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Introduction

@ The Future of Precision Theory: Dictated by Future Accelerators —
FCC, CLIC, ILC, CEPC, CPPC, ---

@ Using FCC as an example, factors of improvement from ~ 5 to ~ 100
are needed from Theory

@ Resummation is a key to such improvements in many cases:
Today, we discuss amplitude-based resummation following the YFS
methodology

@ YFS — ’no limit to precision’

@ See 1989 CERN Yellow Book article by Berends et al.
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Introduction

@ YFS methods are exact in the infrared but treat the collinear logs
perturbatively in the B, residuals

@ DGLAP-based collinear factorization treats the collinear logs to all
orders but has a non-exact IR limit - see Stefano’s talk and references
therein (‘all roads lead to Rome’)

@ Today, we investigate improving the collinear limit of YFS theory

@ A Key Point: Exact Amplitude-Based Resummation Realized on
Evt-by-Evt Basis — Enhanced Precision for a Given Level of Exactness:
LO, NLO, NNLO, ....
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where new (YFS-style) non-Abelian residuals B m(ki, ..., knik|,...,kb)
have n hard gluons and m hard photons.
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Here,
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Shower/ME Matching: B m — Bn.m --KKMCee, KKMChh, Herwiri,...
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Improving the Collinear Limit in YFS Theory

@ Basic Formula for CEEX/EEX realization of the YFS resummation of

e+97 — f7+ my, f:€7q7 = eau717Veavy7VT7 q= U,d,S, Cabv t:

1 & n
o i L / dLIPS 2 pY ({p}, {k}), (4)

1 1) = 1 2
atioh = eowemy 3 ()
' helicities {\},{u}
()

By definition, ©(2, k) = 1 for k € Q and ©(£,k) = 0 for k & Q, with

O(Q; k) =1-0(Q,k) and

n
o(Q) =[]e(,k). BAYLOR
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Improving the Collinear Limit in YFS Theory

@ For Q defined with the condition k° < Epnin, the YFS infrared
exponent reads

Y(S2 Pa, .., Pa) = Q5 Ya(pa, pb) + QF Ya(po, Pa)
+ Qe Q¥ YQ(paapc) + Qe Q¥ YQ(pbapd) (6)
— Qe Q¥ YQ(paapd) — Qe Q¥ YQ(pbvpC)’
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Improving the Collinear Limit in YFS Theory

@ Here
Ya(p, q) =2aB(Q, p, q) + 20RB(p, q)
1 [d% p g\’
=-20 Qk)| ———
grz | w0 O )<kp kq) 7)
i 2p—k  2g9+k \?
+20m/ <2kp K2 2kq+k2>‘

@ Fundamental Idea of YFS: isolate and resum to all orders in o the
infrared singularities so that these singularities are canceled to all such
orders between real and virtual corrections.

What collinear singularities are also resummed in the YFS resummation
algebra?

BAYLOR

B.F.L. Ward ECFA-6-23



Improving the Collinear Limit in YFS Theory
@ Focusing on the s-channel and s’-channel contributions

we have
; 1

2Emln
Y. (Q: py, =Yl
e( Ip1,p2) Yeln 2,D1P2
Yf(QF;qMQZ):'Yfln\/i

where
vo=2a2 2 (1n2PP2 1)y 0% (1n2%% _1) ()
¢ °n m2 'n m?

= The YFS exponent resums the collinear big log term
1 Q2L to the infinite order in both the ISR and FSR

contributions.
@ Can this be improved to the result of Gribov and Lipatov to
BAYLOR
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Improving the Collinear Limit in YFS Theory

@ The YFS form factor derivation illustrated in Fig. 4
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Figure: Virtual corrections which generate the YFS infrared function B.
Self-energy contributions are not shown. BAYLOR
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Improving the Collinear Limit in YFS Theory

@ = the amplitude factor

'k —i ,
M, = tamyi 2 P Qe

]
Hi— k—m+ie

i
— po— k—m+ie
(—iQee)Yau(pr)

(—ie)yu(va— aavs)

(10)

where A=yor Z.
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Improving the Collinear Limit in YFS Theory

@ Scalarising the fermion propagator denominators =

d*k(—iQe2e? _ o
M, = —ielTEIGE) b g (oo )y B Ty (va — aas)
ﬁ%%;;w u(py)- (11)

@ Using the equations of motion

(B k= mvas(pn) = {201~ K)o SK}ulor) (@)

