
A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 1 / 26

Lessons learnt from
vectorizing Madgraph5_aMC@NLO

and porting it to GPUs
(NB! This talk focuses on computing issues - performance i.e. generation speed! - not physics)

Andrea Valassi (CERN IT)
Thanks to the whole madgraph4gpu development team!

Thanks to S. Frixione, Z. Was and the Les Houches 2023 participants for many useful discussions!

ECFA Higgs Factories: 2nd Topical Meeting on Generators – Bruxelles, 22nd June 2023

https://indico.cern.ch/event/1266492

[An update over the previous talk at the ECFA 1st Topical Meeting in November 2021 - https://indico.cern.ch/event/1078675]

https://indico.cern.ch/event/1266492
https://indico.cern.ch/event/1078675

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 2 / 26

Outline

• Motivation and overview

• Some results

– Performance: throughout speedups on CPU SIMD and on GPUs for LO processes

– Functionality: development status, usability for the experiments

• Some lessons learnt

– Applicability to other (existing and future) Monte Carlo generators

– Do’s and dont’s

• Some future prospects and challenges

– QCD (EWK?) NLO and beyond

– Non-technical challenges

• Conclusions

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 3 / 26

Motivation 1: Monte Carlo Event Generators in WLCG computing

• HL-LHC computing needs are predicted to outpace resource growth: need R&D to improve software

• MC generators are essential for HL-LHC physics and use ~5-20% of ATLAS/CMS WLCG CPU budgets

– Speeding them up helps address the resource gap and may allow more complex (N)NLO multi-jet simulations

• Challenges and opportunities to improve MC software have been discussed in the HSF generator WG

– See the WG review paper prepared for the LHCC review in 2020: https://doi.org/10.1007/s41781-021-00055-1

WLCG meeting with LHCC referees, Feb. 2020

This plot is probably obsolete by now!

Sherpa speedups >>2 were reported at ACAT

https://doi.org/10.1007/s41781-021-00055-1
https://indico.cern.ch/event/877840/contributions/3698881/subcontributions/296412

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 4 / 26

Motivation 2: GPUs and vector CPUs are underexploited in HEP

• GPUs provide most of the compute power in recent HPCs (e.g. Summit: 95%)
– Supercomputers at HPC centers are already heavily used by the LHC experiments on an “opportunistic” basis

– But only a small share of HEP software workloads can run on GPUs today

– NB: at Higgs factories, maybe speed will not be an issue? But the need to use GPUs will probably be there!

• Most WLCG CPUs support wide vector registers (SSE4.2, AVX2 or above)
– But only a small share of HEP software workloads efficiently exploit CPU vectorization today

• These architectures are best suited to lockstep processing with limited branching... as in MC generators!

– MC generators are ideal candidates to exploit data parallelism in GPUs (SIMT) and vector CPUs (SIMD)!

– In this talk I describe how we achieved this for Madgraph5_aMC@NLO (via event-level data parallelism)

Summit: NVidia V100 GPUs Aurora: Intel Xe GPUs Leonardo: NVidia A100 GPUs Juwels: NVidia A100 GPUs LUMI: AMD MI250X GPUs

https://www.top500.org/news/new-gpu-accelerated-supercomputers-change-the-balance-of-power-on-the-top500

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 5 / 26

Madgraph5_aMC@NLO (MG5aMC)

• One of the workhorses for event generation in ATLAS and CMS!

• MG5aMC production version is in Fortran

– Software outer shell: Madevent (random sampling, integration and event generation + I/O, multi-jet merging...)

– Software inner core: Matrix Element (ME) calculation code, automatically generated for each physics process

• Matrix Element calculations take 95%+ of the CPU time for complex processes (e.g. gg→t ҧtggg)

• And ME calculations are precisely one component that can be “easily” accelerated on GPUs and vector CPUs...

https://doi.org/10.1007/JHEP07(2014)079

https://doi.org/10.1007/JHEP07(2014)079

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 6 / 26

MG5aMC and the madgraph4gpu project

https://doi.org/10.1051/epjconf/202125103045 https://doi.org/10.22323/1.414.0212

PoS(ICHEP2022)212

https://arxiv.org/abs/2303.18244

• madgraph4gpu: speed up Matrix Element calculation in MG5aMC on GPUs and vector CPUs
– Collaboration of theoretical/experimental physicists and software engineers – born in HSF generator WG

– Extensive details may be found in the vCHEP2021, ICHEP2022 and ACAT2022 conference proceedings
• See also the (Feb 2023) Computing Accelerator Forum presentation, https://indico.cern.ch/event/1207838

• Two parallel approaches to reimplement the ME calculation
– (1) “CUDACPP”, initial CUDA/C++ targeting NVidia GPUs and SIMD on CPUs (now extended to AMD GPUs using HIP)

– (2) SYCL (and other Portability Framework: Kokkos, Alpaka) later addition supporting many GPUs/CPUs (now extended to SIMD)

• Several successive development steps over time (in each of cudacpp and PFs)
– (a) standalone applications, our initial prototype – we still use this to optimize the ME calculation alone

– (b) MadEvent-integrated applications, ~final goal – existing Fortran framework, with faster ME!

– (c) orchestration of many MadEvent applications – usable by LHC experiments, same interface with faster ME!

https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212
https://arxiv.org/abs/2303.18244
https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212
https://arxiv.org/abs/2303.18244
https://indico.cern.ch/event/1207838

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 7 / 26

MG5aMC: old and new architecture designs

1. STANDALONE

(TOY APPLICATIONS)

MULTI-EVENT API

2. NEW MADEVENT

(GOAL: LHC PROD)

MULTI-EVENT API

OLD MADEVENT

(NOW: LHC PROD)

SINGLE-EVENT API

First we developed

the new ME engines

in standalone applications

(Amdahl...)

SCALAR:

NEW

BOTTLENECK?

PARALLEL:

MUCH FASTER!

