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ROOT 5.28-patches
Putting changes described here into patches release:
‣ http://root.cern.ch/drupal/content/root-version-v5-28-00-patch-release-notes

Draft 1 of HistFactory Users’ Guide:
‣ https://twiki.cern.ch/twiki/pub/RooStats/WebHome/HistFactoryLikelihood.pdf

Should be built as 5.28.a in the next week or so
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A different way to picture Feldman-Cousins
Most people think of plot on left when thinking of Feldman-Cousins

‣ bars are regions “ordered by”                            with 
But this picture doesn’t generalize well to many measured quantities.

‣ Instead, just use R as the test statistic... and R is λ(µ)
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FIG. 1. A generic confidence belt construction and its use. For each value of µ, one draws
a horizontal acceptance interval [x1, x2] such that P (x ∈ [x1, x2] |µ) = α. Upon performing an

experiment to measure x and obtaining the value x0, one draws the dashed vertical line through
x0. The confidence interval [µ1, µ2] is the union of all values of µ for which the corresponding
acceptance interval is intercepted by the vertical line.
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max(0, n − b), and is given in the third column of Table I. We then compute P (n|µbest),
which is given in the fourth column. The fifth column contains the ratio,

R = P (n|µ)/P (n|µbest), (4.1)

and is the quantity on which our ordering principle is based. R is a ratio of two likelihoods:
the likelihood of obtaining n given the actual mean µ, and the likelihood of obtaining n
given the best-fit physically allowed mean. Values of n are added to the acceptance region
for a given µ in decreasing order of R, until the sum of P (n|µ) meets or exceeds the desired
C.L. This ordering, for values of n necessary to obtain total probability of 90%, is shown
in the column labeled “rank”. Thus, the acceptance region for µ = 0.5 (analogous to a
horizontal line segment in Figure 1), is the interval n = [0, 6]. Due to the discreteness of n,
the acceptance region contains more summed probability than 90%; this is unavoidable no
matter what the ordering principle, and leads to confidence intervals which are conservative.

For comparison, in the column of Table I labeled “U.L.”, we place check marks at the
values of n which are in the acceptance region of standard 90% C.L. upper limits for this
example; and in the column labeled “central”, we place check marks at the values of n which
are in the acceptance region of standard 90% C.L central confidence intervals.

The construction proceeds by finding the acceptance region for all values of µ, for the
given value of b. With a computer, we perform the construction on a grid of discrete values
of µ, in the interval [0, 50] in steps of 0.005. This suffices for the precision desired (0.01) in
endpoints of confidence intervals. We find that a mild pathology arises as a result of the
fact that the observable n is discrete. When the vertical dashed line is drawn at some n0 (in
analogy with in Fig. 1), it can happen that the set of intersected horizontal line segments is
not simply connected. When this occurs we naturally take the confidence interval to have
µ1 corresponding to the bottom-most segment intersected, and to have µ2 corresponding to
the top-most segment intersected.

We then repeat the construction for a selection of fixed values of b. We find an additional
mild pathology, again caused by the discreteness in n: when we compare the results for
different values of b for fixed n0, the upper endpoint µ2 is not always a decreasing function
of b, as would be expected. When this happens, we force the function to be non-increasing,
by lengthening selected confidence intervals as necessary. We have investigated this behavior,
and compensated for it, over a fine grid of b in the range [0, 25] in increments of 0.001 (with
some additional searching to even finer precision).

Our compensation for the two pathologies mentioned in the previous paragraphs adds
slightly to our intervals’ conservatism, which however remains dominated by the unavoidable
effects due to the discreteness in n.

The confidence belts resulting from our construction are shown in Fig. 7, which may
be compared with Figs. 5 and 6. At large n, Fig. 7 is similar to Fig. 6; the background
is effectively subtracted without constraint, and our ordering principle produces two-sided
intervals which are approximately central intervals. At small n, the confidence intervals from
Fig. 7 automatically become upper limits on µ; i.e., the lower endpoint µ1 is 0 for n ≤ 4
in this case. Thus, flip-flopping between Figs. 5 and 6 is replaced by one coherent set of
confidence intervals, (and no interval is the empty set).

Tables II-IX give our confidence intervals [µ1, µ2] for the signal mean µ for the most
commonly used confidence levels, namely 68.27% (sometimes called 1-σ intervals by analogy

8

with Gaussian intervals), 90%, 95%, and 99%. Values in italics indicate results which must
be taken with particular caution, since the probability of obtaining the number of events
observed or fewer is less than 1%, even if µ = 0. (See Sec. IVC below.)

