Collinearly Enhanced Realizations **of the YFS MC Approach to Precision Resummation Theory**

B.F.L. Ward

Baylor University, Waco, TX, USA

Jun. 22, *2023*

*In collaboration with S. Jadach*¹ *and Z. Was* **arXiv:2303.14260**

[1/2/2](#page-26-0)[008](#page-0-0) 1

¹Deceased.

B.F.L. Ward ECFA-6-23

- **O** Introduction
- Review of YFS Exact Amplitude-Based Resummation
- **Improving the Collinear Limit in YFS Theory**
- **O** Summary Remarks

- The Future of Precision Theory: Dictated by Future Accelerators FCC, CLIC, ILC, CEPC, CPPC, \cdots
- \sim 100 \bullet Using FCC as an example, factors of improvement from \sim 5 to \sim 100 are needed from Theory
- Theory via Monte Carlo Methods Theory via Monte Carlo Methods ● Resummation is a key to such improvements in many cases: Today, we discuss amplitude-based resummation following the YFS methodology
- \bullet YFS \rightarrow 'no limit to precision'
- See 1989 CERN Yellow Book article by Berends *et al.*

 \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

- YFS methods are exact in the infrared but treat the collinear logs perturbatively in the β_n residuals
- \mathbf{H} Persummation in $\mathbb R$ ● DGLAP-based collinear factorization treats the collinear logs to all orders but has a non-exact IR limit - see Stefano's talk and references therein ('all roads lead to Rome')
- Today, we investigate improving the collinear limit of YFS theory
- A Key Point: Exact Amplitude-Based Resummation Realized on Evt-by-Evt Basis – Enhanced Precision for a Given Level of Exactness: LO, NLO, NNLO,

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow

$$
d\bar{\sigma}_{res} = e^{SUM_{IR}(QCED)} \sum_{n,m=0}^{\infty} \frac{1}{n!m!} \int \prod_{j_1=1}^{n} \frac{d^3 k_{j_1}}{k_{j_1}}
$$

$$
\prod_{j_2=1}^{m} \frac{d^3 k'_{j_2}}{k'_{j_2}} \int \frac{d^4 y}{(2\pi)^4} e^{iy \cdot (p_1+q_1-p_2-q_2-\sum k_{j_1}-\sum k'_{j_2})+D_{QCED}} \frac{\tilde{\sigma}_{R_{j_1}}}{\tilde{\beta}_{n,m}(k_1,\ldots,k_n;k'_1,\ldots,k'_m) \frac{d^3 p_2}{p_2^0} \frac{d^3 q_2}{q_2^0}},
$$
(1)

where *new* (YFS-style) *non-Abelian* residuals $\tilde{\bar{\beta}}_{n,m}(k_1,\ldots,k_n;k'_1,\ldots,k'_m)$ have *n* hard gluons and *m* hard photons.

Review of Exact Amplitude-Based Resummation Theory

Here,

$$
SUM_{IR}(QCED) = 2\alpha_s \mathfrak{R}B_{QCED}^{n/s} + 2\alpha_s \tilde{B}_{QCED}^{n/s}
$$

$$
D_{QCED} = \int \frac{d^3k}{k^0} (e^{-iky} - \theta(K_{max} - k^0)) \tilde{S}_{QCED}^{n/s}
$$
 (2)

where *Kmax* is "dummy" and

$$
\begin{array}{rcl}\nB_{QCED}^{nls} & \equiv & B_{QCD}^{nls} + \frac{\alpha}{\alpha_s} B_{QED}^{nls}, \\
\tilde{B}_{QCED}^{nls} & \equiv & \tilde{B}_{QCD}^{nls} + \frac{\alpha}{\alpha_s} \tilde{B}_{QED}^{nls}, \\
\tilde{S}_{QCED}^{nls} & \equiv & \tilde{S}_{QCD}^{nls} + \tilde{S}_{QED}^{nls}.\n\end{array} \tag{3}
$$