MATRIX ELEMENT:

CPU BOTTLENECK

IN OLD MADEVENT

MATRIX ELEMENTS

CUDA/C++ or PFs:

cuRAND

CUDA/C++ or PFs:

RAMBO

CUDA/C++ or PFs:

MEKERNELS

MOMENTA

FORTRAN:

RANMAR

FORTRAN:

MADEVENT

CUDA/C++ or PFs:

MEKERNELS

MOMENTA

MATRIX ELEMENTS

FORTRAN:

RANMAR

FORTRAN:

MADEVENT

FORTRAN:

MATRIX1

MOMENTA

MATRIX ELEMENTS

Then we modified the existing

all-Fortran MadEvent

into a multi-event framework

and we injected the new MEs into it

Compute Accelerator Forum, February 2023

https://indico.cern.ch/event/1207838

https://indico.cern.ch/event/1207838

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 8 / 26

MG5AMC+cudacpp: CUDA/C++, Fortran, bash, python...

1. STANDALONE

TOY APPLICATION

OK! (2020-2021)

2. MADEVENT

(ONE APPLICATION)

OK! (2022)

3. MADEVENT

(N x APPLICATIONS)

./bin/generate_events

BEING TESTED (June 2023)

MG5AMCNLO GITHUB

+

MADGRAPH4GPU GITHUB

MG5AMCNLO GITHUB

4. COMPLETE WORKFLOW

INCLUDING CODE GENERATION

generate.. output.. launch

SOON! (2023)

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 9 / 26

ACAT2022

MadEvent with vectorized C++ for gg→t ҧtgg (on a single CPU core)

ME speedup ~ x8 (double) and x16 (float) over scalar Fortran

Our ME engine reaches the maximum theoretical SIMD speedup!

Overall speedup so far~ x6 (double) and x10 (float) over scalar Fortran

(Amdahl’s law)

512y = AVX512, ymm registers

512z = AVX512, zmm registers

The latter is only better on

nodes with 2 FMA units

(here an Intel Gold 6148)

Compute Accelerator Forum, February 2023

https://indico.cern.ch/event/1207838

https://indico.cern.ch/event/1207838

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 10 / 26

MadEvent/CUDA for gg→t ҧtggg

ACAT2022

We are lucky! The more complex the physics process, the lower the relative overhead from the scalar Fortran MadEvent - here only 0.5%

Amdahl’s law limits the overall speedup to x200 (parallelizable p=0.5%), and we achieve x60 (double) or x100 (float) in the overall speedup!

Compute Accelerator Forum, February 2023

https://indico.cern.ch/event/1207838

https://indico.cern.ch/event/1207838

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 11 / 26

Some very new PRELIMINARY results (last week!...)

• On the most complex gg to ttggg

• CPP with “512y” SIMD

– around x 3.4 faster than FORTRAN

• CUDA (V100 GPU vs 4-core CPU)

– around x 21 faster than FORTRAN

– (was ~ x 60 over a single CPU core)

~ Same physics results in

FORTRAN, CUDA, CPP

from the same random number

(some final tests underway...)

Note: Fortran here is NOT what

the LHC experiments are using

- It has a multi-event API

- It has -O3 –ffast-math

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 12 / 26

For very brave alpha testers...
MG5AMCNLO GITHUB

+

MADGRAPH4GPU GITHUB

For more details:

https://github.com/madgraph5/madgraph4gpu/blob/

master/epochX/cudacpp/README_CODEGEN.txt

NB: There are still many process-specific issues to debug!

Color mismatch in LHE files for gg to ttggg (internal test process)

Wrong helicity filtering in gg to uu

Floating point exceptions in pp to ttW (suggested by Francesco)

Generation and build errors for SUSY, EFT and no-b-mass-loop

And need tuning of how many events are used in survey/refine steps

We have some testing, tuning and debugging to do...

https://github.com/madgraph5/madgraph4gpu/blob/master/epochX/cudacpp/README_CODEGEN.txt

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 13 / 26

What is a MC ME generator? A simplified computational anatomy

PSEUDO RANDOM
NUMBERS

PHASE SPACE
SAMPLING

MATRIX ELEMENT
CALCULATION

MONTE CARLO
INTEGRATION

MONTE CARLO
UNWEIGHTING

UNWEIGHTED EVENTS
{EVT_i , W_i=1}

WEIGHTED EVENTS
{EVT_i , W_i}

CROSS-SECTIONS etc...
(AVG W_i, MAX W_i)

PHASE SPACE
SAMPLING

OPTIMISATION

MC MATRIX
ELEMENT

GENERATOR
(e.g. MG5aMC)

+ optional event cuts

HADRONISATION
AND DECAY

PARTON
SHOWERS

PARTICLE
FILTERING

DETECTOR
SIMULATION

SHOWERING AND
HADRONIZATION

GENERATORS
(e.g. PYTHIA)

(GEANT4)

For each event:

1.

Output: random numbers

2.

Input: random numbers

Output: particle 4-momenta

3.

Input: particle 4-momenta

Output: Matrix Element (ME)

CPU BOTTLENECK

(NB: “Matrix Element” is an

element of the scattering matrix...

not a linear algebra concept!)

Monte Carlo sampling: randomly generate and process

MANY different events (“phase space points”)

This can be parallelized (SIMT/SIMD and multithreading)

Physics output: cross-section and LHE event file

(at least at LO!)

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 14 / 26

MG5aMC data parallelism: design for lockstep processing!

• In MC generators, the same function is used to compute the Matrix Element for many different events

– ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)

– Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)

GPU SIMT (Single Instruction Multiple Threads)

Lockstep: all threads in a warp follow the same branch

Minimum parallelism: 32 threads in a warp (NVidia)

CPU SIMD (Single Instruction Multiple Data)

Lockstep: same op for all data in a vector register

Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)

GPU

SIMT
CPU

SIMD

S
e
e
 t
h
e
 N

V
id

ia
 V

o
lt
a
 w

h
it
e
p
a
p
e

r

PSEUDO RANDOM
NUMBERS

PHASE SPACE
SAMPLING

MATRIX ELEMENT
CALCULATION

MATRIX ELEMENTS

MOMENTA

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 15 / 26

ANY MC event generator is a great fit for GPUs and vector CPUs!

• Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw

• From a software workflow point of view, these are used in two rather different cases:

MC SAMPLING

ME event generators*

(before ME calculation):

- MC integration

(cross sections)

- MC generation

(event samples)

*NB: the CPU-intensive ME calculation comes

before PS, fragmentation, detector simulation

SAME CALCULATION

ON DIFFERENT DATA!