Figure 8 shows, for n = 0 through n = 10, the value of µ2 as a function of b, for
90% C.L. The small horizontal sections in the curves are the result of the mild pathology
mentioned above, in which the original curves make a small dip, which we have eliminated.
Dashed portions in the lower right indicate results which must be taken with particular
caution, corresponding to the italicized values in the tables. Dotted portions on the upper
left indicate regions where µ1 is non-zero. These corresponding values of µ1 are shown in
Fig. 9.

Figure 8 can be compared with the Bayesian calculation in Fig. 28.8 of Ref. [2] which
uses a uniform prior for µt. A noticeable difference is that our curve for n = 0 decreases
as a function of b, while the result of the Bayesian calculation stays constant (at 2.3). The
decreasing limit in our case reflects the fact that P (n0|µ) decreases as b increases. We find
that objections to this behavior are typically based on a misplaced Bayesian interpretation
of classical intervals, namely the attempt to interpret them as statements about P (µt|n0).

B. Gaussian with Boundary at Origin

It is straightforward to apply our ordering principle to the other troublesome example
of Sec. III, the case of a Gaussian resolution function (Eq. 3.1) for µ, when µ is physically
bounded to non-negative values. In analogy with the Poisson case, for a particular x,
we let µbest be the physically allowed value of µ for which P (x|µ) is maximum. Then
µbest = max(0, x), and

P (x|µbest) =

{

1/
√

2π, x ≥ 0
exp(−x2/2)/

√
2π, x < 0.

(4.2)

We then compute R in analogy to Eq. 4.1, using Eqs. 3.1 and 4.2:

R(x) =
P (x|µ)

P (x|µbest)
=

{

exp(−(x − µ)2/2), x ≥ 0
exp(xµ − µ2/2), x < 0.

(4.3)

During our Neyman construction of confidence intervals, R determines the order in which
values of x are added to the acceptance region at a particular value of µ. In practice, this
means that for a given value of µ, one finds the interval [x1, x2] such that R(x1) = R(x2)
and

∫ x2

x1

P (x|µ)dx = α. (4.4)

We solve for x1 and x2 numerically to the desired precision, for each µ in a grid with
0.001 spacing. With the acceptance regions all constructed, we then read off the confidence
intervals [µ1, µ2] for each x0 as in Fig. 1.

Table X contains the results for representative measured values and confidence levels.
Figure 10 shows the confidence belt for 90% C.L.

It is instructive to compare Fig. 10 with Fig. 3. At large x, the confidence intervals
[µ1, µ2] are the same in both plots, since that is far away from the constraining boundary.
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In many analyses, the contribution of the signal process to the mean number of events is

assumed to be non-negative. This condition effectively implies that any physical estimator

for µ must be non-negative. Even if we regard this to be the case, however, it is convenient

to define an effective estimator µ̂ as the value of µ that maximizes the likelihood, even this

gives µ̂ < 0 (but providing that the Poisson mean values, µsi+ bi, remain nonnegative). This

will allow us in Sec. 3.1 to model µ̂ as a Gaussian distributed variable, and in this way we can

determine the distributions of the test statistics that we consider. Therefore in the following

we will always regard µ̂ as an effective estimator which is allowed to take on negative values.

2.1 Test statistic tµ = −2 lnλ(µ)

From the definition of λ(µ) in Eq. (7), one can see that 0 ≤ λ ≤ 1, with λ near 1 implying good

agreement between the data and the hypothesized value of µ. Equivalently it is convenient

to use the statistic

tµ = −2 lnλ(µ) (8)

as the basis of a statistical test. Higher values of tµ thus correspond to increasing incompat-

ibility between the data and µ.

We may define a test of a hypothesized value of µ by using the statistic tµ directly

as measure of discrepancy between the data and the hypothesis, with higher values of tµ
correspond to increasing disagreement. To quantify the level of disagreement we compute

the p-value,

pµ =

� ∞

tµ,obs

f(tµ|µ) dtµ , (9)

where tµ,obs is the value of the statistic tµ observed from the data and f(tµ|µ) denotes the

pdf of tµ under the assumption of the signal strength µ. Useful approximations for this and

other related pdfs are given in Sec. 3.3. The relation between the p-value and the observed

tµ and also with the significance Z are illustrated in Fig. 1.

(a) (b)

Figure 1: (a) Illustration of the relation between the p-value obtained from an observed value of

the test statistic tµ. (b) The standard normal distribution ϕ(x) = (1/
√
2π) exp(−x2/2) showing the

relation between the significance Z and the p-value.