[1/2/2](#page-26-0)[008](#page-0-0) 1

 Ω

"nls"≡ DGLAP-CS synthesization. ${\sf Shower/ME}$ Matching: $\tilde{\bar{\beta}}_{n,m}\to \hat{\bar{\beta}}_{n,m}$ -- $KKMCee, KKMChh, \textit{Herviri},...$

 \bullet

● Basic Formula for CEEX/EEX realization of the YFS resummation of

$$
e^+e^-\rightarrow f\bar{f}+\eta\gamma,~f=\ell,q,~\ell=e,\mu,\tau,\nu_e,\nu_\mu,\nu_\tau,~q=u,d,s,c,b,t.
$$

$$
\sigma = \frac{1}{\text{flux}} \sum_{n=0}^{\infty} \int dLIPS_{n+2} \rho_A^{(n)}(\{p\}, \{k\}), \tag{4}
$$

$$
\rho_{\text{CEEX}}^{(n)}(\{p\},\{k\}) = \frac{1}{n!} e^{Y(\Omega;\{p\})} \bar{\Theta}(\Omega) \frac{1}{4} \sum_{\text{helicities }\{\lambda\},\{\mu\}} \left| \mathcal{M}\left(\{p\}\{k\}\right)\right|^2.
$$
\n(5)

By definition, $\Theta(\Omega, k) = 1$ for $k \in \Omega$ and $\Theta(\Omega, k) = 0$ for $k \notin \Omega$, with $\bar{\Theta}(\Omega; k) = 1 - \Theta(\Omega, k)$ and

$$
\bar{\Theta}(\Omega) = \prod_{i=1}^n \bar{\Theta}(\Omega, k_i).
$$

irared _N For Ω defined with the condition *k* ⁰ < *E*min, the YFS infrared exponent reads

$$
Y(\Omega; p_a,...,p_d) = Q_e^2 Y_{\Omega}(p_a, p_b) + Q_f^2 Y_{\Omega}(p_c, p_d)
$$

+ $Q_e Q_f Y_{\Omega}(p_a, p_c) + Q_e Q_f Y_{\Omega}(p_b, p_d)$ (6)
- $Q_e Q_f Y_{\Omega}(p_a, p_d) - Q_e Q_f Y_{\Omega}(p_b, p_c)$.

4 0 8 4

• Here

$$
Y_{\Omega}(p,q) \equiv 2\alpha \tilde{B}(\Omega,p,q) + 2\alpha \Re B(p,q)
$$

$$
\equiv -2\alpha \frac{1}{8\pi^2} \int \frac{d^3k}{k^0} \Theta(\Omega;k) \left(\frac{p}{kp} - \frac{q}{kq}\right)^2 + 2\alpha \Re \int \frac{d^4k}{k^2} \frac{i}{(2\pi)^3} \left(\frac{2p-k}{2kp-k^2} - \frac{2q+k}{2kq+k^2}\right)^2.
$$
 (7)

 \bullet Fundamental Idea of YFS: isolate and resum to all orders in α the infrared singularities so that these singularities are canceled to all such orders between real and virtual corrections. What collinear singularities are also resummed in the YFS resummation algebra?

Focusing on the s-channel and s'-channel contributions, we have

$$
Y_e(\Omega_I; p_1, p_2) = \gamma_e \ln \frac{2E_{min}}{\sqrt{2p_1p_2}} + \frac{1}{4}\gamma_e + Q_e^2 \frac{\alpha}{\pi} \left(-\frac{1}{2} + \frac{\pi^2}{3} \right),
$$

\n
$$
Y_f(\Omega_F; q_1, q_2) = \gamma_f \ln \frac{2E_{min}}{\sqrt{2q_1q_2}} + \frac{1}{4}\gamma_f + Q_f^2 \frac{\alpha}{\pi} \left(-\frac{1}{2} + \frac{\pi^2}{3} \right),
$$
\n(b)

where

$$
\gamma_e = 2Q_e^2 \frac{\alpha}{\pi} \left(\ln \frac{2p_1p_2}{m_e^2} - 1 \right), \quad \gamma_f = 2Q_f^2 \frac{\alpha}{\pi} \left(\ln \frac{2q_1q_2}{m_f^2} - 1 \right), \tag{9}
$$

 \Rightarrow The YFS exponent resums the collinear big log term $\frac{1}{2}Q^2\frac{\alpha}{\pi}L$ to the infinite order in both the ISR and FSR contributions.

