

Heavy-ion physics with ALICE at the LHC

CERN-Korean summer student program

- CERN
- June 28th, 2023
- Jochen Klein (CERN)

Outline

- Matter and interactions
 - role of strong interaction
- Heavy-ion collisions
 - observables and results
- Experimental approach
 - LHC programme
 - ALICE status and upgrades
- Prospects
 - questions and expected results

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

In this presentation: concepts and connections, no rigorous derivations

Composition of matter

- Discovery of electrons → electromagnetic interaction
- Discovery of nuclei → electromagnetic interaction
- Discovery of nucleons → strong interaction
- Quarks, gluons and electrons as fundamental building blocks
- Discovery of many more (unstable) particles

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

Fundamental particles and interactions

- Standard Model of particle physics summarises our understanding
 - 3 families of quarks
 - 3 families of leptons
 - gauge bosons as carriers of interactions
 - photon → electromagnetic interaction
 - gluon \rightarrow strong interaction
 - W,Z \rightarrow weak interaction
 - Higgs boson → mass of gauge bosons

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

NB: gravity is not included here

Strong interaction Description in terms of Quantum Field Theory → Quantum Chromodynamics $\mathscr{L}_{\text{QCD}} = \overline{\psi}_i \left(i \gamma^{\mu} \left(D_{\mu} \right)_{ii} - m \delta_{ij} \right) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$

- Running coupling
- Interactions with high Q² well described by perturbative calculations
- Many non-trivial features of QCD emerge from low-Q² regime
 - confinement \rightarrow no free quarks
 - chiral symmetry breaking \rightarrow nucleon mass
 - fragmentation → formation of hadrons
 - QCD matter \rightarrow thermodynamic properties

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

low Q^2 cont. (N³LO) HERA jets (NNLO) 0.3 e⁺e⁻ jets/shapes (NNLO+res) +*+ 0.25 EW precision fit (N³LO) \vdash $\alpha_{s}(\boldsymbol{Q}^{2})$ 0.2 0.15 0.1 $\equiv \alpha_{\rm s}({\rm M_Z}^2) = 0.1179 \pm 0.0009$

0.05

August 2021

100

Q [GeV]

QCD matter

- Nuclear matter → QCD matter at ambient conditions
- QCD matter at different temperatures (T) and densities (µ_B)
 - asymptotic freedom of QCD \rightarrow deconfinement for T $\rightarrow \infty$, $\mu_B \rightarrow \infty$
 - chiral symmetry restoration
 - superconductivity
- Numerical calculations of **QCD on a discretised lattice**
 - **cross-over** from hadron gas to quark-gluon plasma around pseudo-critical temperature T_{pc}
 - interactions still relevant for $T \gg T_{pc}$

Experimental data crucial to understand QCD matter

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

Early universe

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

Nuclear collisions

- Ultra-relativistic collisions of nuclei → hot and dense nuclear matter
 - **deconfinement** of nuclear matter to quark-gluon plasma and back
 - small, short-lived, dynamic system
 - self-generated probes from all stages of the evolution
 - conditions controlled through collision energy and geometry

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

Hadron momentum distributions, azimuthal anisotropy

Hadron abundances 'hadrochemistry'

Hadron correlations, fluctuations

Ultra-relativistic heavy-ion collisions → excellent means to study hot QCD matter

• precision measurements of identified particles

- exponential spectrum \rightarrow thermal production
- velocity as common parameter \rightarrow radial expansion

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

- quantify azimuthal anisotropy by Fourier coefficients v_n
 - v₂ mostly driven by overlap geometry
 - higher orders mostly by fluctuations (no odd harmonics in average geometry)

observations consistent with expansion following relativistic hydrodynamics

Azimuthal anisotropies

Statistical hadronisation

- thermal models describe hadron yields based on few parameters:
 - temperature
 - baryochemical potential
 - volume
- work well for hadrons from thermally produced quarks (u, d, s)
 → hadronic states populated according to thermal distribution
- what about heavy-flavour quarks produced in initial scatterings

ALI-PREL-332406

- production of cc pairs
- charmonium states $(J/\psi, \psi(2S), ...)$ take double role
 - dissociation (melting)
 - recombination

• suppression of J/ψ from dissociation counteracted by recombination

Melting and recombination

Cartoon from Nature 448, 302–309(2007

Plasma temperature

• Use electromagnetic probes to look behind the curtain of hadronisation

- dielectrons are produced thermally throughout the evolution of the system
 → carries information on temperature
- large backgrounds from heavy-flavour decays

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

nd the curtain of hadronisation oughout the evolution of the system

• compare Pb-Pb collision with incoherent superposition of pp collisions:

 $= \frac{dN^{AA}/dp_{T}}{\langle N_{coll} \rangle dN^{pp}/dp_{T}}$ $R_{\rm AA} = \cdot$