When using the statistic tµ, a data set may result in a low p-value in two distinct ways:

the estimated signal strength µ̂ may be found greater or less than the hypothesized value µ.
As a result, the set of µ values that are rejected because their p-values are found below a

specified threshold α may lie to either side of those values not rejected, i.e., one may obtain

a two-sided confidence interval for µ.
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Feldman-Cousins with and without constraint
With a physical constraint (µ>0) the confidence band changes, but 
conceptually the same.  Do not get empty intervals.
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assumed to be non-negative. This condition effectively implies that any physical estimator

for µ must be non-negative. Even if we regard this to be the case, however, it is convenient

to define an effective estimator µ̂ as the value of µ that maximizes the likelihood, even this

gives µ̂ < 0 (but providing that the Poisson mean values, µsi+ bi, remain nonnegative). This

will allow us in Sec. 3.1 to model µ̂ as a Gaussian distributed variable, and in this way we can

determine the distributions of the test statistics that we consider. Therefore in the following

we will always regard µ̂ as an effective estimator which is allowed to take on negative values.
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From the definition of λ(µ) in Eq. (7), one can see that 0 ≤ λ ≤ 1, with λ near 1 implying good
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as the basis of a statistical test. Higher values of tµ thus correspond to increasing incompat-
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When using the statistic tµ, a data set may result in a low p-value in two distinct ways:

the estimated signal strength µ̂ may be found greater or less than the hypothesized value µ.
As a result, the set of µ values that are rejected because their p-values are found below a

specified threshold α may lie to either side of those values not rejected, i.e., one may obtain

a two-sided confidence interval for µ.
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2.2 Test statistic t̃µ for µ ≥ 0

Often one assumes that the presence of a new signal can only increase the mean event rate
beyond what is expected from background alone. That is, the signal process necessarily has
µ ≥ 0, and to take this into account we define an alternative test statistic below called t̃µ.

Even for when considering models for which µ ≥ 0, however, we will not restrict the
effective estimator µ̂ to be positive, and if the data fluctuate low relative to the expected
background one can find µ̂ < 0. By defining µ̂ in this way we will see in Sec. 3.1 that its
sampling distribution can be approximated by a Gaussian, which in turn allows one to obtain
simple approximations for the pdfs of the test statistics considered.

For a model where µ ≥ 0, if one finds data such that µ̂ < 0, then the best level of
agreement between the data and any physical value of µ occurs for µ = 0. We therefore
define

λ̃(µ) =






L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0,

L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 .

(10)

Here ˆ̂θ(0) and ˆ̂θ(µ) refer to the conditional ML estimators of θ given a strength parameter
of 0 or µ, respectively.

The variable λ̃(µ) can be used instead of λ(µ) in Eq. (8) to obtain the corresponding test
statistic, which we denote t̃µ. That is,

t̃µ = −2 ln λ̃(µ) =






−2 ln L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 ,

−2 ln L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0 .

(11)

As was done with the statistic tµ, one can quantify the level of disagreement between the
data and the hypothesized value of µ with the p-value, just as in Eq. (9). An approximate
formula for the distribution of t̃µ needed to do this is given in Sec. 3.4.

Also similar to the case of tµ, values of µ both above and below µ̂ may be excluded by a
given data set, i.e., one may obtain either a one-sided or two-sided confidence interval for µ.
For the case of no nuisance parameters, the test variable t̃µ is equivalent to what is used in
constructing confidence intervals according to the procedure of Feldman and Cousins [8].

2.3 Test statistic q0 for discovery of a positive signal

An important special case of the statistic t̃µ described above is used to test µ = 0 in a class
of model where we assume µ ≥ 0. Rejecting the µ = 0 hypothesis effectively leads to the
discovery of a new signal. For this important case we use the special notation q0 = t̃0. Using
the definition (11) with µ = 0 one finds

q0 =






−2 lnλ(0) µ̂ ≥ 0 ,

0 µ̂ < 0 ,
(12)

where λ(0) is the profile likelihood ratio for µ = 0 as defined in Eq. (7).
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Modified test statistic for 1-sided upper limits
For 1-sided upper-limit one construct a test that is more powerful for all 
µ>0 (but has no power for µ=0) simply by discarding “upward fluctuations”

‣
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We may contrast this to the statistic t0, i.e., Eq. (8), used to test µ = 0. In this case
one may reject the µ = 0 hypothesis for either an upward or downward fluctuation of the
data. This is appropriate if the presence of a new phenomenon could lead to an increase or
decrease in the number of events found. In an experiment looking for neutrino oscillations,
for example, the signal hypothesis may predict a greater or lower event rate than the no-
oscillation hypothesis.

