39,753,533 (+290.86%)

 Profile AOS against the AOSOA baseline
—same number of “requests” in AOS and AOSOA
—AOS needs 4 times as many “sectors” as AOSOA (which fits 4 doubles in a 32-byte cache line)
—in other words: AOSOA provides coalesced memory access, AOS does not
—for what it is worth (not much!), the actual slowdown in this e*e™—p*u~ example was only 7% however

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 35/26

https://github.com/madgraph5/madgraph4gpu/issues/16

Inside the ME calculation: Feynman diagrams, colors, helicities

2
IM| (p)—yj

2

Ae{hel}

ce{col}

2
> M

de{diag}

Given the momenta p of initial+final partons in one specific event
Sum over all helicity combinations A of initial+final partons
Sum over all color combinations c of initial+final partons

Include all Feynman diagrams d allowed for the given A and ¢

In_practice in MG5aMC: use helicity amplitudes and QCD color decomposition

1. (for each helicity) compute partial amplitudes J' for each color ordering permutation f (sum diagrams relevant to f)

(@) =), M)

de{diag}

Example for gg— ttggg: 1240 Feynman diagrams (using helicity amplitudes)
This takes ~40% of the CPU time for this process

2. (for each helicity) compute the sum over colors as the quadratic form JCJ* using the constant color matrix C

IMP()=)

Ae{hel}

|

D L@ (©)fUm)*

fg

Example for gg— ttggg: 120 color ordering permutations, 120x120 matrix
This takes ~60% of the CPU time for this process

3. sum over helicities [Example for gg— ttggg: 128 helicities (before and after filtering)]

Each step computes many events p in parallel! CPU: 1 SIMD event-vector at a time. GPU: 1 event per thread.

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

ECFA Workshop, Bruxelles, 22 June 2023 36/26

C++ vectorization — why choose Compiler Vector Extensions?

typedef fptype fptype v _ attribute ((vector_size (neppV*sizeof(fptype))));

Portable — available in gcc, clang, icpx (from clang) with minimal differences
—Do not require any external libraries or tools (VC, VCL, VecCore, xXSIMD, UME::SIMD, or SYCL...)

Powerful, but easy to use
—No need to debug auto-vectorization when it does not vectorize
—As powerful as intrinsics, but much easier to write (higher-level abstractions)

Intuitive — CVESs force you to think in terms of vector types!

Minor disadvantage — no vector complex type out of the box
—But it was easy to write it in our case (RRRRIIII memory layout) as we only need + - x =
— A few extensions for Boolean vector masks were needed, too

One technical detail: we malloc a standard (aligned!) fptype* and reinterpret_cast as fptype Vv*...

HUGE THANKS TO SEBASTIEN PONCE for his Practical Vectorization lectures mentioning CVES!

,' A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 37126

https://indico.cern.ch/event/1100351/contributions/4629205

Monitoring lockstep — GPU NSight compute, CPU disassemble

» GPU: explicitly collect one profiler metric in NSight Compute
—"“branch efficiency” : sm__sass_average_ branch_targets threads_uniform.pct
—old test (May 2021 issue #25) comparing two code bases: no-divergence baseline has 100% efficiency,

alternative with minor forced divergence has 96% efficiency (and is 20% slower)

gh eemumuAY_cu_0513 1108 _b2048_t256_i1_prof2default.ncu-rep X) eemumuAY_cu_0513_1107_b2048_t256_i1_prof2divergent.ncu-rep >

Page: Details * Launch: 4- 519 - sigmakin = % * AddBaselne ~ Apply Rules Copy as Image
Current 519 - sigmakin (2048 (258, 1, 1) Time: 475,93 usecond Cycles: 592,229 Regs: 128 GPU: NVIDIA Tesla V1005-PCIE-32GE SM Frequency: 1,24 cyd nd CC 7.0 Process: [12414] gcheck.e' e

. NO_DIVERGENCE 519 - sigmakin {2043 (256, 1, 1) Time: 373.63usecond Cycles: 467,720 Regs: 120 GPU: NVIDIA Tesla V1005-PC 2GE SM Frequency: 1.25 cyd nd CC 7.0 Process: [12636] gcheck zxe

» Command line profiler metrics
11tex_ t requests_pipe_lsu_mem_global_op_ld.sum [request] 917,584 (+48. 1tex t sectors pipe 1su mem elobal oo 1d.sum [sectord
launch__registers_per_thread [register/thread] 128 { m__sass_average_branch_targets_threads_uniform.pct [thread]

» CPU: the best lockstep metric IMO is the speedup over a no-SIMD case (reach theoretical maximum!)
—but is also useful to disassemble the object using objdump and categorize SIMD intrinsics symbols...