- significant suppression in Pb-Pb w.r.t. pp, hint of ordering:
 - charged hadrons
 - D mesons
 - Ds
 - b (\rightarrow c) \rightarrow e
 - $\Lambda_{\rm C}$

Quenching

ALI-PREL-308498

Various collision systems at the LHC provide highest energies and ideal and unique environment

- longest lifetime ($\geq 10 \text{ fm/c}$)
- vanishing net-baryon density ($\mu_B \approx 0$)

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

highest energy density (> 12 GeV/fm³) and temperature (≥ 300 MeV)

largest heavy-flavour yields (~200 c/c in central Pb-Pb collision)

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

LHC experiments

Time Projection Chamber

• new readout chambers: $\mathsf{MWPC} \rightarrow \mathsf{GEM}$

Integrated on-/off-line system

- continuous readout
- GPU-based reconstruction parallel with data taking
- online event selection

Consolidation and readout upgrade of all subsystems

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

ALICE 2

Fast Interaction Trigger

• new detectors

Inner Tracking System

- 3 + 2 + 2 layers of MAPS (~10 m², 12.5 Gpx)
- improved vertexing at higher rates

Muon Forward Tracker

- MAPS-based tracker installed
- vertexing in forward acceptance (muon arm)

Major upgrade completed \rightarrow continuous readout with improved vertexing (publication in special issue of JINST)

[arXiv:2302.01238]

ALICE 2.1

Inner Tracking System

- 3 + 2 + 2 layers of MAPS (~10 m², 12.5 Gpx)
- improved vertexing at higher rates
- ITS3 → Bent, wafer-scale monolithic pixel sensors for 3 innermost layers

Muon Forward Tracker

- MAPS-based tracker installed
- vertexing in forward acceptance (muon arm)

Towards ALICE 3

• (Multi-)heavy-flavoured probes

- transport properties
- hadronisation

• Dielectrons down to low mass

- temperature and early stagechiral symmetry restoration
- Correlations and fluctuations
 net-baryon fluctuations
 transport properties

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

Background from heavy-flavour decays $c\bar{c} \rightarrow D\bar{D} \rightarrow e^+ e^- \dots$

Experimental requirements

- Excellent pointing resolution
- Tracking down to $p_T \approx 0$
- Excellent particle identification
- Large acceptance
- High rates for large data samples

Progress relies on detector performance and statistics

Vertex reconstruction

- Primary and decay vertices reconstructed through pointing of tracks → 2 - 3 detection layers
 - pointing resolution fundamentally limited by multiple scattering: $\sigma_{\alpha} = \frac{0.0136 \,\text{GeV/c}}{\beta p} \sqrt{\frac{d}{X_0}}, \ \sigma_{\text{DCA}} = \sigma_{\alpha} \cdot r_0$

minimal radius of innermost layer minimal material before first layer

 constant contribution from position resolution stay below limit from multiple scattering

• minimal radius given by required beam aperture: $R \approx 5$ mm at top energy, $R \approx 15$ mm at injection energy

→ Retractable vertex detector

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

decays with $c\tau < 100 \mu m$

Run 5 Run 6

- 3 retractable layers inside beam pipe at radii of 5 - 25 mm (in secondary vacuum)
 - complex mechanics and LHC interface
 - conceptual study of IRIS tracker
- Bent monolithic active pixel sensors (pioneered with ITS3 R&D)
 - 0.1 % X_0 per layer \rightarrow very thin sensors
 - σ_{pos} ~2.5 μm

Ultimate pointing resolution at the LHC

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

Vertex detector

Silicon pixel sensors

- Established TPSCo 65 nm process for pixel sensors (extensive R&D run with 55 different prototypes)
 - excellent performance, also after irradiation
- Established bending of silicon sensors
 - performance of ALPIDEs not affected at radii down to 1.8 cm
 - prototypes with wafer-scale silicon
- Developing wafer-scale sensors
 - stitching of repeated sensor unit
 - first wafers from engineering run received

Excellent progress with ITS3 R&D paving the way for ALICE 3

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

APTS

DPTS

Tracking

- Tracking and momentum measurement → 3 - N space points in magnetic field
 - momentum resolution limited by multiple scattering and lever arm

 $\sigma_p / p \propto \frac{\sqrt{x/X_0}}{B \cdot L}$ maximise lever arm and magnetic field, minimise material

- linear contribution from position resolution of hit measurements $\sigma_p / p \propto \frac{\sqrt{x/X_0}}{R \cdot L^2} \cdot p$ should be sub-dominant in region of interest
- Additional considerations
 - high rate \rightarrow occupancy \rightarrow combinatorics
 - acceptance and cost (area)

→ compact all-silicon tracker

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Outer tracker

~11 tracking layers (barrel + disks)