When using q0, however, we consider the data to show lack of agreement with the
background-only hypothesis only if µ̂ > 0. That is, a value of µ̂ much below zero may
indeed constitute evidence against the background-only model, but this type of discrepancy
does not show that the data contain signal events, but rather points to some other systematic
error. For the present discussion, however, we assume that the systematic uncertainties are
dealt with by the nuisance parameters θ.

If the data fluctuate such that one finds fewer events than even predicted by background
processes alone, then µ̂ < 0 and one has q0 = 0. As the event yield increases above the
expected background, i.e., for increasing µ̂, one finds increasingly large values of q0, corre-
sponding to an increasing level of incompatibility between the data and the µ = 0 hypothesis.

To quantify the level of disagreement between the data and the hypothesis of µ = 0 using
the observed value of q0 we compute the p-value in the same manner as done with tµ, namely,

p0 =
� ∞

q0,obs
f(q0|0) dq0 . (13)

Here f(q0|0) denotes the pdf of the statistic q0 under assumption of the background-only
(µ = 0) hypothesis. An approximation for this and other related pdfs are given in Sec. 3.5.

2.4 Test statistic qµ for upper limits

For purposes of establishing an upper limit on the strength parameter µ, we consider two
closely related test statistics. First, we may define

qµ =

�
−2 lnλ(µ) µ̂ ≤ µ ,

0 µ̂ > µ ,
(14)

where λ(µ) is the profile likelihood ratio as defined in Eq. (7). The reason for setting qµ = 0
for µ̂ > µ is that when setting an upper limit, one would not regard data with µ̂ > µ as
representing less compatibility with µ than the data obtained, and therefore this is not taken
as part of the rejection region of the test. From the definition of the test statistic one sees that
higher values of qµ represent greater incompatibility between the data and the hypothesized
value of µ.

One should note that q0 is not simply a special case of qµ with µ = 0, but rather has a
different definition (see Eqs. (12) and (14)). That is, q0 is zero if the data fluctuate downward
(µ̂ < 0), but qµ is zero if the data fluctuate upward (µ̂ > µ). With that caveat in mind, we will
often refer in the following to qµ with the idea that this means either q0 or qµ as appropriate
to the context.

As with the case of discovery, one quantifies the level of agreement between the data and
hypothesized µ with p-value. For, e.g., an observed value qµ,obs, one has
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pµ =

� ∞

qµ,obs
f(qµ|µ) dqµ , (15)

which can be expressed as a significance using Eq. (1). Here f(qµ|µ) is the pdf of qµ assuming

the hypothesis µ. In Sec. 3.6 we provide useful approximations for this and other related

pdfs.

2.5 Alternative test statistic q̃µ for upper limits

For the case where one considers models for which µ ≥ 0, the variable λ̃(µ) can be used

instead of λ(µ) in Eq. (14) to obtain the corresponding test statistic, which we denote q̃µ.
That is,

q̃µ =





−2 ln λ̃(µ) µ̂ ≤ µ

0 µ̂ > µ
=






−2 ln
L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0

−2 ln
L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
0 ≤ µ̂ ≤ µ

0 µ̂ > µ .

(16)

We give an approximation for the pdf f(q̃µ|µ�
) in Sec. 3.7.

In numerical examples we have found that the difference between the tests based on qµ
(Eq. (14)) and q̃µ usually to be negligible, but use of qµ leads to important simplifications.

Furthermore, in the context of the approximation used in Sec. 3, the two statistics are equiv-

alent. That is, assuming the approximations below, qµ can be expressed as a monotonic

function of q̃µ and thus they lead to the same results.

3 Approximate sampling distributions

In order to find the p-value of a hypothesis using Eqs. (13) or (15) we require the sampling

distribution for the test statistic being used. In the case of discovery we are testing the

background-only hypothesis (µ = 0) and therefore we need f(q0|0), where q0 is defined by

Eq. (12). When testing a nonzero value of µ for purposes of finding an upper limit we need

the distribution f(qµ|µ) where qµ is defined by Eq. (14), or alternatively we require the pdf

of the corresponding statistic q̃µ as defined by Eq. (16). In this notation the subscript of q
refers to the hypothesis being tested, and the second argument in f(qµ|µ) gives the value of

µ assumed in the distribution of the data.