Can this be improved to the result of Gribov and Lipatov to exponentiate $\frac{3}{2} \frac{\alpha}{\pi}$ $\frac{\alpha}{\pi}$ *L* via the QED form-factor?

Colling the Collinear Limit in YFS Theory and improving the Collinear Limit in YFS Theory $t_{\rm eff}$ for the $t_{\rm eff}$ form σ α

The YFS form factor derivation illustrated in Fig. [4](#page-10-1)

L exponentiates. Does YFS algebra allow for

 F_{SAYLOR} $BAYLOR$ Figure: Virtual corrections which generate the YFS infrared function *B*. Self-energy contributions are not shown.

4 D E 4 HP

[1/2/2](#page-26-0)[008](#page-0-0) 1

 Ω

contributions are not shown.

 $\bullet \Rightarrow$ the amplitude factor

$$
\mathcal{M}_{\mu} = \frac{\int d^4k}{(2\pi)^4} \frac{-i}{k^2 + i\epsilon} \bar{v}(p_2)(-iQ_e e)\gamma^{\mu} \frac{i}{-\cancel{p_2 - k - m + i\epsilon}}(-ie)\gamma_{\mu}(v_A - a_A\gamma_5)
$$

$$
\frac{i}{\cancel{p_1 - k - m + i\epsilon}}(-iQ_e e)\gamma_{\alpha}u(p_1)
$$
(10)

where $A = \gamma$ or Z.

 \bullet Scalarising the fermion propagator denominators \Rightarrow

$$
\mathcal{M}_{\mu} = -ie^{\int \frac{d^4 k(-iQ_e^2 e^2)}{(2\pi)^4} \frac{1}{k^2 + i\epsilon} \overline{V}(\rho_2) \gamma^{\alpha} \frac{-\beta_2 - k + m}{k^2 + 2k\rho_2 + i\epsilon} \gamma_{\mu} (v_A - a_A \gamma_5)}{\frac{\beta_1 - k - m}{k^2 - 2k\rho_1 + i\epsilon} \gamma_{\alpha} u(\rho_1).}
$$
\n(11)

● Using the equations of motion

$$
(\rho_1 - k - m)\gamma_\alpha u(\rho_1) = \{(2\rho_1 - k)_\alpha - \frac{1}{2}[k, \gamma_\alpha]\}u(\rho_1), \qquad (a)
$$

$$
u(\rho_1)\gamma^\alpha(-\rho_2 - k + m) = \bar{u}(\rho_2) \{-(2\rho_2 + k)^\alpha + \frac{1}{2}[\frac{k}{2}\gamma^\alpha]\} \qquad (b)
$$

$$
\bar{v}(p_2)\gamma^{\alpha}(-p_2-\kappa+m)=\bar{v}(p_2)\{-(2p_2+\kappa)^{\alpha}+\frac{1}{2}[\kappa,\gamma^{\alpha}]\},\qquad(b).
$$
\n(12)

≮ロト ⊀ 倒 ト ⊀ 走 ▶

 $R(\overline{7})$: \Rightarrow Contribution to 2 $Q_e^2 \alpha B(p_1, p_2)$ corresponding to the cross-term in the virtual IR function on the RHS of eq.(7):

$$
2Q_e^2 \alpha B(p_1, p_2)|_{\text{cross-term}} = \int d^4 k \frac{(iQ_e^2 e^2)}{8\pi^4} \frac{1}{k^2 + i\epsilon} \frac{(2p_1 - k)(2p_2 + k)}{(k^2 - 2kp_1 + i\epsilon)(k^2 + 2kp_2 + i\epsilon)}.
$$
 (13)

[1/2/2](#page-26-0)[008](#page-0-0) 1

This term, together with the two squared terms in 2α Q^2_e *B*(p_1, p_2), leads to the exponentiation of $\frac{1}{2}Q^2_e\frac{\alpha}{\pi}$ $\frac{\alpha}{\pi}$ *L*.