INPUT

OUTPUT

Lockstep processing

Good for SIMT/SIMD

MC DECISIONS

Detector simulation (Geant4)

- Particle/matter interaction

(when? how?)

- Particle decays (when?)

Event generators*

(after ME calculation):

- MC unweighting (keep/reject)

Parton showers (PS)

- Fragmentation and decays

DIFFERENT CALCULATIONS

ON DIFFERENT DATA!

DECISION

INPUT

OUTPUT

Stochastic branching

Bad for SIMT/SIMD

Data parallelism (NB: MULTI-EVENT API !)

(at least at LO!)

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 16 / 26

• (1) Design computational units with well-defined inputs and outputs!

– Beware of hidden inputs and outputs from common blocks and static data...

• (2) Keep data parallelism in mind from the start: move from single-event APIs to multi-event APIs!

– Well-defined input array of many events, well-defined output array of many events

If you design a new Monte Carlo from scratch, these are MUST's, not SHOULD's!

Do's and dont's - two simple recommendations

PROCESS ONE EVENT1 IN 1 OUT

PROCESS N EVENTSN IN N OUT

REENTRANT FUNCTION
(NO STATE! THREAD SAFE!)

IN OUT

STATEFUL FUNCTION

"IN" ? "OUT" ?

/COMMON/... /COMMON/...

static ... static ...

An additional technicality: prefer Structure-of-Array

(SOA) memory layouts for the inputs and outputs!

[Strictly needed only internally for SIMD and useful for

GPUs, but good to have also in the API of the function]

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 17 / 26

• You will still need to loop over multiple sets of N events

– And the internal implementation of N-event processing may still involve some loops!

• N should be at least as big as the number needed to "fill" the GPU or the CPU vector register

– On a vector CPU: at most 16 floats in a 512-bit AVX512 register

– On a GPU: we need ~16k threads for complex processes (500k for simpler ones!)

• NB: I focus on event-level parallelism, but other options exist

– In MG5AMC we will investigate using 1 GPU thread per helicity per event...

What about loops? And how many are N events?

PROCESS N EVENTSN IN N OUT

(N x M EVENTS)

LOOP OVER 1...M

"Process N events": three implementation examples (there can be more!)

1. CPU scalar: internally loop over N events, process each one individually

2. CPU vector: hold the events in a SIMD vector of size N,

3. GPU kernel: each of the N events is processed by one of N GPU threads

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 18 / 26

Helicity amplitudes – same code in CUDA and in vectorized C++

• Old slide! The new code is

different, the idea is the same!

• Formally the same code for

CUDA and scalar/vector C++

– hide type behind a typedef

– add a few missing operators

SIMD in CUDA/C++ uses

compiler vector extensions!

Flexible design: being reused

also for vectorized SYCL!

Automatically

generated!

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 19 / 26

MG5AMC is not alone – SHERPA on GPU (BlockGen)

• Note: unlike MG5aMC, based on Feynman diagrams,

SHERPA uses ~Berends-Giele recursion relations

– Allows computations with more final-state jets

• No ongoing effort on CPU vectorization (yet)

• Planned Les Houches project: a detailed comparison

of software performances of MG5AMC and SHERPA

– Tentative process list: pp to tt(0-3jets) or Z(0-3jets)

– Previously, an old wish of the HSF generator WG

– (NB: not a comparison of physics results or distributions)

From http://dx.doi.org/10.21468/SciPostPhysCodeb.3

More recent results were presented this week

in Les Houches by Max Knobbe

http://dx.doi.org/10.21468/SciPostPhysCodeb.3

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 20 / 26

NLO, loops
Marco Zaro – https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Pavia2015

B, V, R: matrix elements

MC: parton shower

S and H events: two separate sets of events (different matrix elements)

Integral = S+H is positive – but individual events can have negative weights

MC@NLO: https://doi.org/10.1088/1126-6708/2002/06/029

Matching NLO QCD and parton showers (avoid double counting)

• So far we have only worked on LO QCD processes!

• NLO QCD processes are more computationally intensive
– More Feynman diagrams

– And especially, loop diagrams! (quad precision needed?)

– A matching procedure (MC@NLO) must also be applied

• We should be able to compute Born and Real emission contributions in our vectorized C++ and CUDA
– We should also be able to handle NLO matching using the current MadEvent based infrastructure

– The main challenge will be understanding the computational impact of loops (Amdahl bottleneck?)

• News (for me!) from some discussions last week at Les Houches
– Branching should not be an issue at NLO, but will be at NNLO? Local subtraction schemes...

• What the code does depends on where you are in phase space...

– NLO and NNLO needs “complicated” functions like polylogarithms (are these supported in SIMD and CUDA?)

– Libraries exist to emulate quad precision (even for SIMD and CUDA), we can look at these (strip them down?)

• What about EWK beyond-LO corrections?
– If I understand correctly, our approach would be portable, and the same types of challenges would apply?

Z. Wettersten (+ OM, SR, AV, R. Schoefbeck)

https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/Pavia2015
https://doi.org/10.1088/1126-6708/2002/06/029

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 21 / 26

Reweighting

• Advantages of reweighting: savings in computing costs (no detector simulation), fewer statistical fluctuations

• In practice for MG5AMC: read in an LHE file, add weights, write back the modified LHE file
– Will use the new matrix element engine in CUDA/C++

– For further details and a status report: Zenny’s poster at CHEP 2023

• Theoretical and technical challenges
– NLO reweighting (see O. Mattelaer, https://arxiv.org/abs/1607.00763)

– Coverage of phase space in the new parameter set

– Reweighting for a given event-by-event helicity and color

Z. Wettersten (+ OM, SR, AV, R. Schoefbeck)

1. Generate signal sample at ref, with wi(ref)=1
(By definition, background does not depend on )

2. Full detector simulation
(MC truth event properties xi

(true) → observed event properties xi)

3. Reweight each event by matrix element ratio

Old technique, renewed interest!

https://arxiv.org/abs/1607.00763

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 22 / 26

Reweighting and weight derivatives in parameter estimation

• Weight derivative: event-by-event sensitivity to the measured parameter

• First: makes it possible to determine the limit error with an ideal detector, and how much (0 to 1) we do worse

– with a given luminosity at a FCC-ee, what is the best theoretically achievable measurement on Higgs couplings?