We also need the distribution f(qµ|µ�
) with µ �= µ�

to find what significance to expect and

how this is distributed if the data correspond to a strength parameter different from the one

being tested. For example, it is useful to characterize the sensitivity of a planned experiment

by quoting the median significance, assuming data distributed according to a specified signal

model, with which one would expect to exclude the background-only hypothesis. For this one

would need f(q0|µ�
), usually with µ�

= 1. From this one can find the median q0, and thus the

median discovery significance. When considering upper limits, one would usually quote the

value of µ for which the median p-value is equal to 0.05, as this gives the median upper limit

on µ at 95% confidence level. In this case one would need f(qµ|0) (or alternatively f(q̃µ|0)).
In Sec. 3.1 we present an approximation for the profile likelihood ratio, valid in the large

sample limit. This allows one to obtain approximations for all of the required distributions,

which are given in Sections 3.3 through 3.6 The approximations become exact in the large
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−2 ln
L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
0 ≤ µ̂ ≤ µ

0 µ̂ > µ .

(16)

We give an approximation for the pdf f(q̃µ|µ�
) in Sec. 3.7.

In numerical examples we have found that the difference between the tests based on qµ
(Eq. (14)) and q̃µ usually to be negligible, but use of qµ leads to important simplifications.

Furthermore, in the context of the approximation used in Sec. 3, the two statistics are equiv-

alent. That is, assuming the approximations below, qµ can be expressed as a monotonic

function of q̃µ and thus they lead to the same results.

3 Approximate sampling distributions

In order to find the p-value of a hypothesis using Eqs. (13) or (15) we require the sampling

distribution for the test statistic being used. In the case of discovery we are testing the

background-only hypothesis (µ = 0) and therefore we need f(q0|0), where q0 is defined by

Eq. (12). When testing a nonzero value of µ for purposes of finding an upper limit we need

the distribution f(qµ|µ) where qµ is defined by Eq. (14), or alternatively we require the pdf

of the corresponding statistic q̃µ as defined by Eq. (16). In this notation the subscript of q
refers to the hypothesis being tested, and the second argument in f(qµ|µ) gives the value of

µ assumed in the distribution of the data.

We also need the distribution f(qµ|µ�
) with µ �= µ�

to find what significance to expect and

how this is distributed if the data correspond to a strength parameter different from the one

being tested. For example, it is useful to characterize the sensitivity of a planned experiment

by quoting the median significance, assuming data distributed according to a specified signal

model, with which one would expect to exclude the background-only hypothesis. For this one

would need f(q0|µ�
), usually with µ�

= 1. From this one can find the median q0, and thus the

median discovery significance. When considering upper limits, one would usually quote the

value of µ for which the median p-value is equal to 0.05, as this gives the median upper limit

on µ at 95% confidence level. In this case one would need f(qµ|0) (or alternatively f(q̃µ|0)).
In Sec. 3.1 we present an approximation for the profile likelihood ratio, valid in the large

sample limit. This allows one to obtain approximations for all of the required distributions,

which are given in Sections 3.3 through 3.6 The approximations become exact in the large

8
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The ProfileLikeilhoodCalculator
The ProfileLikelihoodCalculator in RooStats currently is for the 2-sided tµ 
and it does not take into account effects of boundaries

‣ But, we know [arXiv:1007.1727] the asymptotic distribution for all 4 cases
Will modify tool in future, but for now provided a script to adjust threshold
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Bands for the ProfileLikelihoodCalculator
The asymptotic formulas can also be used to calculate the median 
and bands on the expected limit (based on Wald’s theorm)

This is not yet implemented, but only a day’s work.

Current script ProfileBands_qmu.C uses background-only toy 
experiments and finds upper limit (based on asymptotics) for each 
background-only toy.
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Figure 11: Distribution of the
upper limit on µ at 95% CL, as-
suming data corresponding to the
background-only hypothesis (see
text).
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Figure 12: The median (central
blue line) and error bands (±1σ in
green, ±2σ in yellow) for the 95%
CL upper limit on the strength pa-
rameter µ (see text).

6 Implementation in RooStats

Many of the results presented above are implemented or are being implemented in the
RooStats framework [15], which is a C++ class library based on the ROOT [16] and RooFit [17]
packages. The tools in RooStats can be used to represent arbitrary probability density func-
tions that inherit from RooAbsPdf, the abstract interfaces for probability density functions
provided by RooFit.

The framework provides an interface with minimization packages such as Minuit [18].
This allows one to obtain the estimators required in the the profile likelihood ratio: µ̂,

θ̂, and ˆ̂
θ. The Asimov dataset defined in Eq. (24) can be determined for a probability

density function by specifying the ExpectedData() command argument in a call to the
generateBinned method. The Asimov data together with the standard HESSE covariance
matrix provided by Minuit makes it is possible to determine the Fisher information matrix
shown in Eq. (28), and thus obtain the related quantities such as the variance of µ̂ and the
noncentrality parameter Λ, which enter into the formulae for a number of the distributions
of the test statistics presented above.