Wp)P(— o K+m) = Up){~(@pet K"+ 6P (b).
(12)
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Improving the Collinear Limit in YFS Theory

@ = Contribution to 2Q2aB(p;, p2) corresponding to the

cross-term in the virtual IR function on the RHS of eq.(7):
i 22
20§0€B(P1 7p2)‘cross—term = fd4k(’%n4e ) ij&-ia

2p1—k)(2pa+k
(k2—2(k,§1+ieggk§2+2k,);2+/s) - (13)

This term, together with the two squared terms in

20.Q2B(p+, p2), leads to the exponentiation of $ Q22L.
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Improving the Collinear Limit in YFS Theory

@ The two commutator terms on the RHS of eq.(12), usually
dropped, can be analyzed further: possible IR finite
collinearly enhanced improvement of the YFS virtual IR

function B.
@ Isolate the collinear parts of k via the change of variables

k =cip1 +cop2 + k1. (14)

where p1k;, =0 = p:k,, = we have the relations

2

P1P2 m pok

Ol = g Pek — 5 pik — ——
(p1p2)2 —m* (p1p2)? —m* CL p1p2 (15)

P1P2 m? K —s p1k

Ty Pk ——5—— P2 )
(p1p2)? — m* 1 (p1p2)? —m* CL pi1p2

CL denotes the collinear limit = O(m?/s) dropped. BAY LOR
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Improving the Collinear Limit in YFS Theory

@ = (2p; —k)*in eq.(12(a)) combines with the commutator
term in eq.(12(b)) to produce

V(P2){(2p1 — K)o 3 LK, Y1} Yu(va — aa¥s ) u(pr)
= V(p2) K, p1]Vu(va — aa¥s)u(py)
Py v(p2)[cz b2, p1]Vu(va— aays)u(pr)

= V(P2)(=22p1P2)Vu(Va — aas)u(p+)
= V(P2)(=2p1k)Yu(va — aa¥s)u(pr). (16)
@ Similarly, —(2p2 4+ k)* in eq.(12 (b)) combines with the
commutator term in eq.(12(a)) to produce
V(p2)Vu(va aAYs)§(2pz+k)°‘(;[Kva])}U(m)

= V(p2)Yu(va — aays) [k, B2]u(p1)
V(p2)Yu(va — aavs)[ct p1, p2]u(pr)

=V (
o V(P2)Yu(va — aavs)(2c1p1p2)u(pr)
= V(P2)Yu(va — aa¥s)(2p2k) u(p )- EAYLOR
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Improving the Collinear Limit in YFS Theory

@ = Shift of the factor (2p; — k)(2p2 + k) on the RHS of
eq.(13) as

(2p1 —k)(2p2 + k) —> (2p1 — k) (2p2 + k) +2p1k —2pok. (18)
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Improving the Collinear Limit in YFS Theory

@ What does the term quadratic in the commutator (C?) contribute?
@ Superficial UV divergence = Cannot naively drop k|
@ Proceed directly: we need
d*k(iQ2e?) 1
2Q%0B Mp, = / °
Qe (P 7p2)‘02 Bu 8t K2+ e
%V(Pz)[k,Yu]'Yy[kaYa](—fe)(VA —apys)u(py)

(k2 — 2kpy + i€)(k? + 2kpo + i) oL
(19)

where we define

Mpy = —iev(p2)Yu(va — aa¥s)u(p1). (20)

@ CL now further restricted to contributions singular as m? /s — 0.
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Improving the Collinear Limit in YFS Theory

@ Four terms in the numerator of eq.(19) from the respective
sum of gamma matrix products
{KY Y Ko KV Yoo K=V Ky Ko +7* Ko K} =
{Y}VY(XYWNYOL — PV YY" — VYN Yo+ PV Mk =

N ko ko
@ This defines N}V

BAYLOR

B.F.L. Ward ECFA-6-23



Improving the Collinear Limit in YFS Theory

@ Using standard methods, we need

ez [ [ g0 0L

o (21)
/ 21
STV [ gho -+ B B l(—ie) (v — aats)u(pr)
(K2 = A2+ i’

where A = a1y — OlpPo.
@ Equations of motion = term involving A is not collinearly enhanced.
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Improving the Collinear Limit in YFS Theory

@ The term contracted with gy, gives us

—3Q5a
PEL

@ = No collinearly enhanced contribution from /,.
@ Eq.(18) gives the complete collinear enhancement of B.

@ Change in B does not affect its IR behavior — shift terms
are IR finite = Entire YFS IR resummation is unaffected.