• Second: can be used as a basis for an “improved optimal observable” ML method

AV

Knowing one’s limits: maximum achievable

information with an ideal detector

- Ideal acceptance, select all signal events Ssel=Stot

- Ideal resolution, measured i is that from MC truth

(implies ideal rejection of background events, i=0)

Weight Derivative

Regression

i
(MC truth) ~ q(xi

(MC))

Data observable

event properties xi
(DATA)

Fit WDR regressor
qi

(DATA) = q(xi
(DATA))

qi
(MC) = q(xi

(MC))

https://doi.org/10.1051/epjconf/202024506038

https://zenodo.org/record/3715951

https://doi.org/10.1051/epjconf/202024506038
https://zenodo.org/record/3715951

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 23 / 26

P
h
o
to

 b
y

G
e
ra

n
 d

e
 K

le
rk

o
n
 U

n
s
p
la

s
h

https://unsplash.com/@gerandeklerk?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/images/animals/elephant?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 24 / 26

Scientific Computing and Software Collaborations
(or: working on the bridge between different units and communities)

• A big lesson learnt from porting MG5AMC to GPUs: you need collaborations with a mix of skills!

• Developing Monte Carlo generator software: which kind of job is this? In which box should it be?

– A scientist’s job? A theorist’s job? An experimentalist’s job? A computing engineer’s job?

– Do we need dedicated Scientific Computing units in our labs and universities?

– Do we need to have dedicated career paths similar to Research Software Engineers?

• The challenge: attracting, training, retaining people with the right competencies and interests

– Can we attract and motivate young theorists to work on software and computing optimizations?

• A theorist colleague I was recently talking to: “We had an opening for working on software optimizations for our Monte

Carlo generator. The only suitable candidates were two theorists. But they were concerned that working on software

optimizations would harm their future careers as theorists and refused the job. In the end, we did not hire anyone.”

– Can we attract and motivate young software engineers to work with us instead of tech or finance companies?

I am only reporting a problem here... I do not have a magic-wand solution 

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 25 / 26

... and finally...

• Upcoming: Workshop on software acceleration of MC event generators
– Where? at CERN

– When? in ~October-November 2023 (any time constraints with important MC events?)

– Organised together with LPCC, MCnet, HSF...

• Contact me if you are interested and/or if you have any suggestions

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 26 / 26

Conclusions

• The (LO?) Matrix Element calculation in any generator can be efficiently parallelized in SIMD or GPUs

• Our reengineering of MG5aMC is close to a first fully functional alpha release for LO QCD processes
– The new ME calculation is integrated in MadEvent – we get the same cross section and LHE files as in Fortran!

– We are now completing and testing the full integration in MG5AMC's multi-channel bash/python machinery

• On CPUs, in vectorized C++ we reach the maximum x8/x16 (double/float) SIMD speedup for MEs alone
– The speedups achieved for the overall workflow are slightly lower due to Amdahl's law, but not much

– Example: our current overall speedup is x6/x10 (double/float) for gg→t ҧtgg (on one CPU core)

• On GPUs, using CUDA we achieve O(100-1000) speedups for MEs alone over one no-SIMD CPU core
– The speedups may be much lower due to Amdahl's law, but we are improving on that

– Example: our current overall speedup is x60/x100 (double/float) for gg→t ҧtggg on an NVidia V100

• Future plans include QCD NLO (as well optimizations for heterogenous GPU+CPU systems)
– Our approach (with similar limitations and challenges) should also apply to EWK higher-order corrections

And don’t forget the elephant in the room: attract and motivate young competent people at the interface of science and software!

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 27 / 26

BACKUP

SLIDES

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 28 / 26

Our internal Fortran-to-C++ interface: multi-event and stateless!

This outputs the squared sum of

amplitudes (real number)

As discussed with Simon, for

HERWIG and other generators

it may be useful to also expose

an API that gives the partial

amplitude (complex number) for

a given colour structure

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 29 / 26

Q1 Q2 Q3 Q4

2024

Q1 Q2 Q3 Q4

2023Q1 Q2 Q3 Q4

2022
Q1 Q2 Q3 Q4

2021
Q1 Q2 Q3 Q4

2020
Q1 Q2 Q3 Q4

2019

Q4

2018

(1) Inception
Motivation, overview, how it all started

Why speed up MC generators?

Why Madgraph5_aMC@NLO (MG5aMC)?

Why GPUs and vectorization?

The (very) long version! – Outline

(2) Implementation
Architecture design, technical choices, progress so far

Beyond e+e−→+− : from discrete “epochs” to fast-turnaround code generation

Standalone CUDA/C++, memory layout, SIMD, GPU kernels

Beyond standalone toys: full functional integration with Fortran MadEvent

Recent performance improvements: AVX512, Amdahl, mixed precision...

Alternative to CUDA/C++: abstraction layers (Alpaka, Kokkos, Sycl)

(3) Outlook
Towards the upcoming first LO alpha release

WIP, plans, ideas for more speed and features
Multithreading and heterogeneous strategies

More compilers, more CPU and GPU architectures

Beyond LO: loops and NLO

Event-by-event reweighting

Faster smaller kernels, faster builds

Tensor cores, cuBLAS

Other ME generators? Parton showers?

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 30 / 26

20242023
202220212020

Q1 Q2 Q3 Q4

2019

Q4

2018

(1) Inception: motivation, overview, how it all started

• The work on generators triggered by the HSF and the LHCC review created many opportunities

– A heightened sensitivity to the need to modernize and speed up HEP software (including generators)

– A breakdown of the computational anatomy of ME event generators and of the ways they can be improved

– A review of previous work on porting Madgraph5_aMC@NLO to GPUs (2008-2013, mainly at KEK)

– An opportunity for theorists, experimentalists and software engineers to meet and start collaborating...