- Monolithic Active Pixel Sensors
- σ_{pos} ~10 μm
- $R_{out} \approx 80 \text{ cm and } L \approx 8 \text{ m}$ → magnetic field integral ~1 Tm
- control mismatch probability \rightarrow timing resolution ~100 ns
- ~1 % X_0 / layer \rightarrow overall $X / X_0 = ~10$ %
- Significant step in instrumented surface $(10 \rightarrow 60 \text{ m}^2)$
- Challenging for integration and maintainability
- New concepts for power distribution

Next-generation detector going beyond scaling of current ITS2

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

Particle identification

- Exploit mass measurement from tracking and additional measurements
 - Time of flight separation $\propto L/\sigma_{tof}$ Iarge path length with fast time resolution
 - **Cherenkov** radiation with angle $\cos \vartheta = 1 / n\beta$ refractive index to optimise coverage angular resolution
 - Electromagnetic shower to identify electrons
 - Absorption to identify muons

Combination of techniques to achieve PID goals

Time-of-flight and Cherenkov

- Time-of-flight detector
 - 2 barrel + 1 forward layers: $R \approx 85$ cm, $R \approx 19$ cm, $z \approx 405$ cm
 - silicon timing sensors with $\sigma_{TOF} \approx 20 \text{ ps}$ monolithic CMOS sensors with gain
- Ring Imaging Cherenkov Detector
 - aerogel radiator
 - \rightarrow refractive index n = 1.03 (barrel)
 - \rightarrow refractive index n = 1.006 (forward)
 - silicon photon sensors ■ R&D on monolithic SiPMs

• Novel and innovative detector concept

- compact, lightweight all-silicon tracker
- retractable vertex detector
- extensive particle identification
- large acceptance
- superconducting magnet system
- continuous read-out and processing
- Further detectors
 - Muon identifier
 - Electromagnetic calorimeter
 - Forward Conversion tracker

Thermal radiation

• Hot QCD matter emits thermal radiation

- invariant mass of dileptons not affected by blueshift from expansion
- emission throughout the entire evolution
- Programme
 - average temperature (Run 3 & 4)
 - temporal evolution (Run 5 & 6) \rightarrow multi-differential measurements (p_T, v₂)
 - imprints of chiral mixing (Run 5 & 6)

First measurements in Run 3 & 4, ultimate precision only in Run 5 & 6

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

Also pursued with LHCb

Heavy-flavour transport

- **Propagation of (traceable) heavy quarks** depends on interaction with QGP
 - diffusion and approach to thermal equilibrium
 - extent of thermalisation depends on mass
 → beauty quarks retain more information
- Programme
 - determine spatial diffusion coefficient
 → precise suppression (R_{AA}) and anisotropy (v₂)
 - directly measure decorrelation of charm pairs
 → DD correlations

Indirect constraints in Run 3 & 4, direct measurements only in Run 5 & 6

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

[CERN-LHCC-2022-009]

Multi-charm baryons

- Large heavy-flavour yields
 - combination of independently produced charm quarks
 → strong enhancement of multi-charm s
 - → strong enhancement of multi-charm states
- Programme
 - multi-charm hadrons
 - (anti-)nuclei

Extreme sensitivity to equilibration and hadronisation in Run 5 & 6

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

More physics with AA collisions at LHC

- Nuclear PDFs
 - \rightarrow ultra-peripheral collisions, pA
- Onset of collective behaviour
 - \rightarrow high-multiplicity pp collisions and intermediate systems (pA, OO)
- Quenching and collectivity in small systems → comparison of different collision systems
- **BSM searches**

• • •

- \rightarrow photon flux in ultra-peripheral collisions
- Strong interaction potentials \rightarrow correlations

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

Search for axion-like particles $\gamma\gamma \rightarrow a \rightarrow \gamma\gamma$

Great laboratory for a wide range of physics topics

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

ALICE planning

ALICE collaboration

• collaborators around the world

• ~2000 members, ~1000 scientific authors

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

- ALICE CERN team covers central areas of the experiment
 - Technical coordination
 - Data acquisition
 - Detector control
 - Detector development → monolithic silicon pixel sensors (F. Reidt)
 - Software development
 - Computing grid
 - Physics and analysis → physics studies and upgrade plans (J. Klein)

ALICE @ CERN

Large variety of topics and ample opportunity to get involved

Conclusions

- QCD matter is a hot topic of research
- Heavy-ion collisions are ideal probes
 → high-luminosity era of LHC with ions
- Rich experimental programmes (not only at LHC)
 → R&D in strategic areas of general interest
- Excellent prospects for new results on QCD physics and beyond

Thank you for your attention, time for discussion!

Heavy-ion physics with ALICE | June 28th, 2023 | Jochen Klein