The distributions of the various test statistics and the related formulae for p-values, sensi-
tivities and confidence intervals as given in Sections 2, 3 and 4 are being incorporated as well.
RooStats currently includes the test statistics tµ, t̃µ, q0, and q,qµ, and q̃µ as concrete imple-
mentations of the TestStatistic interface. Together with the Asimov data, this provides
the ability to calculate the alternative estimate, σA, for the variance of µ̂ shown in Eq. (30).
The noncentral chi-square distribution is being incorporated into both RooStats and ROOT’s
mathematics libraries for more general use. The various transformations of the noncentral

29
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Now without asymptotic approximation
Several channels do not have enough events for asymptotic 
regime to be valid.
‣ In this case we use pseudo-experiments

Two main tools:
‣ HybridCalculator (and invert the test)

● this approach randomizes nuisance parameters --> Bayesian

‣ NeymanConstruction and FeldmanCousins tool
● fully frequentist.
● conceptually connected to the standard ‘asymptotic theory’ in statistics.

Both can be slow.

9
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ROOT now has a new executable in $ROOTSYS/bin called hist2workspace 
‣ command line:  hist2workspace myAnalysis.xml
‣ Can drive parameter settings, constraints, etc. via XML
‣ Supports Gaussian, LogNormal, Gamma constraints

Command line: hist2workspace

10

5.1.3 Extending the Likelihood Function to include Multiple Bins or Channels510

One may wish to extend the likelihood function in Eq. 15 to include multiple channels (e. g. ee/µµ/eµ)511

or several jet multiplicity bins. Formally, the extension looks very similar for both cases. Let us first512

consider the case of multiple bins indexed by i. The expectation for the ith bin from the kth signal or513

background contribution is514

N
exp
ik = L !ik"

j

#̃i jk
#i jk($ j)

#̃i jk
= Ñ

exp
ik "

j

#i jk($ j)

#̃i jk
. (16)

Note, that we do not add the index to $ j, because we see this as a common source of systematics which515

is common for the different bins and the different signal and background contributions. The likelihood516

function is now a product over these bins517

L(!sig,L ,$ j) = "
i∈bins

[

Pois(Nobs
i |Nexp

i,tot)×Gaus(L̃ |L ,!L )"
j

Gaus($̃ j = 0|$ j, %$ j
= 1)

]

. (17)

The likelihood function for multiple channels is similar, with an additional product over the multiple518

channels. The only subtlety is that k now runs over the set of signal and backgrounds specific to that519

channel. Similarly, the sources of systematics might also be different for the different channels. Leaving520

the range of the indices implicit, we arrive at521

L(!sig,L ,$ j) = "
l∈{ee,µµ ,eµ}

{

"
i∈bins

[

Pois(Nobs
i |Nexp

i,tot)Gaus(L̃ |L ,!L ) "
j∈syst

Gaus(0|$ j,1)

]}

. (18)

5.2 Extracting Measurements from the Profile Likelihood Ratio522

Armed with the final likelihood function in Eq. 18 and the Asimov dataset, we can now derive the ex-523

pected uncertainty on the desired cross section measurement. The likelihood function can be maximized524

to determine the maximum likelihood estimate of all the parameters !̂sig,L̂ , $̂ j. One can then consider525

the likelihood ratio526

r(!sig) =
L(!sig,L̂ , $̂ j)

L(!̂sig,L̂ , $̂ j)
(19)

and the profile likelihood ratio:527

& (!sig) =
L(!sig,

ˆ̂
L , ˆ̂$ j)

L(!̂sig,L̂ , $̂ j)
(20)

34
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Profiling and identifying bottlenecks
I did some profiling of the code identify why it was being so slow

11

  Before: spending all the time in coupling PDF to dataset (RooNLLVar constructor)... thatʼs bad
                                                                    1958 ProfileLikelihoodTestStatModified::Evaluate(RooAbsData&, RooArgSet&)
                                                                      1634 RooAbsPdf::createNLL(RooAbsData&, RooCmdArg const&, RooCmdArg const&, RooCmdArg const&, RooCmdArg const&, RooCmdArg const&, RooCmdArg const&, RooCmdArg const&, RooCmdArg const&)
                                                                        1634 RooAbsPdf::createNLL(RooAbsData&, RooLinkedList const&)
                                                                          1495 RooNLLVar::RooNLLVar(char const*, char const*, RooAbsPdf&, RooAbsData&, RooArgSet const&, bool, char const*, char const*, int, bool, bool, bool, bool)
                                                                            1495 RooAbsOptTestStatistic::RooAbsOptTestStatistic(char const*, char const*, RooAbsReal&, RooAbsData&, RooArgSet const&, char const*, char const*, int, bool, bool, bool, bool)
                                                                              792 RooAbsOptTestStatistic::optimizeCaching()
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Identifying bottlenecks 
For each pseudo-experiment, one must couple the PDF with the dataset