- The two commutator terms on the RHS of eq.[\(12\)](#page-12-0), usually dropped, can be analyzed further: possible IR finite collinearly enhanced improvement of the YFS virtual IR function *B*.
- **Review of Applications of App •** Isolate the collinear parts of *k* via the change of variables

$$
k = c_1 p_1 + c_2 p_2 + k_{\perp} \tag{14}
$$

[1/2/2](#page-26-0)[008](#page-0-0) 1

where $p_1k_1 = 0 = p_2k_1$, \Rightarrow we have the relations

$$
c_1 = \frac{p_1 p_2}{(p_1 p_2)^2 - m^4} p_2 k - \frac{m^2}{(p_1 p_2)^2 - m^4} p_1 k \underset{CL}{\rightarrow} \frac{p_2 k}{p_1 p_2}
$$

\n
$$
c_2 = \frac{p_1 p_2}{(p_1 p_2)^2 - m^4} p_1 k - \frac{m^2}{(p_1 p_2)^2 - m^4} p_2 k \underset{CL}{\rightarrow} \frac{p_1 k}{p_1 p_2},
$$
\n(15)

CL denotes the collinear limit $\equiv O(m^2/s)$ dropped.

 \Rightarrow (2*p*₁ − *k*)^α in eq.[\(12\(](#page-12-0)a)) combines with the commutator term in eq.[\(12\(](#page-12-0)b)) to produce

$$
\bar{v}(p_2)\{(2p_1-k)_{\alpha}\frac{1}{2}[k,\gamma^{\alpha}]\}\gamma_{\mu}(v_A-a_A\gamma_5)u(p_1) \n= \bar{v}(p_2)[k,\hat{p}_1]\gamma_{\mu}(v_A-a_A\gamma_5)u(p_1) \n\rightarrow \bar{v}(p_2)[c_2 \hat{p}_2,\hat{p}_1]\gamma_{\mu}(v_A-a_A\gamma_5)u(p_1) \n\rightarrow \bar{v}(p_2)(-2c_2p_1p_2)\gamma_{\mu}(v_A-a_A\gamma_5)u(p_1) \n\rightarrow \bar{v}(p_2)(-2p_1k)\gamma_{\mu}(v_A-a_A\gamma_5)u(p_1).
$$
\n(16)

 \mathcal{G} in Honor of S. Jadach on \mathcal{G} Similarly, $-(2p_2 + k)^{\alpha}$ in eq.[\(12](#page-12-0) (b)) combines with the commutator term in eq.[\(12\(](#page-12-0)a)) to produce

$$
\bar{v}(p_2)\gamma_\mu(v_A - a_A\gamma_5)\{-(2p_2 + k)^{\alpha}(-\frac{1}{2}[k, \gamma_\alpha])\}u(p_1) \n= \bar{v}(p_2)\gamma_\mu(v_A - a_A\gamma_5)[k, \hat{p}_2]u(p_1) \n\rightarrow \bar{v}(p_2)\gamma_\mu(v_A - a_A\gamma_5)[c_1 \hat{p}_1, \hat{p}_2]u(p_1) \n\frac{c_1}{c_1} \bar{v}(p_2)\gamma_\mu(v_A - a_A\gamma_5)(2c_1p_1p_2)u(p_1) \n\frac{c_2}{c_2} \bar{v}(p_2)\gamma_\mu(v_A - a_A\gamma_5)(2p_2k)u(p_1).
$$

 $\bullet \Rightarrow$ Shift of the factor $(2p_1 - k)(2p_2 + k)$ on the RHS of eq.[\(13\)](#page-13-0) as