=0 (22)
CL

@ Shifted terms can be seen to extend the YFS IR
exponentiation to obtain the entire exponentiated 2 Q2aL.
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Improving the Collinear Limit in YFS Theory

@ We have

(d*k(iQ2e?) 1 2p1k —2pok
200Q2AB(p1, p2) = I e
e AB(p1.p2) 8t K21 ie (K2 —2kpy + ie) (K2 + 2kps + i€)

. d* K (iQRe?
=2 Px8(1—x1 —xp— x3) LT H %) (23)
X>0,i=1,2,3 8T
2(p1 — p2)px
(k2 —d+ie)3
where d = p2 with py = x{p1 — Xap2.
@ = We get
a
2Q2aRAB(p1,p2) = oﬁEL. (24)
@ We see that indeed the entire term %Oﬁ%L is now exponentiated by our collinearly
improved YFS virtual IR function Be,
Bcr = B+ AB
_rdk i 2p—k  2q+k \? 4pk — Agk (25)
“J k2 (2n)3 |\ 2kp— k2 2kq+ k2 (2pk — k2)(2gk + k2) |

See S. Jadach, Durham talk, 2002, for integrated form of Bg.



Improving the Collinear Limit in YFS Theory

@ What about the real YFS IR algebra? Collinear enhancement desired in
some applications

@ = Recall the original YFS EEX form~ulation of the respective algebra =
the formula for the YFS IR function B given above in eq.(7).

@ See Fig. 5.
_ b 0
k
v + Y
_k
et ——<—— V2 ¢ —p

Figure: Real corrections which generate the YFS infrared function B.
Figure 2: Real corrections which generate the YFS infriilahiae
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Improving the Collinear Limit in YFS Theory

@ Following the steps in the usual YFS algebra for real emission =

[ &Pk(—1)e2 Q2 [(p1)(2p} — K + F 1K, Y1) Vu(va — aavs)v(p2)

Vil L=
2005 BMp, Mg 2ky(2m)3 K2 — 2kp;
U(p1)Yu(va — aa¥s)(—20% + k* + ;[KY"])V(Pz)]
+ 2
Kk — 2kp2
V(p2) Y (va — aa¥s)(2pip — ko — 51K, ) u(pr)
k2 — 2kp1
V(p2) (=220, + k. — [k Y)Y (va — aavs)u(pi )
+ 2 + K‘u,u’
k= —2kpo K2=0
(26)
where K, is infrared finite,
o
Mpy = V(p2)Yu(va — aavs)u(pr) (@7
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Improving the Collinear Limit in YFS Theory

@ If we drop the commutator terms on the RHS of eq.(26) we
recover the usual YFS formula for 20Q2B.
@ We again isolate collinearly enhanced contributions by
using the representation in eq.(14) for k, respecting
the condition k? = 0. = Maintain
0= (012 + C%)m2 +201 CoP1 P2 — |kL|2.
@ — Collinear enhancement of B:
—0Qs [Pk P P2y, 1 kpo
e R i

20Q%Bg, = L
GeBol kot kpe'  kpy P12

1 kp:
+—(2-—)¢.
kpz( p1p2)}

@ Agreement with Berends et al.

(28)
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Improving the Collinear Limit in YFS Theory
@ What about CEEX?

@ In Fig. 5, use of amplitude-level isolation of real IR divergences, K-S
photon polarization vectors =

My, = Mpuscrs(k), (29)
with
pil < ko|py —o > kC < ko|piA >
5 K)=V2Qee| — 4| "R ——+ 8 | = ———
(k) ’ { kG 2pik "o\ bt 2pik
P2l < ko|po —o > kC < oAk —0 >
4+ ——————— |-
kG 2p2k p2C 2pok
(30)

Here, { = (1,1,0,0) and p = p— {m?/(2(p).

@ Upon taking the modulus squared of s¢; (k) we see that the extra
non-IR divergent contributions reproduce the known collinear big R
log contribution which is missed by the usual YFS algebra. :
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SUMMARY REMARKS

@ Extended the original YFS algebra to include previously missed
collinear non-IR big logs

@ New, collinearly enhanced soft functions < Higher level of accuracy for
a given level of exactness in the IR-finite YFS hard photon residuals.

@ Enhanced the toolbox available to extend the CEEX YFS MC method to
the other important processes at present and future colliders.

@ Some New Physics may hang in the balance at both LHC and FCC!
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