. ACAT2022 madevent
#Symbolsin.o | ssEa2 | Avxe | Avxs12 | Avxs12 KAk -
= $ events/ IMEs
Sl (xmm) (ymm) (ymm) (zmm) —i31 o pss
o uild type 88 —>1gg precision [MEs/sec]
'% Scalar 4534 0 0 0 Fortran(scalar) double | 2.30E3 B Lo |
I](lUBLE
o0 SSE4.2 12916 0 0 0 C++/none(scalar) double IO L0\ FLon FLOw FLO|
. | DOUBLE | DOUBLE |
% AVX2 0 10630 0 0 C++/sse4(128-bit) double .
: C++/avx2(256-bit) | double _DOUBLE___DOUBLE___DOUBLE | _DOUBLE]
8 256-bit AVX512 0 10366 12 0 (.) RPN L0/ FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOATFLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT FLOAT
© C++/512y(256-bit) | double
<1 | 512-bit AVX512 0 1267 60 9910 C++/5122(512-bit) | double

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 38/ 26

https://github.com/madgraph5/madgraph4gpu/issues/25
https://github.com/madgraph5/madgraph4gpu/blob/4a90ec2c55e9f2af8219491536167f2bbc62a9b7/epochX/cudacpp/tput/logs_ggttgg_mad/log_ggttgg_mad_d_inl0_hrd0.txt

Code generation: how did we bootstrap the project?

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

Code is auto-generated = lterative development process

» User chooses process, MG5aMC determines Feynman diagrams and generates code
— Currently Fortran (default), C++, or Python

— The more particles in the collision, the more Feynman diagrams and the more lines of code

>_<,< >_<<< >_< >_5< Process LOC functions function calls
- - : = e ete” - utum 776 8 16
>—<<< >—< >—<<< >—< gg — tt 839 10 22 el (1)
>;§2 >;fg >;§2 >;5; gg — g 1082 36 106

gg — ti 1985 222 786 CesCODE |
il A i X 99 > tigg e

DEVELOP
» Goal: modify code-generating code (add CUDA, improve C++ backend) &
— (1) Start simple: bootstrap with e*e— i (two diagrams, few lines of C++"code -

—(2,3) Add CUDA and improve C++, port upstream to Python meta-code L
— (4) Generate more complex LHC processes gg— tt, ttg, ttgg _—— .
epoch”

— Add missing functionality, fix issues, improve performance, iterate
1. IXXXXX 1. IXXXXX 1. IXXXXX 1. IXXXXX
2. FFV1PO_3

PRODUCE
iy (4
3. FFV2_4_0
2. FFV2_4_3
1. OXXXXX 1. OXXXXX 1. OXXXXX 1. OXXXXX

\ AUTO-SENERATED
et uo et M CUDA/C++ CODE

‘(ERN A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021
L

3.7rvie (b)

ECFA Workshop, Bruxelles, 22 June 2023

39/26

Code generation: from many “epochs” to a single evolving “epoch”

... and beyond

(1) MG5AMC Python framework, Fortran templates:
(ZOC;E)D MC|)D2EOL21) P':?:g: ; (1) “‘upstream” https://github.com/mg5amcnlo/mg5amcnlo
- early

(2) CUDACPRP plugin, post-generation patches,
generated CUDA/C++ physics processes:
our https://github.com/madgraph5/madgraph4gpu

Code generation infrastructure
- Python framework and “cudacpp” plugin WIP to-do before a release:
- Fortran, C++, CUDA templates full port from madgraph4gpu

- Post-generation patches (temporary...) [ESRCEaUNECUISI bty
generation Fortran patches,

add CUDACPP upstream)

start new
Hepoch "

\

(3) re-generate

Automatically generated code
- Fortran framework (Madevent)
PRODUCE - CUDA/C++ Matrix Elements

SAME

e @Mu NEW MODEL (1) develop on top of auto-generated code
(since end 2021) | (2) backport immediately to code generation infrastructure

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 40/ 26

https://github.com/mg5amcnlo/mg5amcnlo
https://github.com/madgraph5/madgraph4gpu

Why focus on complex processes? Compute >> memory!