 $T₁$ (18) $(2p_1-k)(2p_2+k) \xrightarrow[CL]{} (2p_1-k)(2p_2+k)+2p_1k-2p_2k.$ (18)

- What does the term quadratic in the commutator (*C* 2) contribute?
- Superficial UV divergence ⇒ Cannot naively drop *k*[⊥]
- **O** Proceed directly: we need

$$
2Q_e^2 \alpha B(p_1, p_2)|_{C^2} \mathcal{M}_{B\mu} \equiv \frac{\int d^4k (iQ_e^2 e^2)}{8\pi^4} \frac{1}{k^2 + i\epsilon} \frac{\frac{1}{4} \bar{v}(p_2) [\cancel{k}, \gamma^{\alpha}] \gamma_{\mu} [\cancel{k}, \gamma_{\alpha}] (-ie) (v_A - a_A \gamma_5) u(p_1)}{(k^2 - 2kp_1 + i\epsilon)(k^2 + 2kp_2 + i\epsilon)} \Big|_{CL},
$$
\n(19)

where we define

$$
\mathcal{M}_{B\mu} = -ie\bar{v}(p_2)\gamma_{\mu}(v_A - a_A\gamma_5)u(p_1). \qquad (20)
$$

[1/2/2](#page-26-0)[008](#page-0-0) 1

• *CL* now further restricted to contributions singular as $m^2/s \to 0$.

- ective
 $\kappa_{\lambda'} \equiv$ • Four terms in the numerator of eq. [\(19\)](#page-17-0) from the respective sum of gamma matrix products {̸*k*γ α γ*^µ* ̸*k*γα−̸*k*γ α γ*µ*γ^α ̸*^k* −γ ^α ̸*k*γ*^µ* ̸*k*γ^α ⁺^γ ^α ̸*k*γ*µ*γ^α ̸*k*} ⁼ {γ^λγ^αγµγ^{λ′}γα − γ^λγ^αγµγαγ^{λ′} − γ^αγ^λγµγ^{λ′}γα + γ^αγ^λγµγαγ^{λ′} } kλ kλ/ ≡ $N_{\mu}^{\lambda\lambda'}$ *k*_λ*k*_λ
- This defines $N^{\lambda\lambda'}_{\mu}$.

● Using standard methods, we need

$$
l_{\mu} = 2 \int_0^1 d\alpha_1 \int_0^{1-\alpha_1} d\alpha_2 \frac{\int d^n k'(iQ_e^2 e^2)}{8\pi^4}
$$

$$
\frac{\frac{1}{4} \bar{v}(\rho_2) N_{\mu}^{\lambda \lambda'} \left[\frac{k'^2}{n} g_{\lambda \lambda'} + \Delta_{\lambda} \Delta_{\lambda'}\right] (-ie)(v_A - a_A \gamma_5) u(\rho_1)}{[k'^2 - \Delta^2 + i\epsilon]^3} \Big|_{CL},
$$
\n(21)

where $\Delta = \alpha_1 p_1 - \alpha_2 p_2$.

 \bullet Equations of motion \Rightarrow term involving Δ is not collinearly enhanced.

• The term contracted with $g_{\lambda\lambda}$ gives us

$$
I_{\mu} = \left\{ \frac{-3 Q_e^2 \alpha}{4 \pi} \mathcal{M}_{B\mu} \right\} \bigg|_{CL} \equiv 0 \tag{22}
$$

- ⇒ No collinearly enhanced contribution from *^Iµ*.
- $B.$ Eq.[\(18\)](#page-16-0) gives the complete collinear enhancement of *B*.
- (In Honor of S. Jadach on his 60 (In Honor of S. Jadach on his 60thBirthday) Birthday) Change in *B* does not affect its IR behavior – shift terms are IR finite \Rightarrow Entire YFS IR resummation is unaffected.
- Shifted terms can be seen to extend the YFS IR exponentiation to obtain the entire exponentiated $\frac{3}{2}Q_e^2αL$.