Nov 2018: HSF Generator Workshop

Apr 2020: HSF Generator WG review paper v1

May 2020: start of LHCC review of HL-LHC Software and Computing

Q1 Q2

Mar 2019: HSF/OSG/WLCG “HOW” workshop JLAB

review of KEK GPU work on MG5AMC

Q1 2020: start of madgraph4gpu project (Stefan Roiser, Olivier Mattelaer, AV)

Feb 2020: Stefan’s first commits on gitlab, first standalone cuda/C++ executable

Q3

Sep 2020: HSF generator WG presentation to LHCC

https://indico.cern.ch/event/751693
https://arxiv.org/abs/2004.13687
https://cds.cern.ch/record/2725487
https://indico.cern.ch/event/759388/contributions/3303060
https://zenodo.org/record/4028835

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 31 / 26

20242023Q1 Q2 Q3 Q4

2022
Q1 Q2 Q3 Q4

2021
Q1 Q2 Q3 Q4

2020
20192018

(2) Implementation: design, technical details, progress so far

• Disclaimer - again! Above and in the rest of this talk I focus on the CUDA/C++ implementation

Feb 2020: project starts

CUDA and (scalar) C++

standalone e+e−→+−

Dec 2020: C++ vectorization

Jun 2021 vCHEP:

CUDA/C++ standalone e+e−→+−

https://doi.org/10.1051/epjconf/202125103045

https://doi.org/10.22323/1.414.0212

PoS(ICHEP2022)212

Oct 2021: full code generation

CUDA/C++ standalone gg→t ҧtgg

Jul 2022 ICHEP:

CUDA/C++ madevent gg→t ҧtgg
Kokkos/SYCL standalone gg→t ҧtgg

Q1

NEW!

Jan 2023: CUDA/C++ madevent gg→t ҧtgg
functionally complete LHE files

Oct 2022 ACAT: CUDA/C++ madevent gg→t ҧtgg
performance studies (Amdahl, MT, heterogeneous)

https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 32 / 26

Q1 Q2 Q3 Q4

2024

Q1 Q2 Q3 Q4

2023
202220212020

20192018

(3) Outlook: WIP, plans, ideas for more speed and features

Q3 Q4

Sep 2022 HEPscore

benchmarking workshop

Sep 2022 Lugano hackathon

(sub-event-level parallelism...)

Q1-Q2 alpha release?...

From Q3 2022: Zenny’s PhD work

(reweighting, NLO...)

https://indico.cern.ch/event/1170924/contributions/4954511/

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 33 / 26

CUDA/C++: a single source code approach (so far...)

• The main difference between our CPU (C++) and GPU (CUDA) implementations is the following

– on the CPU, all computations and all memory access takes place on the host

– on the GPU, it is necessary to distinguish computations and memory accesses on the host and on the device

• Within the GPU code, the amount of code that is specific to NVidia/CUDA is minimal

– Memory allocations (cudaMalloc), encapsulated within host/device buffer classes

– Kernel executions (<<<...>>>), encapsulated within very few specific classes

– A few specific types or features (thrust::complex, curand, cuBLAS), also encapsulated in specific classes

• The rest of the code is (at least formally – see example later) ~identical for C++ and CUDA!

– There are almost more differences between scalar and vector C++ code...

• Therefore, we presently use a single source code approach for CUDA/C++ (with #ifdef __CUDA__)

– We might review this later on – as it sometimes imposes slightly unnatural choices, and may hinder readability

– But so far it has allowed us to make rapid progress for both CUDA and C++ in parallel!

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 34 / 26

Memory layouts – AOS, SOA, AOSOA

We have experimented with three possible memory layouts for momenta

(1) Array-of-Structures AOS: momenta[Nevt][Npar][4]

(2) Structure-of-Arrays SOA: momenta[Npar][4][Nevt]

(3) AOSOA: momenta[Npag][Npar][4][Nepp] with Nevt = Npag (“pages”) * Nepp (“events per page”)

We are using AOSOA’s as the current default – but this is still largely configurable

• For CPU vectorization, AOSOAs (or SOAs) are absolutely mandatory!
– We use an AOSOA with Nepp equal to the SIMD vector size NeppV – and an aligned malloc is needed too!

– For performance comparison we also build a no-SIMD mode with Nepp=1, which is effectively an AOS

• For GPUs (1 event per thread), AOSOAs are faster (fewer memory accesses) but not strictly necessary
– We use Nepp=4(8) for doubles(floats) so that each page is 32 bytes (the “sector” size, or L2 cache line size)

– For a given number of “requests”, AOS uses 4 times more “sectors” (transactions) than AOSOA with Nepp=4

• Coding for SIMD is more complex than coding for GPUs...

MATRIX ELEMENTS

CUDA/C++:

MEKERNELS

MOMENTA

Matrix element calculation (simplified example)
– inputs[4*Npar*Nevt] = (x,y,z,E)-momentum of Npar particles for Nevt events (n-dim array, substructure)

– outputs[Nevt] = matrix element for Nevt events (1-dim array, no substructure)

Example: Npar=6 particles for the 2→4 process gg→t ҧtgg

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 35 / 26

Monitoring GPU memory access – NSight Compute

• Explicitly collect two relevant profiler metrics in NSight Compute

– “requests” : l1tex__t_requests_pipe_lsu_mem_global_op_ld.sum

– “sectors” (i.e. transactions, network roundtrips): l1tex__t_sectors_pipe_lsu_mem_global_op_ld.sum

– this is from old tests in August 2020 (issue #16), the profiler metrics names may have changed since then

• Profile AOS against the AOSOA baseline

– same number of “requests” in AOS and AOSOA

– AOS needs 4 times as many “sectors” as AOSOA (which fits 4 doubles in a 32-byte cache line)

– in other words: AOSOA provides coalesced memory access, AOS does not

– for what it is worth (not much!), the actual slowdown in this e+e−→+− example was only 7% however

https://github.com/madgraph5/madgraph4gpu/issues/16

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 36 / 26

In practice in MG5aMC: use helicity amplitudes and QCD color decomposition

1. (for each helicity ) compute partial amplitudes Jf for each color ordering permutation f (sum diagrams relevant to f)

2. (for each helicity ) compute the sum over colors as the quadratic form JCJ* using the constant color matrix C

3. sum over helicities [Example for 𝑔𝑔→ 𝑡 ҧ𝑡𝑔𝑔𝑔: 128 helicities (before and after filtering)]

Each step computes many events 𝒑 in parallel! CPU: 1 SIMD event-vector at a time. GPU: 1 event per thread.

