
Language basics

Headers and interfaces

Preprocessor directives to avoid
including the same header
multiple times

References

Can be considered an “alias” for
an object, same place in
memory

Int &iref = i => gives full access
to the content of i (can modify as
well)

In functions, passing by
reference does not make a copy
of the object

If you want to modify an object/
variable in a function, pass by
reference

If you don’t want to modify the
object/variable in a function,
prefix it with const

Core syntax and types

Comments are important
(Doxygen)

Basic types (letters and
numbers)

Arrays and pointers

Array = consecutive piece of
memory divided in chunks,
containing basic types

Char * = “string” = “array of
characters”

Static: decide size in code

Dynamic: allocate memory
(don’t use)

New/delete (don’t use)

Pointer

Address to somewhere in
memory

{address of itself} because it’s a
variable

Important to initialise pointers as
NULL (and check on this)

Referencing and dereferencing

[type] pointer * =
&object_it_points_to: assign a
pointer to the address of the
object it points to

(*pointer) -> get the value of the
object pointed to

Functions

return_type
explicit_name_of_what_function
_does (parameter_type
parameter_name)

Default arguments, must be in
the last place if there are non-
default arguments

Passing by value vs by
reference is different, prefer
passing by reference (fast)

Can also return nothing (void is
return type)

Overloading = same function
name, different parameters

Auto keyword Allows to guess the type

Helps in easy cases: for loops

OperatorsMathematical operations

Increment operators (++ / —)

Binary and assignment

Logical operators

Comparison operators
Auto g = (5 <=> 5) means
greater, equal or lesser

Scopes/namespaces

Namespaces

“Named scope”

Can be nested

Syntax:
namespace_name::variable

ScopeGoing out of scope for a static
variable => releasing memory,
variable dies

Easiest scope: { things between
parentheses }, e.g. for loops Do not use global variables

Class and enum types

struct

Prototype class with all data
members public

Syntax to access data
members:
struct_name.struct_variable

unionAvoid, use std::variant

Do not use struct and union:
error-prone

enumerators

Declaration of lists of constants
(integers) => associate names
to numbers when you’re sure of
what you’re doing with the
numbers

Not scoped / scoped (enum
class)

Control structuresif

while / do while

Conditional operator (ternary)

Switch (avoid)

For / range

Jump statements

Object orientation

Classes

Object = instance of a class

Encapsulates state and
behaviour of something

interface (.h, header)

Some function (templates and
constexpr) must be in the
header

implementation (.cpp/.cxx,
“source”)

*this = reference to itself

Overloading methods is possible
Think about inheritance /
polymorphism when you
overload

Public/private/protected (access
control)

Member default initialisation:
better to do at member
declaration time than in
constructor

Constructor and destructor

Constructor

Default constructor: provided if
no constructor is user-defined

Copy constructor = replicates

Inheritance: inherit all parent
constructors, but can add more

Destructor Always have a virtual destructor
in inheritance chain

Friends
Friend class gains access to all
private/protected members

Inheritance (covered earlier)

Polymorphism (covered earlier)

Operator overloading
To do intuitive operations on
non-numbers

example: addition of two 4-
vectors

You have to implement it in the
class, after that you can add two
class objects

Function objects (functors)

Use objects in place of functions

Can use objects as parameters
of functions

Core modern C++

RAII

Prefer smart pointers over
pointers

Concept for other handles (e.g.
files), not only pointers

Smart pointers std::unique ptr

std::shared_ptr

Const-ness

Don’t let others modify things
that they don’t need to

Const keyword: applies to the
left (unless it’s the first thing in
the line)

variables

functions: states that the
function will not modify the
object

Exceptions
If things go wrong, what do you
do (other than crashing)?

Try/catch, throw

Throw exceptions from std

Good practices: Use for unlikely errors

Don’t use for logic errors

Templates
Reusable code

Template <typename T>: T is
the type that the template will
use

Lambdas
Shorter way to define reusable
functions (with no name)

Standard library

Library of templatesobjects: e.g. vector<int>

Algorithms: e.g. sorting

Iterators = to loop over
containers Use for common operations