CUDA: Host(CPU)-to/from-Device(GPU) data copy has a cost

* In our standalone application (all on GPU): momenta, weights, MEs D-to-H
— Plots below from Nvidia Nsight Systems: 12 iterations with 524k events in each iteration

» Eventually, MadEvent on CPU + MEs on GPU: momenta H-to-D; MEs D-to-H

* The time cost of data transfers is relatively high in simple processes

— ME calculation on GPU is fast (e.g. e*e—pu*p : 0.4ms ME calculation ~ 0.4ms ME copy)
* Note: our ME throughput numbers are (number of MEs) / (time for ME calculation + ME copy)

WX (00 CudFres (325,083 me] oo el -Il llllllllllllllllllllf*«&»«s T
At cdafree. el SEIRERERE) (=)
ZOOM (ME calculation ~ ME copy)

efe—>uu

3a Sigmaan [353.256 ps]

» But the time cost of data transfers is negligible in complex processes

—ME calculation on GPU is slow (e.g. gg—>_tfgg: 1000ms ME calculation >> 0.4ms ME copy)
— We expect that this will not be an issue for typical LHC collision processes

chchch

w ERIPEEEEI vt st [st ottt syt e st o o i
[cudaleviceSy. || cudaDeviceSy,. Devicesy . | (adaDeviceSy, | {cudaDevicesy., |(audaDevicesy . | [axdaDevicesy. . |(cudaDeviceSy. | (cudaDe o

gg—tigg

VCHEP - 19 May 2021 15

‘{ERN A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

* We are lucky: the more
complex the physics process,
the less relevant is the cost of
GPU-CPU data copies!

— Similarly (later): the more
complex the process, the less

relevant is the overhead from
scalar Fortran in madevent!

—And the fewer events in flight
needed to fill the GPU...

e In this talk | mainly give
performance numbers for
complex processes like

gg—>ttgg or gg—tiggg

ECFA Workshop, Bruxelles, 22 June 2023 41/ 26

Amdahl’s law

« The matrix element calculation is now the bottleneck (e.g. >95% for gg—ttgg) in Fortran Madgraph
—But the remaining <5% may fast become the bottleneck if you accelerate the matrix element too much!

 Amdahl’s law: if the parallelizable part takes a fraction of time p, the maximum speedup is 1/(1-p)
—If the MadEvent overhead takes 5%, the maximum speedup is only 20 even if your GPU speedup s is 1000!

20

18

16

14

Speedup
(=
o

@ ' A. Valassi - Lessons learnt from vectorizing Madgraph5_aMC@NLO

T —————— —

Amdahl's Law

——
—

/ Parallel portion
50%
/o e 75%
—— 90%
—— 95%

@@@@@
Ll o~ n o (= =] - ™] g

Number of processors

SILIE} Slatf_‘m:'_‘f (5) — Tp

https://en.wikipedia.org/wiki/Amdahl%?27s law

ECFA Workshop, Bruxelles, 22 June 2023 42 | 26

https://en.wikipedia.org/wiki/Amdahl%27s_law

Floating point precision

 Previous slide: our vectorized C++ on CPUs is 2x faster in single-precision than in double-precision
—In a 512-bit register you fit 16 (4-byte) floats but only 8 (8-byte) doubles

« Next slides: our CUDA implementation on V100 GPUs is also 2x faster for floats than for doubles
—On data-center NVidia GPUs (e.g. V100 or A100), you have twice as many FLOPs in float as in double
—Note that lower-end GPUs (e.g. T4) have almost no double-precision FLOPs...

 But single-point precision is not enough for physics: numerical instabilities (e.g. in Feynman diagrams)
—It would be useful to study if these instabilities can be worked around — anyone interested? ©
— Alternative: we prototyped a “mixed-precision” calculation (double for Feynman, float for color matrix...)

@ ' A. Valassi - Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 43/ 26

Filling the GPU — minimum number of threads (events in flight)

Matrix Elements / second hitps://doi.org/10.1051/epjconf/202125103045 (vVCHEP 2021)

256
8ES8 128

e 64
e 32

Threads
GEB PerBlock

4E8

2E8

Double precision]
NVidia V100
(2560 FP64 cores) ol ®

ete—u*u : 7E8 MEs/s
. " for 524k MEs in parallel

- o o Oy *r =) y . 4 = i y v
- - . N A 9 o . M o

ThreadsPerBlock * BlocksPerGrid

Matrix Elements / second

5E5 ang

128
e b4

485 * ¥

Threads
PerBlock

3ES5

2E5

1E5

Double precision L O 0 O 09 C
NVidia V100 Y v
(2560 FP64 cores)
-
o gg—ttgg : 5E5 MEs/s
s for 16k MEs in parallel

ThreadsPerBlock * BlocksPerGrid

« We are lucky, again: the more complex the process, the fewer the events in flight needed to fill the GPU

« But even 16k events is a lot: it results in imbalanced phase space sampling, and high RAM in Fortran
—Eventually, maybe: one helicity per kernel (fewer events in flight, spread each event across many kernels)?

—Eventually, maybe: many CPU cores/processes in parallel (fewer events in flight per CPU core/process)?

—Eventually, maybe: different channels in parallel (fewer events in flight in a single channel)?