Inside the ME calculation: Feynman diagrams, colors, helicities
Given the momenta Ԧ𝑝 of initial+final partons in one specific event

Sum over all helicity combinations  of initial+final partons

Sum over all color combinations c of initial+final partons

Include all Feynman diagrams d allowed for the given  and c

Example for 𝑔𝑔→ 𝑡 ҧ𝑡𝑔𝑔𝑔: 1240 Feynman diagrams (using helicity amplitudes)

This takes ~40% of the CPU time for this process

Example for 𝑔𝑔→ 𝑡 ҧ𝑡𝑔𝑔𝑔: 120 color ordering permutations, 120x120 matrix

This takes ~60% of the CPU time for this process

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 37 / 26

C++ vectorization – why choose Compiler Vector Extensions?

• Portable – available in gcc, clang, icpx (from clang) with minimal differences
– Do not require any external libraries or tools (VC, VCL, VecCore, xSIMD, UME::SIMD, or SYCL...)

• Powerful, but easy to use
– No need to debug auto-vectorization when it does not vectorize

– As powerful as intrinsics, but much easier to write (higher-level abstractions)

• Intuitive – CVEs force you to think in terms of vector types!

• Minor disadvantage – no vector complex type out of the box
– But it was easy to write it in our case (RRRRIIII memory layout) as we only need + -  

– A few extensions for Boolean vector masks were needed, too

• One technical detail: we malloc a standard (aligned!) fptype* and reinterpret_cast as fptype_v*...

HUGE THANKS TO SEBASTIEN PONCE for his Practical Vectorization lectures mentioning CVEs!

https://indico.cern.ch/event/1100351/contributions/4629205

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 38 / 26

Monitoring lockstep – GPU NSight compute, CPU disassemble

• GPU: explicitly collect one profiler metric in NSight Compute

– “branch efficiency” : sm__sass_average_branch_targets_threads_uniform.pct

– old test (May 2021 issue #25) comparing two code bases: no-divergence baseline has 100% efficiency,

alternative with minor forced divergence has 96% efficiency (and is 20% slower)

• CPU: the best lockstep metric IMO is the speedup over a no-SIMD case (reach theoretical maximum!)

– but is also useful to disassemble the object using objdump and categorize SIMD intrinsics symbols...

Symbols in .o SSE4.2

(xmm)

AVX2

(ymm)

AVX512

(ymm)

AVX512

(zmm)Build type

Scalar 4534 0 0 0

SSE4.2 12916 0 0 0

AVX2 0 10630 0 0

256-bit AVX512 0 10366 12 0

512-bit AVX512 0 1267 60 99104
a

9
0

e
c
2
gg
→
t
ҧ tg
g

ACAT2022

https://github.com/madgraph5/madgraph4gpu/issues/25
https://github.com/madgraph5/madgraph4gpu/blob/4a90ec2c55e9f2af8219491536167f2bbc62a9b7/epochX/cudacpp/tput/logs_ggttgg_mad/log_ggttgg_mad_d_inl0_hrd0.txt

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 39 / 26

Code generation: how did we bootstrap the project?

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 40 / 26

Code generation: from many “epochs” to a single evolving “epoch”

Code generation infrastructure
- Python framework and “cudacpp” plugin

- Fortran, C++, CUDA templates

- Post-generation patches (temporary...)

Automatically generated code
- Fortran framework (Madevent)

- CUDA/C++ Matrix Elements

(1) develop on top of auto-generated code

(2) backport immediately to code generation infrastructure

(3) re-generate

NEW MODEL

(since end 2021)

OLD MODEL

(2020- early 2021)

(1) MG5AMC Python framework, Fortran templates:

“upstream” https://github.com/mg5amcnlo/mg5amcnlo

(2) CUDACPP plugin, post-generation patches,

generated CUDA/C++ physics processes:

our https://github.com/madgraph5/madgraph4gpu

WIP to-do before a release:

full port from madgraph4gpu

to mg5amcnlo (remove post-

generation Fortran patches,

add CUDACPP upstream)

... and beyond

https://github.com/mg5amcnlo/mg5amcnlo
https://github.com/madgraph5/madgraph4gpu

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 41 / 26

Why focus on complex processes? Compute >> memory!

• We are lucky: the more

complex the physics process,

the less relevant is the cost of

GPU-CPU data copies!

– Similarly (later): the more

complex the process, the less

relevant is the overhead from

scalar Fortran in madevent!

– And the fewer events in flight

needed to fill the GPU...

• In this talk I mainly give

performance numbers for

complex processes like

gg→t ҧtgg or gg→t ҧtggg

e+e-→+-

𝐠𝐠→𝐭 ҧ𝐭𝐠𝐠

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 42 / 26

Amdahl’s law

• The matrix element calculation is now the bottleneck (e.g. >95% for gg→t ҧtgg) in Fortran Madgraph

– But the remaining <5% may fast become the bottleneck if you accelerate the matrix element too much!

• Amdahl’s law: if the parallelizable part takes a fraction of time p, the maximum speedup is 1/(1-p)

– If the MadEvent overhead takes 5%, the maximum speedup is only 20 even if your GPU speedup s is 1000!

https://en.wikipedia.org/wiki/Amdahl%27s_law

https://en.wikipedia.org/wiki/Amdahl%27s_law

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 43 / 26

Floating point precision

• Previous slide: our vectorized C++ on CPUs is 2x faster in single-precision than in double-precision

– In a 512-bit register you fit 16 (4-byte) floats but only 8 (8-byte) doubles

• Next slides: our CUDA implementation on V100 GPUs is also 2x faster for floats than for doubles

– On data-center NVidia GPUs (e.g. V100 or A100), you have twice as many FLOPs in float as in double

– Note that lower-end GPUs (e.g. T4) have almost no double-precision FLOPs...

• But single-point precision is not enough for physics: numerical instabilities (e.g. in Feynman diagrams)

– It would be useful to study if these instabilities can be worked around – anyone interested? ☺

– Alternative: we prototyped a “mixed-precision” calculation (double for Feynman, float for color matrix...)

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 44 / 26

Filling the GPU – minimum number of threads (events in flight)

• We are lucky, again: the more complex the process, the fewer the events in flight needed to fill the GPU

• But even 16k events is a lot: it results in imbalanced phase space sampling, and high RAM in Fortran
– Eventually, maybe: one helicity per kernel (fewer events in flight, spread each event across many kernels)?

