ALICE silicon detector introduction | CERN-Korean summer student program | June 28th, 2023 | Felix Reidt

ALICE Silicon Detectors Monolithic Active Pixel Sensor from ITS2 via ITS3 to ALICE3

Felix Reidt (CERN) Lecture, June 28th, 2023

Outline

• Introduction to Silicon Detectors

• Inner Tracking System 2 (ITS2)

• Inner Tracking System 3 (ITS3)

• ALICE 3 Vertex Detector and Tracking Detectors

Introduction to Silicon Detectors

* and in heavy-ion physics and particle physics experiments in general ALICE silicon detector introduction | CERN-Korean summer student program | June 28th, 2023 | Felix Reidt

-
- -
	-
-

Pixel detectors

… are nowadays present *everywhere*

Nobel Prize in Physics 2009 Willard S. Boyle and George E. Smith *"for the invention of an imaging semiconductor circuit – the CCD sensor."*

Cut through a modern DSLR Pixel detectors are abundant (smartphones, surveillance, etc.) *though mostly for (visible) light*

CMOS Image Sensors

- Nowadays the most widespread implementation of image sensors
	- main advantage: price

CMOS Image Sensor Integrated Circuit Architecture

- Light vs charged particles:
	- both generate electron/hole pairs
	- need to increase sensitive area to 100% (no focussing lenses for charged particles)

- Semiconductor detectors based doped silicon (Si)
- Operated as solid state ionisation chambers
	- Sensor based on reverse-biased p-n junction
	- Traversing particle ionises the sensor volume: generates electron-hole (e-h) pairs
	- Charges drift to the electrodes inducing a signal
- Key properties
	- $-$ High density \rightarrow large energy loss in a short distance
	- Low ionisation energy of few eV per e-h pair (e-ion in gas detectors 10x more expensive)
	- Small patterns possible
		- → position resolution below 10 µm reachable
		- \rightarrow high granularity leads to large channel counts, power consumption and in turn cost
	- Easy integration with readout electronics: same materials, very similar technology:
	- High cost per surface unit
- Large experience with semiconductors in the micro-chip industry

Silicon Pixel Detectors — In a nutshell

R.L. Workman *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. **2022**, 083C01 (2022) Review of Particle Physics, Chapter 34 'Passage of particles through matter' L. Rossi, P. Fischer, T. Rohe, N. Wermes, Pixel Detectors H. Kolanoski and N. Hermes, Particle Detectors - fundamentals and applications

Monolithic Active Pixel Sensors (MAPS)

- Single silicon chip contains both the detection volume and the readout electronics – as opposed to hybrid pixel sensors, which use two chips that need to be interconnected
- Advantages:
	- small pixel pitches: *O*(10-30 µm)
	- very low capacitances = low power *O*(10-100 mW/cm2)
	- $-$ thin: <50 µm (0.05% X_0)
	- commercial process

Main objectives of silicon pixel detectors

- Identification of primary and decay vertices
- *Pointing resolution*:
	- low- $p_{\rm T}$, multiple scattering regime (key for ALICE): $\sigma_{\rm pointing} \propto r_0 \cdot \sqrt{x/X_0}$
	- high p_T : $\sigma_{\text{pointing}} \propto \sigma_{\text{pos}}$

• Vertex reconstruction

- Measurement of space points in magnetic field
- *Momentum resolution:*
	- \bullet limited by multiple scattering and lever arm: $\sigma_p/p \propto$ x/X_0 $B \cdot L$
		- → maximise lever arm and magnetic field, minimise material
	- Linear contribution from position resolution of hit measuremer

 \rightarrow should be sub-dominant in region of interest

$$
\propto r_0 \cdot \sqrt{x/X_0}
$$

– Crucial to minimise radius and material of first layer (including the beam pipe)

• Tracking and momentum measurement

nts:
$$
\sigma_p/p \propto \frac{\sqrt{x/X_0}}{B \cdot L^2} \cdot p
$$

Schematic drawing of the reconstruction of a primary and secondary vertex

Radiation damage

- Non-Ionizing Energy Loss (NIEL)
	- Damage of the silicon crystal by particles impinging on the lattice
	- Dislocations of lattice atoms or more complex distortions of the crystal lattice
	- Affecting the charge collection properties (trapping), leakage current and the effective doping concentration
	- Usually expressed normalised to the damage level caused by 1 MeV neutrons (1 MeV n_{eq}/cm^2)