We have

$$
2\alpha Q_e^2 \Delta B(p_1, p_2) = \frac{\int d^4k \left(iQ_e^2 e^2 \right)}{8\pi^4} \frac{1}{k^2 + i\epsilon} \frac{2p_1 k - 2p_2 k}{\left(k^2 - 2kp_1 + i\epsilon\right)\left(k^2 + 2kp_2 + i\epsilon\right)} = 2\int_{x_1 \ge 0, i=1,2,3} d^3x \delta(1 - x_1 - x_2 - x_3) \frac{\int d^4k' \left(iQ_e^2 e^2\right)}{8\pi^4} \frac{2(p_1 - p_2)p_x}{\left(k'^2 - d + i\epsilon\right)^3}
$$
(23)

 $\mathsf{where} \ \mathsf{d} = \mathsf{p}_{\mathsf{x}}^2 \ \text{with} \ \mathsf{p}_{\mathsf{x}} = \mathsf{x}_{1}\mathsf{p}_{1} - \mathsf{x}_{2}\mathsf{p}_{2}.$

 $\bullet \Rightarrow$ We get

$$
2Q_e^2 \alpha \Re \Delta B(p_1, p_2) = Q_e^2 \frac{\alpha}{\pi} L. \tag{24}
$$

[1/2/2](#page-26-0)[008](#page-0-0) 1

We see that indeed the entire term $\frac{3}{2}Q_e^2\frac{\alpha}{\pi}L$ is now exponentiated by our collinearly improved YFS virtual IR function B_{Cl}

$$
B_{CL} = B + \Delta B
$$
\n
$$
= \int \frac{d^4 k}{k^2} \frac{i}{(2\pi)^3} \left[\left(\frac{2p - k}{2kp - k^2} - \frac{2q + k}{2kq + k^2} \right)^2 - \frac{4pk - 4qk}{(2pk - k^2)(2qk + k^2)} \right].
$$
\n(25)\n\nSee S. Jadach, Durham talk, 2002, for integrated form of B_{CL}

- What about the real YFS IR algebra? Collinear enhancement desired in some applications
- $\bullet \Rightarrow$ Recall the original YFS EEX formulation of the respective algebra \Rightarrow the formula for the YFS IR function \tilde{B} given above in eq.[\(7\)](#page-8-0).
- **O** See Fig. [5.](#page-22-1)

Figure 2: Real corrections which generate [t](#page-21-0)[he](#page-23-0) [YF](#page-22-0)[S](#page-0-0) [inf](#page-26-0)[ra](#page-0-0)^{BAYLOR} Figure: Real corrections which generate the YFS infrared function \ddot{B} .

Following the steps in the usual YFS algebra for real emission ⇒

$$
2\alpha Q_{e}^{2} \tilde{B} M_{B\mu}^{\dagger} M_{B\mu'} = \frac{\int d^{3}k (-1)e^{2}Q_{e}^{2}}{2k_{0}(2\pi)^{3}} \left[\frac{\bar{u}(\rho_{1})(2\rho_{1}^{2} - k^{2} + \frac{1}{2}[k,\gamma^{2}])\gamma_{\mu}(v_{A} - a_{A}\gamma_{5})v(\rho_{2})}{k^{2} - 2k\rho_{1}} + \frac{\bar{u}(\rho_{1})\gamma_{\mu}(v_{A} - a_{A}\gamma_{5})(-2\rho_{2}^{2} + k^{2} + \frac{1}{2}[k,\gamma^{2}])v(\rho_{2})}{k^{2} - 2k\rho_{2}} \right]
$$