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

ECFA Workshop, Bruxelles, 22 June 2023

44] 26

https://doi.org/10.1051/epjconf/202125103045

All MadEvent functionalities have been integrated over time

Most of these required some changes to the input/output API of our Fortran-to-CUDA/C++ “Bridge”

Helicity filtering — at initialization time, compute the allowed combinations of particle helicities
—This is computed in CUDA/C++ using the same criteria as in Fortran

|A;]?
> [Adl?

‘Multi-channel” — single-diagram enhancement of ME output
—This is the specificity of the MadEvent sampling algorithm (Maltoni Stelzer 2003)

fz' — ‘Atot‘z

Event-by-event running QCD coupling constants o (Q?)
—The scale is currently computed in Fortran from momenta and passed to the CUDA/C++ for each event

Event-by-event choice of helicity and color in LHE files
—Pass two additional random numbers per event from Fortran to CUDA/C++, retrieve helicity and color

—NEW (January 2023)! This was the last big missing physics functionality (showstopper to a release)
* We now get the same cross section AND the same LHE files (within numerical precision) in Fortran and CUDA/C++

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 45 [26

https://doi.org/10.1088/1126-6708/2003/02/027

CUDACPP MES o, & PF MEs almaka [kokkos GyoL

CUDA

95% common code + a few #ifdef's for CUDA vs C++ Write code once for many CPU/GPU vendors

Designed for NVidia GPUs (so far: will add HIP/AMD) Support NVidia, AMD and Intel GPUs out-of-the-box

— Full feature support, e.g. tensor cores, streams, graphs — Limited support for vendor-specific features
. ' : ' intel
AMD A\ BIESE
NVIDIA. NVIDIA. GRAPH

Designed upfront for SIMD speedups on vector CPUs
Intel®’AVX512

SIMD added via SYCL in Jan 2023, analysing results

WIP on CPU multithreading and heterogeneous modes CPU multithreading out of the box

For the moment: we plan to continue development in parallel using both approaches — comparisons are very useful!
Two goals: not only production releases, but also aim to provide useful feedback to HEP about usability of PFs

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 46 / 26

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/

CUDACPP vs. Portability Frameworks — recap

« CUDAPP (our initial implementation) is where we add new features first
« The SYCL implementation of MG5aMC is now almost at the same level, the KOKKOS one somewhat behind

* The ALPAKA implementation of MG5aMC is no longer maintained

ME code | Standalone Actively MadEvent | Latest dev

Backend : . o .

generation | application | maintained | application | code base
CUDACPP v v v v v
SYCL v v v v ~v
KOKKOS v v ~v
ALPAKA
(CUPLA) Y Y x x x

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

ECFA Workshop, Bruxelles, 22 June 2023

CUDACPP vs PFs - GPU ME throughputs (standalone application)

Variable GPU-grid size (throughput scan) Fixed GPU-grid size (throughput plateau)
NVIDIA A100 — gg_ttgg gg-ttgg
® s ® @ ® ® ® ® ® 106 W SYCL mEE Kokkos . WEE CUDA . EEE OpenMP
A Kokkos ® u _ :
—_ Il CuDA bR
*E‘Tm Alpaka @ S)
o 105_
5o e 52
w ©
%8 ® x 3
= N
T = - n
= & Jf-UJ qL)
10*4 = a
tt 16k threads __
(99_ttgg) reads — 256
R R IR EEEE
nched

Total Threads Lau

» The performances of the SYCL and Kokkos implementations of MG5aMC seem comparable to direct CUDA
— Further comparisons are in progress, performance scales differently with more jets for different backends (next slide)

« SYCL and Kokkos run out of the box also on AMD and Intel GPUs
— They also run out of the box on CPUs (performance under investigation)

Xe-HP is a software development vehicle for functional testing only - currently used at Argonne and other customer sites to prepare their code for future Intel data centre GPUs

XE-HPC is an early implementation of the Aurora GPU

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 48/ 26

SYCL vs CUDA throughput for gg_tt on Nvidia A100

__———®
e o—*® @
= P
2w s
35
gz /-
F§ A
= n
.~ | CUDA < SYCL |« —tt
L te]
Gridsize (nBlocksGPU * nThreadsGPU)
SYCL vs CUDA throughput for gg_ttg on Nvidia A100
o ¢ —o—
_— "
| - B -
" I N A
23 ‘(/ y
£w
Fg —
y CUDA < SYCL |- —>tt
H/ es
Gridsize (nBlocksGPU * nThreadsGPU)
SYCL vs CUDA throughput for gg_ttgg on Nvidia A100
_ B o —9o 0% —9o—
e [——e—
2>
£§ 4x10° y a
= / =
CUDA > SYCL |+ gg—)ttgg
“/ st |
g & g £ g g g g
M N g & E £ E H & H
Gridsize (nBlocksGPU * nThreadsGPU)
SYCL vs CUDA throughput for gg_ttggg on Nvidia A100
- _e——® *— —» *«—0
2>]
=3 —
30 [
g3 /1 CUDA > SYCL gg—)ttggg
»—E /
/ ® test_A100_SYCL_gg_ttggg (max = 1.644e4)
6x10° “-" test_A100_CUDA_gg_ttggg (max = 2.171e4)
g & g £ §
§ E £ s e