– Eventually, maybe: many CPU cores/processes in parallel (fewer events in flight per CPU core/process)?

– Eventually, maybe: different channels in parallel (fewer events in flight in a single channel)?

https://doi.org/10.1051/epjconf/202125103045 (vCHEP 2021)

https://doi.org/10.1051/epjconf/202125103045

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 45 / 26

All MadEvent functionalities have been integrated over time

Most of these required some changes to the input/output API of our Fortran-to-CUDA/C++ “Bridge”

• Helicity filtering – at initialization time, compute the allowed combinations of particle helicities

– This is computed in CUDA/C++ using the same criteria as in Fortran

• “Multi-channel” – single-diagram enhancement of ME output

– This is the specificity of the MadEvent sampling algorithm (Maltoni Stelzer 2003)

• Event-by-event running QCD coupling constants s(Q
2)

– The scale is currently computed in Fortran from momenta and passed to the CUDA/C++ for each event

• Event-by-event choice of helicity and color in LHE files

– Pass two additional random numbers per event from Fortran to CUDA/C++, retrieve helicity and color

– NEW (January 2023)! This was the last big missing physics functionality (showstopper to a release)

• We now get the same cross section AND the same LHE files (within numerical precision) in Fortran and CUDA/C++

https://doi.org/10.1088/1126-6708/2003/02/027

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 46 / 26

PF MEs

• Write code once for many CPU/GPU vendors

• Support NVidia, AMD and Intel GPUs out-of-the-box

– Limited support for vendor-specific features

• SIMD added via SYCL in Jan 2023, analysing results

• CPU multithreading out of the box

CUDACPP MEs

• 95% common code + a few #ifdef's for CUDA vs C++

• Designed for NVidia GPUs (so far: will add HIP/AMD)

– Full feature support, e.g. tensor cores, streams, graphs

• Designed upfront for SIMD speedups on vector CPUs

• WIP on CPU multithreading and heterogeneous modes

For the moment: we plan to continue development in parallel using both approaches – comparisons are very useful!

Two goals: not only production releases, but also aim to provide useful feedback to HEP about usability of PFs

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 47 / 26

CUDACPP vs. Portability Frameworks – recap

• CUDAPP (our initial implementation) is where we add new features first

• The SYCL implementation of MG5aMC is now almost at the same level, the KOKKOS one somewhat behind

• The ALPAKA implementation of MG5aMC is no longer maintained

Backend
ME code

generation

Standalone

application

Actively

maintained

MadEvent

application

Latest dev

code base

CUDACPP ✓ ✓ ✓ ✓ ✓

SYCL ✓ ✓ ✓ ✓ ~ ✓

KOKKOS ✓ ✓ ~ ✓ WIP WIP

ALPAKA

(CUPLA)
✓ ✓   

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 48 / 26

CUDACPP vs PFs - GPU ME throughputs (standalone application)

• The performances of the SYCL and Kokkos implementations of MG5aMC seem comparable to direct CUDA

– Further comparisons are in progress, performance scales differently with more jets for different backends (next slide)

• SYCL and Kokkos run out of the box also on AMD and Intel GPUs

– They also run out of the box on CPUs (performance under investigation)

Xe-HP is a software development vehicle for functional testing only - currently used at Argonne and other customer sites to prepare their code for future Intel data centre GPUs

XE-HPC is an early implementation of the Aurora GPU

INTEL NVIDIAAMD

(gg_ttgg) 16k

Fixed GPU-grid size (throughput plateau)Variable GPU-grid size (throughput scan)

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 49 / 26

CUDA vs SYCL on NVidia A100

• SYCL and CUDA implementations have ~similar performances but

– SYCL seems better for less complex processes

– CUDA seems better for more complex processes

• These are very recent results, which are still being digested (WIP!)

– It will be very interesting to understand more in detail what goes on

We plan to also compare more systematically the CUDACPP and SYCL performances

on CPUs (vectorization, multi-core), but it will take time and optimization tweaks... WIP!

PRELIMINARY!

N. Nichols, T. Childers (SYCL)

J. Teig (tests/plots)

𝐠𝐠→𝐭 ҧ𝐭

𝐠𝐠→𝐭 ҧ𝐭𝐠

𝐠𝐠→𝐭 ҧ𝐭𝐠𝐠

𝐠𝐠→𝐭 ҧ𝐭𝐠𝐠𝐠

CUDA < SYCL

CUDA < SYCL

CUDA > SYCL

CUDA > SYCL

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 50 / 26

Benchmarking – Madgraph and the HEP-SCORE project

• HEPscore: the new HEP benchmark for compute resources, replacing HepSpec06

– Based on reproducible HEP workloads (GEN, SIM, DIGI, REC...) within docker containers

– The first version HEPscore23 should become production in April 2023 for (x86 and ARM) CPUs

• The aim is to benchmark a fully loaded server: all CPU cores, and eventually all associated GPUs

– (and ideally measure how well an application is doing compared to the theoretical power of the server...)

– fill all CPU cores by a combination of application multi-threading and/or several identical copies/processes

• A first container based on our Madgraph-on-GPU has been prepared

– Very useful because it gives the same physics results on CPU and GPU: may compare them to each other!

– And eventually may be used to evaluate heterogeneous processing on CPU+GPU...

• The plots on the next slides are based on this HEPscore container: several identical copies/processes

– (A multi-threaded CUDACPP version exists but not optimized yet – SYCL and Kokkos also provide MT)

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 51 / 26

gg→𝒕 ҧ𝒕gg

(float)

gg→𝒕 ҧ𝒕gg

(float)

ME throughput in C++ for gg→t ҧtgg (on all the cores of a CPU)

• Previous tables for SIMD speedups on C++ were for a single CPU core

• Large SIMD speedups are also confirmed when all CPU cores are used
– AVX512/zmm speedup of x16 over no-SIMD for a single core slightly decreases to ~x12 on a full node (clock slowdown?)

– Overall speedup on 32 physical cores (over no-SIMD on 1 core) is around 280 (maximum would be 16x32=512)

– Aggregate MEs throughput from many identical processes using the standalone application (HEP-workload Docker container)

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 52 / 26

Some ideas for heterogeneous processing

To further reduce the relative overhead of the scalar Fortran MadEvent - parallelize it on many CPU cores?