‣ with this structure, it can require navigating a graph with >4000 nodes
‣ generation and evaluation were pretty fast, but this coupling was slow
‣ also related to huge memory consumption (several GB)

12

RooProdPdf
model_h2e2nu_200

RooPoisson
Pois_h2e2nu_200_13

RooRealVar
obsN_13

RooAddition
h2e2nu_200_totN_13

RooPoisson
Pois_h2e2nu_200_14

RooRealVar
obsN_14

RooAddition
h2e2nu_200_totN_14

RooPoisson
Pois_h2e2nu_200_15

RooRealVar
obsN_15

RooAddition
h2e2nu_200_totN_15

RooPoisson
Pois_h2e2nu_200_16

RooRealVar
obsN_16

RooAddition
h2e2nu_200_totN_16

.... obsN_13 obsN_14 obsN_15 obsN_16 ...

.... 3 2 1 2 ...
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New form of the model
In the new structure, there is just one observable (corresponding to the x-
axis of the histograms), so the coupling is fast
‣ the dataset has many entries corresponding to different histogram bins

The shape is an interpolation between nominal and variational histograms

13

RooRealVar
obs_h2e2nu_200

PiecewiseInterpolation
WZ_h2e2nu_200_Hist_alpha

RooHistFunc
WZ_h2e2nu_200_Hist_alphanominal

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_0low

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_1low

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_2low

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_3low

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_4low

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_5low

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_6low

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_7low

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_8low

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_0high

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_1high

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_2high

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_3high

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_4high

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_5high

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_6high

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_7high

RooHistFunc
WZ_h2e2nu_200_Hist_alpha_8high

obs_h2e2nu_200

100.6
135.3
233.2
112.3

...
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Profiling and speed increases
I did some profiling of the code identify why it was being so slow

After the changes to the model, overhead is gone... 
‣ x5-15 speed increase for problems with 50 bins and 30 nuisance 

14

After: spending all the time in minuit... thatʼs good.
                                                                    1821 ProfileLikelihoodTestStatModified::Evaluate(RooAbsData&, RooArgSet&)
                                                                      1741 RooAbsReal::getVal(RooArgSet const*) const
                                                                        1741 RooAbsReal::traceEval(RooArgSet const*) const
                                                                          1741 RooProfileLL::evaluate() const
                                                                            1444 RooProfileLL::validateAbsMin() const
                                                                              1444 RooMinuit::migrad()
                                                                                1444 TFitter::ExecuteCommand(char const*, double*, int)
                                                                                  1444 TMinuit::mnexcm(char const*, double*, int, int&)
                                                                                    1444 TMinuit::mnmigr()
                                                                                      1307 TMinuit::mnderi()
                                                                                        1306 TMinuit::Eval(int, double*, double&, double*, int)
                                                                                          1306 RooMinuitGlue(int&, double*, double&, double*, int)
                                                                                            1303 RooAbsReal::getVal(RooArgSet const*) const
                                                                                              1303 RooAbsReal::traceEval(RooArgSet const*) const
                                                                                                1303 RooAddition::evaluate() const
                                                                                                  1303 RooAbsReal::getVal(RooArgSet const*) const
                                                                                                    1303 RooAbsReal::traceEval(RooArgSet const*) const
                                                                                                      1302 RooAbsTestStatistic::evaluate() const
                                                                                                        1302 RooNLLVar::evaluatePartition(int, int, int) const

  Before: spending all the time in coupling PDF to dataset (RooNLLVar constructor)... thatʼs bad
                                                                    1958 ProfileLikelihoodTestStatModified::Evaluate(RooAbsData&, RooArgSet&)
                                                                      1634 RooAbsPdf::createNLL(RooAbsData&, RooCmdArg const&, RooCmdArg const&, RooCmdArg const&, RooCmdArg const&, RooCmdArg const&, RooCmdArg const&, RooCmdArg const&, RooCmdArg const&)
                                                                        1634 RooAbsPdf::createNLL(RooAbsData&, RooLinkedList const&)
                                                                          1495 RooNLLVar::RooNLLVar(char const*, char const*, RooAbsPdf&, RooAbsData&, RooArgSet const&, bool, char const*, char const*, int, bool, bool, bool, bool)
                                                                            1495 RooAbsOptTestStatistic::RooAbsOptTestStatistic(char const*, char const*, RooAbsReal&, RooAbsData&, RooArgSet const&, char const*, char const*, int, bool, bool, bool, bool)
                                                                              792 RooAbsOptTestStatistic::optimizeCaching()
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Old form for constraitns