3 & & §
Gridsize (nBlocksGPU * nThreadsGPU)

PRELIMINARY!

CUDA vs SYCL on NVidia A100 s . chicers svey

J. Teig (tests/plots)

« SYCL and CUDA implementations have ~similar performances but
—SYCL seems better for less complex processes
—CUDA seems better for more complex processes

* These are very recent results, which are still being digested (WIP!)
— It will be very interesting to understand more in detail what goes on

We plan to also compare more systematically the CUDACPP and SYCL performances
on CPUs (vectorization, multi-core), but it will take time and optimization tweaks... WIP!

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 49/ 26

Benchmarking — Madgraph and the HEP-SCORE project

« HEPscore: the new HEP benchmark for compute resources, replacing HepSpec06
—Based on reproducible HEP workloads (GEN, SIM, DIGI, REC...) within docker containers
—The first version HEPscore23 should become production in April 2023 for (x86 and ARM) CPUs

* The aim is to benchmark a fully loaded server: all CPU cores, and eventually all associated GPUs
—(and ideally measure how well an application is doing compared to the theoretical power of the server...)
—fill all CPU cores by a combination of application multi-threading and/or several identical copies/processes

« A first container based on our Madgraph-on-GPU has been prepared
—Very useful because it gives the same physics results on CPU and GPU: may compare them to each other!
—And eventually may be used to evaluate heterogeneous processing on CPU+GPU...

* The plots on the next slides are based on this HEPscore container: several identical copies/processes
— (A multi-threaded CUDACPP version exists but not optimized yet — SYCL and Kokkos also provide MT)

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 50/ 26

ME throughput in C++ for gg—ttgg (on all the cores of a CPU)

ggttgg check.exe scalability on "bmk&130" (2x 16-core 2.1GHz Xeon Gold 6130 with 2x HT) for 10 cycles

=
5 Mo HT : 2x HT | Overcommit
L= .
a 0.8 4 . .
m —
g 06 i gg—ttgg
i Nills H
= (float)
a .
@ 4] -1 *
E) I —#— gottgg-sa-cpp-f-inl0-none
— . gottgg-sa-cpp-f-inl0-ssed
g_ 0.2 - I = ogottgg-sa-cpp-f-inlQd-avx2
'51 | —8— ggttgg-sa-cpp-finl0-512y
E ? T - gottgg-sa-cpp-finl0-512z
ﬁ 0.0 T . T T T T T T T

0 20 40 60 80 100 120 140 160

Level of parallelism {number of 5T jobs)

* Previous tables for SIMD speedups on C++ were for a single CPU core

No HT

Throughput ratio to 1 no-S5IMD job

300 A

2% HT | Overcommit

200 A

100 A

]

i gg—tigg
' (float)

ggttgg-sa-cpp-f-inld-none
ggttgg-sa-cpp-finl0-ssed
gottgg-sa-cpp-f-inl0-avx 2
ggttgg-sa-cpp-inl0-512y

— 9 -
i
!
I

LLXX

gottgg-sa-cpp-f~inl0-512=z

? ®
T T T T T T
60 80 100 120 140 160
Level of parallelism (number of 5T johs)

» Large SIMD speedups are also confirmed when all CPU cores are used
— AVX512/zmm speedup of x16 over no-SIMD for a single core slightly decreases to ~x12 on a full node (clock slowdown?)
— Overall speedup on 32 physical cores (over no-SIMD on 1 core) is around 280 (maximum would be 16x32=512)
— Aggregate MEs throughput from many identical processes using the standalone application (HEP-workload Docker container)

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

ECFA Workshop, Bruxelles, 22 June 2023 51/26

Some ideas for heterogeneous processing

E 0.5 - gt00256 Nvidia V100 GPU
3] ilver 4216 4-core CP ‘At ;
% s - Silve 6 4-core CPU Throughput variation as a function of
& GPU grid size (#blocks * #threads)
£ 0.4
2 ..
o 0.3 This is the number of events
— processed in parallel in one cycle
_EL 0.2 = ggttgg-sa-cuda-d-inl0 {njobsCPU=1})
g‘ ggttgg-sa-cuda-d-inlD (njobsCPU=2)
_?: 0.1 =~ ggttgg-sa-cuda-d-inld (njobsCPU=4)
= =— ggttgg-sa-cuda-d-inl0 (njobsCPU=8)

O-G 'u' LA | T L | T L L | T T T T T

102 103 104 107 106 107

nblocksGPU * nthreadsGPU

To further reduce the relative overhead of the scalar Fortran MadEvent - parallelize it on many CPU cores?