• Blue curve: one single CPU process using the GPU
– For gg→𝑡 ҧ𝑡gg, you need at least ~16k events to reach the throughput plateau

• Yellow, Green, Red curves: 2, 4, 8 CPU processes using the GPU at the same time
– Fewer events in each GPU grid are needed to reach the plateau if several CPU processes use the GPU

– The total Fortran RAM would remain the same, but the CPU time in the Fortran overhead would be reduced

– (Why total throughput increases beyond the nCPU=1 plateau is not understood yet!...)

Throughput variation as a function of

GPU grid size (#blocks * #threads)

This is the number of events

processed in parallel in one cycle

Nvidia V100 GPU

Silver 4216 4-core CPU

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 53 / 26

Lockstep beyond event-level parallelism

• Efficient data parallelism (lockstep processing) requires the same function computed for different data
– This is true in MG5AMC at the event level (different events i.e. different phase space points)

– But it is also true at the sub-event level (different helicities within the same event)

• We are evaluating the move to a different data parallelism strategy on GPUs
– Currently: one event (sum over all helicities) per GPU thread

– In the future: one helicity of one event per GPU thread?

• Advantages:
– You can fill the GPU with much fewer “events in flight” – more balanced sampling/integration in MadEvent

– This is a prerequisite for moving the color matrix to externally-launched cuBLAS and tensor cores

– This is also a prerequisite if we want to evaluate much smaller kernels
• From all Feynman diagrams in one kernel to one Feynman diagram per kernel?

• Which might decrease register pressure and increase kernel occupancy, but would require more global memory access

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 54 / 26

Beyond Madgraph

• ANY matrix element event generator is a perfect fit for vectorization and GPUs!

– Opportunities for 100% lockstep processing at the event-level and event the sub-event level

– Had some discussions with the Sherpa team about vectorization...

• Beyond matrix element event generators: are parton showers a good fit for vectorization and GPUs?

– More stochastic branching than in ME event generators

– But the calculations before/after each PS splitting are the same? Would just need some basketization...

– Some discussions a few months ago with the Pythia team on possible collaborations

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 55 / 26

Acknowledgements

• We gratefully acknowledge the computing resources provided by the Joint Laboratory for System

Evaluation at Argonne National Laboratory, the Jülich Supercomputing Centre at Forschungszentrum

Jülich, the Super Computing Applications and Innovation department at CINECA, and the EuroHPC

Joint Undertaking at CSC’s Kajaani data centre

• Many thanks from me and the whole team to:
– Our CERN IT colleagues (especially Ricardo Rocha and Ulrich Schwickerath) for their help with GPU nodes!

– Sebastien Ponce, Hadrien Grasland, Steve Lantz, Marco Clemencic for their suggestions on vectorization

– Igor Vorobtsov and Klaus-Dieter Oertel for useful discussions on vectorization on Intel CPUs

– The organizers and our mentors at the Sheffield 2020 and Lugano 2022 GPU hackathons

– Domenico Giordano and the HEPiX benchmarking WG

– The organizers of this Compute Accelerator Forum

– The HSF event generator WG

– The original authors of Madgraph5_aMC@NLO

• Many thanks from me personally to the whole madgraph4gpu team for the great collaboration! ☺

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 56 / 26

Functional tests – CI, standalone, madevent

• Functional tests in the CI

– Starting from some hardcoded momenta, reproduce some hardcoded matrix elements (within precision)

– A few different processes, architectures, all in double-float-mixed precision

• Functional tests for standalone tests

– Always use the same random seeds, visually check that results do not change in logs

• Functional tests for madevent

– Compute cross sections and generate LHE event files in Fortran

– Then do the same in CUDA/C++ and compare results (within precision)

– Note: for floats, the tolerance for allowed differences is now very generous...

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 57 / 26

Build challenges and issues

• The build times increase enormously as you add more final state gluons

– Many more diagrams...

• ...but also the result of some whole-program link time optimization? (we disable RDC in CUDA)

– This may improve if/when we go to smaller kernels

– We use ccache to ease the pain

• Conversely, ninja would probably not help as we have few very large compilation units, not many small ones

• We currently build separately for our five SIMD modes

– Eventually we might move to a “fat binary” approach with dynamic choice of the best implementation

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 58 / 26

OLDER SLIDES

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 59 / 26

MadEvent/C++ for gg→t ҧtggg (on a single core)

• Lower overhead of scalar MadEvent in gg→t ҧtggg than in gg→t ҧtgg : higher overall throughput speedup x13!

• Mixed floating-point precision (single precision color algebra) is 5-10% better than double

ACAT2022

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 60 / 26

h
tt

p
s
:/
/d

o
i.
o

rg
/1

0
.5

2
8

1
/z

e
n

o
d
o

.4
0
2

8
8

3
4

https://doi.org/10.5281/zenodo.4028834

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 61 / 26

h
tt

p
s
:/
/d

o
i.
o

rg
/1

0
.5

2
8

1
/z

e
n

o
d
o

.4
0
2

8
8

3
4

https://doi.org/10.5281/zenodo.4028834

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 62 / 26

A. Valassi – Lessons learnt from vectorizing Madgraph5_aMC@NLO ECFA Workshop, Bruxelles, 22 June 2023 63 / 26

Portability Frameworks (PFs)

(2) Second line of development: MEs on PFs

• PFs allow writing algorithms once and running on many

architectures with some hardware-specific optimizations

• CUDA code can only run on NVidia GPUs, while Kokkos,

Alpaka, and Sycl[Intel] codes can run on most hardware

• In “cudacpp”, #ifdef directives separate code branches for

GPU and CPU code during compilation (but these are very

few: only kernel launching and memory access, not MEs)

• With PFs, the algorithm is typically the same, but the

compilation occurs once per architecture type

• PFs often use templating to handle data types and hardware

configuration and function lambdas or pointers for passing

kernels (the cudacpp plugin has many of these, too)

• PFs still require user to think about “host” vs “device”

“cudacpp” example of compiler directives

Kokkos example of Templating & lambda

Kokkos example of Memory Management

For GPU

For CPU

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/cudacpp/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check_sa.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/CPPProcess.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check.cpp