15
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New form for constraints

16

RooConstVar
1

RooGaussian
alpha_wwnormConstraint

RooRealVar
alpha_wwnorm

RooRealVar
nom_alpha_wwnorm

RooGaussian
alpha_zznormConstraint

RooRealVar
alpha_zznorm

RooRealVar
nom_alpha_zznorm

RooGaussian
alpha_wnormConstraint

RooRealVar
alpha_wnorm

RooRealVar
nom_alpha_wnorm

RooGaussian
alpha_znormConstraint

RooRealVar
alpha_znorm

RooRealVar
nom_alpha_znorm
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Conditional vs. Unconditional Ensemble
Note, the asymptotic results (eg. χ² distributions) correspond to 
unconditional ensembles.
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An example ModelConfig from HistFactory
The HistFactory takes input XML that organizes nominal and variational histograms 
and produces a workspace with a ModelConfig object that provides all the meta-
information information need for the statistical tools

‣ Note, the list of “Global Observables” associated to auxiliary measurements that 
constrain nuisance parameters (global b/c one per experiment, not one per event)

18

root [7] modelConfig->Print()
=== Using the following for ModelConfig ===
Observables:             RooArgSet:: = (obs_h2e2nu_200)

Parameters of Interest:  RooArgSet:: = (SigXsecOverSM)

Nuisance Parameters:     RooArgSet:: = 
(Lumi,alpha_SysBtagEff,alpha_SysElecScale,alpha_SysElecSmear,alpha_SysJetScale,alpha_SysJetSmear,alpha_SysM
ETHadScale,alpha_SysMETHadSmear,alpha_SysMuonScale,alpha_SysMuonSmear,alpha_dieleceff,alpha_mjet2enorm,a
lpha_signorm,alpha_topnorm,alpha_wnorm,alpha_wwnorm,alpha_wznorm,alpha_znorm,alpha_zznorm)

Global Observables:      RooArgSet:: = 
(nominalLumi,nom_alpha_dieleceff,nom_alpha_signorm,nom_SysMuonScale,nom_SysMETHadSmear,nom_SysElecSme
ar,nom_SysMuonSmear,nom_SysJetSmear,nom_SysBtagEff,nom_SysJetScale,nom_SysMETHadScale,nom_SysElecSc
ale,nom_alpha_topnorm,nom_alpha_wwnorm,nom_alpha_wznorm,nom_alpha_zznorm,nom_alpha_wnorm,nom_alpha_z
norm,nom_alpha_mjet2enorm)

PDF:                     RooProdPdf::model_h2e2nu_200[ lumiConstraint * alpha_dieleceffConstraint * 
alpha_signormConstraint * alpha_SysMuonScaleConstraint * alpha_SysMETHadSmearConstraint * 
alpha_SysElecSmearConstraint * alpha_SysMuonSmearConstraint * alpha_SysJetSmearConstraint * 
alpha_SysBtagEffConstraint * alpha_SysJetScaleConstraint * alpha_SysMETHadScaleConstraint * 
alpha_SysElecScaleConstraint * alpha_topnormConstraint * alpha_wwnormConstraint * alpha_wznormConstraint * 
alpha_zznormConstraint * alpha_wnormConstraint * alpha_znormConstraint * alpha_mjet2enormConstraint * 
h2e2nu_200_model ] = 0
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Conditional vs. Unconditional
This is for an analysis with several 
bins but b<<1.

‣ so most toy experiments have 
N=0

In the Conditional ensemble the 
global observables / auxiliary 
measurements are always the 
same, so the test statistic has a 
specific discrete value

In the Unconditional ensemble the 
global observables / auxiliary 
measurements fluctuate “smearing 
out” the value of the test statistic.

19

Conditional ensemble

Unconditional ensemble
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Script for fully frequentist w/ bands
Script constructs confidence belt
‣ uses b-only toys to get bands and CLb
‣ OneSidedFrequentistUpperLimitWithBands.C
‣ Being used in ATLAS with real-life complicated models
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-2 sigma  band 2.13864e-314
-1 sigma  band 0.25 [Power Constraint)]
median of band 0.65
+1 sigma  band 1.25
+2 sigma  band 2.05
observed 95% upper-limit 1.9
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