» Blue curve: one single CPU process using the GPU
— For gg—ttgg, you need at least ~16k events to reach the throughput plateau

* Yellow, Green, Red curves: 2, 4, 8 CPU processes using the GPU at the same time
— Fewer events in each GPU grid are needed to reach the plateau if several CPU processes use the GPU
— The total Fortran RAM would remain the same, but the CPU time in the Fortran overhead would be reduced
— (Why total throughput increases beyond the nCPU=1 plateau is not understood yet!...)

' A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 52 /26

Lockstep beyond event-level parallelism

- Efficient data parallelism (lockstep processing) requires the same function computed for different data
—This is true in MG5AMC at the event level (different events i.e. different phase space points)
—But it is also true at the sub-event level (different helicities within the same event)

* We are evaluating the move to a different data parallelism strategy on GPUs
— Currently: one event (sum over all helicities) per GPU thread
—In the future: one helicity of one event per GPU thread?

(@) =) M)

de{diag}

~

M|~ (p

!

Y (L) (©)F ()¢
Iy

« Advantages:
—You can fill the GPU with much fewer“events in flight” — more balanced sampling/integration in MadEvent
—This is a prerequisite for movingthe color matrix to externally-launched cuBLAS and tensor cores
—This is also a prerequisite it we want to evaluate much smaller kernels

* From all Feynman'diagrams in one kernel to one Feynman diagram per kernel?
» Which might decrease register pressure and increase kernel occupancy, but would require more global memory access

,' A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 53/26

Beyond Madgraph

« ANY matrix element event generator is a perfect fit for vectorization and GPUS!
— Opportunities for 100% lockstep processing at the event-level and event the sub-event level
—Had some discussions with the Sherpa team about vectorization...

« Beyond matrix element event generators: are parton showers a good fit for vectorization and GPUs?
—More stochastic branching than in ME event generators
—But the calculations before/after each PS splitting are the same? Would just need some basketization...
—Some discussions a few months ago with the Pythia team on possible collaborations

,' A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 54 /26

Acknowledgements

» We gratefully acknowledge the computing resources provided by the Joint Laboratory for System
Evaluation at Argonne National Laboratory, the Julich Supercomputing Centre at Forschungszentrum
Julich, the Super Computing Applications and Innovation department at CINECA, and the EuroHPC
Joint Undertaking at CSC’s Kajaani data centre

« Many thanks from me and the whole team to:
—Our CERN IT colleagues (especially Ricardo Rocha and Ulrich Schwickerath) for their help with GPU nodes!
— Sebastien Ponce, Hadrien Grasland, Steve Lantz, Marco Clemencic for their suggestions on vectorization
—Igor Vorobtsov and Klaus-Dieter Oertel for useful discussions on vectorization on Intel CPUs
—The organizers and our mentors at the Sheffield 2020 and Lugano 2022 GPU hackathons
—Domenico Giordano and the HEPiX benchmarking WG
—The organizers of this Compute Accelerator Forum
—The HSF event generator WG
—The original authors of Madgraph5 aMC@NLO

« Many thanks from me personally to the whole madgraph4gpu team for the great collaboration! ©

A A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 55/ 26

~Z A
\

Functional tests — ClI, standalone, madevent

* Functional tests in the CI
— Starting from some hardcoded momenta, reproduce some hardcoded matrix elements (within precision)
— A few different processes, architectures, all in double-float-mixed precision

« Functional tests for standalone tests
—Always use the same random seeds, visually check that results do not change in logs

» Functional tests for madevent
— Compute cross sections and generate LHE event files in Fortran
—Then do the same in CUDA/C++ and compare results (within precision)
—Note: for floats, the tolerance for allowed differences is now very generous...