$$
\left[\frac{\bar{v}(\rho_{2})\gamma_{\mu'}(v_{A} - a_{A}\gamma_{5})(2\rho_{1\lambda} - k_{\lambda} - \frac{1}{2}[k,\gamma_{\lambda}])u(\rho_{1})}{k^{2} - 2k\rho_{1}} + \frac{\bar{v}(\rho_{2})(-2\rho_{2\lambda} + k_{\lambda} - \frac{1}{2}[k,\gamma_{\lambda}])\gamma_{\mu'}(v_{A} - a_{A}\gamma_{5})u(\rho_{1})}{k^{2} - 2k\rho_{2}} \right] \Big|_{k^{2} = 0} + K_{\mu\mu'} \tag{26}
$$

where $K_{\mu\mu'}$ is infrared finite,

 \bullet

$$
\mathcal{M}_{B\mu} = \bar{v}(\rho_2)\gamma_\mu(v_A - a_A\gamma_5)u(\rho_1)
$$
 (27)

⊣ □ ▶ ⊣ *□* ▶

[1/2/2](#page-26-0)[008](#page-0-0) 1

Þ

 Ω

- • If we drop the commutator terms on the RHS of eq.[\(26\)](#page-23-1) we *recover the usual YFS formula for 2* $\alpha Q_{e}^{2}\tilde{B}$ *.*
- We again isolate collinearly enhanced contributions by using the representation in eq.(14) for *k*, respecting the condition $k^2 = 0$. \Rightarrow Maintain

$$
0=(c_1^2+c_2^2)m^2+2c_1c_2p_1p_2-|k_{\perp}|^2.
$$

 $\bullet \Rightarrow$ Collinear enhancement of \tilde{B} .

$$
2\alpha Q_e^2 \tilde{B}_{CL} = \frac{-\alpha Q_e^2}{4\pi^2} \int \frac{d^3k}{k_0} \left\{ \left(\frac{p_1}{kp_1} - \frac{p_2}{kp_2} \right)^2 + \frac{1}{kp_1} \left(2 - \frac{kp_2}{p_1p_2} \right) + \frac{1}{kp_2} \left(2 - \frac{kp_1}{p_1p_2} \right) \right\}.
$$
\n(28)

Agreement with Berends *et al.*

• What about CEEX?

● In Fig. [5,](#page-22-1) use of amplitude-level isolation of real IR divergences, K-S photon polarization vectors ⇒

$$
\mathcal{M}_{\mu} = \mathcal{M}_{B\mu} \mathfrak{s}_{CL, \sigma}(k),\tag{29}
$$

[1/2/2](#page-26-0)[008](#page-0-0) 1

with

$$
\mathfrak{s}_{\mathit{CL},\sigma}(k) = \sqrt{2}Q_{e}e\bigg[-\sqrt{\frac{p_{1}\zeta}{k\zeta}} \frac{}{2p_{1}k} + \delta_{\lambda-\sigma}\sqrt{\frac{k\zeta}{p_{1}\zeta}} \frac{}{2p_{1}k} + \sqrt{\frac{p_{2}\zeta}{k\zeta}} \frac{}{2p_{2}k} + \delta_{\lambda\sigma}\sqrt{\frac{k\zeta}{p_{2}\zeta}} \frac{<\hat{p}_{2}\lambda|k-\sigma>}{2p_{2}k}\bigg]. \tag{30}
$$

Here, $\zeta \equiv (1,1,0,0)$ and $\hat{p} = p - \zeta m^2/(2\zeta p)$.

Upon taking the modulus squared of $s_{CL,0}(k)$ **we see that the extra** non-IR divergent contributions reproduce the known collinear big log contribution which is missed by the usual [YFS](#page-24-0) [al](#page-26-0)[g](#page-24-0)[eb](#page-25-0)[r](#page-26-0)[a.](#page-0-0)

- ● Extended the original YFS algebra to include previously missed collinear non-IR big logs
- acy for
ials. New, collinearly enhanced soft functions ⇔ Higher level of accuracy for a given level of exactness in the IR-finite YFS hard photon residuals.
- H thod to Enhanced the toolbox available to extend the CEEX YFS MC method to the other important processes at present and future colliders.
- Some New Physics may hang in the balance at both LHC and FCC!

 Ω