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 56/ 26

Build challenges and issues

« The build times increase enormously as you add more final state gluons

—Many more diagrams...
» ...but also the result of some whole-program link time optimization? (we disable RDC in CUDA)

—This may improve if/when we go to smaller kernels

—We use ccache to ease the pain
» Conversely, ninja would probably not help as we have few very large compilation units, not many small ones

» We currently build separately for our five SIMD modes
— Eventually we might move to a “fat binary” approach with dynamic choice of the best implementation

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 57126

OLDER SLIDES

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 58/ 26

MadEvent/C++ for gg—ttggg (on a single core)

ACAT2022 madevent standalone
- MEs ITOT = IMad + IMEs Nevents/tTOT Nevents/TMEs

88 1188 precision [sec] [events/sec] [MEs/sec]
Fortran(scalar) double | 813.2=3.7+809.6 | 1.01E2 (=1.0) | 1.01E2 (=1.0) —
C++/none(scalar) double | 986.0=4.3 +981.7 | 8.31E1 (x0.8) | 8.35El (x0.8) 9.82E1
C++/sse4(128-bit) double | 514.7=4.2+510.5| 1.59E2 (x1.6) | 1.61E2 (x1.6) 1.95E2
C++/avx2(256-bit) | double | 231.6 =4.0 +227.6 | 3.54E2 (x3.5) | 3.60E2 (x3.6) 4.41E2
C++/512y(256-bit) | double | 208.6 =3.9 + 204.8 | 3.93E2 (x3.9) | 4.00E2 (x4.0) 4.95E2
C++4/512z(512-bit) | double | 124.6 =4.0 + 120.6 | 6.58E2 (x6.5) | 6.79E2 (x6.7) 8.65E2
C++/none(scalar) float 036.1 =4.3+931.8 | 8.75E1 (x0.9) | 8.79E1 (x0.9) 1.02E2
C++/ssed(128-bit) float 2289 =39+225.0 | 3.58E2 (x3.6) | 3.64E2 (x3.6) 4.30E2
C++/avx2(256-bit) float 114.1 =38+ 1104 | 7.18E2 (x7.2) | 7.43E2 (x7.4) 9.06E2
C++/512y(256-bit) float 104.5 =3.8 + 100.7 34 x7.9 8.14E2 (x8.1) 1.00E3
C++/512z(512-bit) float 61.8=3.8+ 58.0 1.41E3 (x14.1) 1.77E3
C++/none(scalar) mixed | 986.0=4.3+981.6 | 8.31E1 (x0.8) | 8.35E1 (x0.8) 9.98E1
C++/sse4(128-bit) mixed | 500.4=3.9+496.5 | 1.64E2 (x1.6) | 1.65E2 (x1.6) 2.00E2
C++/avx2(256-bit) mixed | 220.5=3.8+216.7 | 3.72E2 (x3.7) | 3.78E2 (x3.8) 4.55E2
C++/512y(256-bit) | mixed | 195.6 =3.7+191.8 | 4.19E2 (x4.2) | 4.27E2 (x4.3) 5.21E2
C++/512z(512-bit) | mixed | 118.5=38+114.7 | 6.92E2 (x6.9) | 7.15E2 (x7.2) 8.97E2

« Lower overhead of scalar MadEvent in gg—ttggg than in gg—ttgg : higher overall throughput speedup x13!

» Mixed floating-point precision (single precision color algebra) is 5-10% better than double

,' A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

,_/\

ECFA Workshop, Bruxelles, 22 June 2023

59/ 26

A complex and heterogeneous problem

e fiod Statcﬁst;oson, ttbar,
iets, A\~ !
ogail) -k +jets..-
o N\{ Otroé btt\/ multi-iet, gamma
single top, 7

MC Physics Event Generator Software:
the application

Research in Theoreticl Physic
the foundation

» Software (and theory) diversity is good for physics
— It provides cross-checks and healthy competition

» But it complicates the definition of an R&D strategy
—Many software packages to optimize (and maintain!)
— Prioritization (“profiling”): is there a CPU “hotspot™?

https://doi.org/10.5281/zenod0.4028834

A. Valassi — MC generators challenges and strategy towards HL-LHC LHCC - 01 Sep 2020
Z

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 60/ 26

https://doi.org/10.5281/zenodo.4028834

Issue #2
Data-parallel paradigms
(GPUs and vectorization)

Generators lend themselves naturally

(no input data)

Pseudo-random numbers

Uniform distribution in [0,1]
One event i: vector 7, (dimension d)
Draw d X N,,,o; numbers r (N, . weighted events)
00000000

JIHTI

to exploiting event-level parallelism
via data-parallel paradigms™*
- SPMD: Single Program Multiple

Data (GPU accelerators)

Phase space sampling

For each event i, map 7: to physical phase space %; = H(7)
The resulting %; are distributed according to a known p.d.f. g(¥)
Compute the value of g(¥;)

- SIMD: Single Instruction Multiple
Data (CPU vectorization: AVX...)

- The computationally intensive
part, the matrix element f(x;), is
the same function for all events i
(in a given category of events)

- Unlike detector simulation (where
if/then branches are frequent and
lead to thread divergence on GPUs)

Wi

Matrix element* calculation

For each event i, compute the differential cross-section f(;)

g

Monte Carlo integration

Average of weights [= %Z w;
— Output: I (estimator of [x dx)

Compute the weight w;=f (%;)/g(%;)

g i — e e e e e

Monte Carlo unweighting

For each event i, draw r; in [0,1]
Accept if r; < w; /w,,..., reject otherwise
— Output: N,,,,,, unweighted events

Potential interest of GPUs
- Faster (cheaper?) than on CPUs

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

- Exploit GPU-based HPCs GpUs
5aMC’ ne)d glide
wIP for "t alk) — S
(plann®®

*Note for software engineers: these calculations do involve some
linear algebra, but “matrix element” does not refer to that! Here we
compute one “matrix element” in the S-matrix (scattering matrix)
for the transition from the initial state to the final state

**This simple event-level parallelism can also be used as the basis
for task-parallel approaches (multi-threading or multi-processing)

https://doi.org/10.5281/zenod0.4028834

LHCC — 01 Sep 2020

ECFA Workshop, Bruxelles, 22 June 2023

61/26

https://doi.org/10.5281/zenodo.4028834

A complex outer shell — with a CPU-intensive core: the ME

» To generate unweighted events in MG5aMC: execute a “gridpack”
— Python and bash scripts launching multiple instances of a Fortran application (madevent)
— A complex software infrastructure with many functionalities and a stable user interface

Flame Graph Reset Search

Python

madevent (Fortran + external libraries)

MATRIX ELEMENT
calculation (Fortran)
g

Gridpack to generate
100k gg—ttgg events
(./run.sh 100000 1)

iiiiiiii il _ (78,239 samples, 42.00%) Matched: 49.1%

» Overall, the ME calculation is the CPU bottleneck (Fortran routine matrix1)
— Fraction of time spent in ME increases with number of events and process complexity-

gg — tt g9 — ttgg g9 — ttggg
madevent 13G 470G 11T
matrixi 3.1G (23%) | 450G (96%) | 11T|(>99%)

(Mattelaer, Ostrolenk — https.//arxiv.org/abs/2102.00773)

‘\W A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs

S

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

vCHEP — 19 May 2021

ECFA Workshop, Bruxelles, 22 June 2023

62 /26

Portability Frameworks (PFs)

(2) Second line of development: MEs on PFs

» PFs allow writing algorithms once and running on many
architectures with some hardware-specific optimizations

« CUDA code can only run on NVidia GPUs, while Kokkos,
Alpaka, and Sycl[Intel] codes can run on most hardware

* In “cudacpp’, #ifdef directives separate code branches for
GPU and CPU code during compilation (but these are very
few: only kernel launching and memory access, not MES)

» With PFs, the algorithm is typically the same, but the
compilation occurs once per architecture type

* PFs often use templating to handle data types and hardware
configuration and function lambdas or pointers for passing
kernels (the cudacpp plugin has many of these, too)

» PFs still require user to think about “host” vs “device”

| o4
-

kokkos al/‘saka @CLW

“cudacpp” example of compiler directives

540
541
542
543
544
545

{fdef _ CUDACC__ \

#ifndef MGONGPU_NSIGHT_DEBUG

gProc::sigmaKin<<<gpublocks, gputhreads>>>(devMomenta.get(), devMEs.get()
#else

gProc::sigmaKin<<<gpublocks, gputhreads, ntpbMAXxsizeof(float)>>>(devMome
#endif

546 checkCuda(cudaPeekAtLastError());
547 checkCuda(cudaDeviceSynchronize()); For GPU J
548 #else
549 Proc::sigmaKin(hstMomenta.get(), hstMEs.get(), nevt);
550 #endif

Kokkos example of Templating & lambda
324 {
325 using member_type = typename Kokkos::TeamPolicy<Kokkos::DefaultExecut
326 Kokkos: :TeamPolicy<Kokkos::DefaultExecutionSpace> policy(league_size
327 Kokkos::parallel_for(__func__,policy,

KOKKOS_LAMBDA (member_type team_member){

328

Kokkos example of Memory Management

262 Kokkos::Viewsfptypess+,Kokkos: :DefaultExecutionSpace> devMomenta(Kokkos::ViewAllocateWithoutInitializing("devMomenta"),nevt,npar,npd);

263 auto hstMomenta = Kokkos::create mirror_view(devMomenta);

A. Valassi — Lessons learnt from vectorizing Madgraph5_aMC@NLO

ECFA Workshop, Bruxelles, 22 June 2023 63/ 26

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/cudacpp/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check_sa.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/CPPProcess.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check.cpp