- Total Ionising Dose (TID)
	- $-$ Surface damage and damage of boundaries and interfaces (e.g. Si-SiO₂)
	- Charge build-up in the oxide layers and at the interfaces
	- Oxide charges influence the threshold characteristics of MOS transistors
	- Effects less pronounced in modern IC technologies due to their very thin oxide layers used for transistor gates
-

ITS1 in a nutshell

- 6 layers with 3 technologies
	- 2 Silicon Pixel Detector (SPD) layers
	- 2 Silicon Drift Detector (SDD) layers
	- 2 Silicon Strip Detector (SSD) layers
- Distance to interaction point: 39 mm
- Material budget: ~ 1.14% *X*⁰
- Pixel pitch (SPD only): 50 x 425 μ m²
- Spatial resolution ($r\varphi$ x z): 11 x 100 μ m²
- Readout rate: 1 kHz

It served some 10 years and was key to many analyses and publications…

… but technology has moved on!

ITS2 design objectives

Improve impact parameter resolution a lation \sim 3 m in and \sim 3 m z at $p_T =$ 300 me v/c by a factor ~3 in r φ and ~5 in z at $p_T = 500 \text{ MeV}/c$

- $\frac{1}{\sqrt{2}}$ det dioser to in . Johnn $\frac{1}{\sqrt{2}}$ zonni (innermost layer) $\frac{1}{\sqrt{2}}$ • Get closer to IP: 39mm \rightarrow 23mm (innermost layer)
- \sim 1 140% \vee \rightarrow \sim 0.360% \vee por layor (for the inner layore) • Reduce material budget: ~1.14% $X_0 \rightarrow$ ~0.36% X_0 per layer (for the inner layers)
- Reduce pixel size: $50 \times 425 \text{ }\mu\text{m}^2 \rightarrow O(30 \times 30 \text{ }\mu\text{m}^2)$

Improve tracking efficiency and p_T resolution at low p_T

• Increase granularity: 6 layers \rightarrow 7 pixel layers

• Readout of Pb-Pb at up to 100 kHz (previously 1 kHz) and 400 kHz for pp

Fast readout

Detector performance in Run 3 — simulations

- Improved tracking efficiency (95% instead of 60% at 200 MeV/*c*)
- Pointing resolution 3x better in transverse plane (6x along beam axis) at 200 MeV/*c*

- from $R = 23$ mm to $R = 400$ mm
-
-

ITS2 system overview

 \sim \sim

DATA 9×1200 Mb/s

CLK, CTRL DATA 28×400 Mb/s

624 Data Cables Twinax, Copper, ~7 m

ALICE silicon detector introduction | CERN-Korean summer student program | June 28th, 2023 | Felix Reidt 16

PP1 = 16 electronics sub-racks ALICE *Miniframe*

Inside the magnet Radiation environment

R&D, construction, installation and commissioning timeline

[Conceptual Design Report](https://cds.cern.ch/record/1475244)

[Technical Design Report](https://cds.cern.ch/record/1625842)

ALPIDE — the Monolithic Active Pixel Sensor (MAPS) for ITS2

• TowerJazz 180 nm CMOS Imaging Process

- In-pixel amplification and shaping, discrimination and Multiple-Event Buffers (MEB) rolling)
- In-matrix data sparsification
- On-chip high-speed link (1.2 Gbps)
- \bullet Low total power consumption < 40 mW/cm²

- High-resistivity (> 1kΩ cm) p-type epitaxial layer (25 μ m) on p-type substrate
- Small n-well diode (2 μ m diameter), ~100 times smaller than pixel (~30 μ m)
- Reverse bias voltage (-6 V < V_{BB} < 0 V) to substrate to increase depletion zone around
- **Deep PWELL shields NWELL of PMOS transistors** AMP)

→ full CMOS circuitry within active area

[ESE Electronics seminar by T. Kugathasan](https://indico.cern.ch/event/257695/)

Developed within the ITS2 project

Technology now used in other applications

ALPIDE requirements and performance

These are not technology limits, but mostly design choices!

ALPIDE performance — detection efficiency and fake-hit rate

ALICE silicon detector introduction | CERN-Korean summer student program | June 28th, 2023 | Felix Reidt 20

Availability and excellent support from test-beam facilities all over the world have been key for the development of this chip: BTF Frascati, CERN, DESY, LBNL, UC Louvain la Neuve, Pohang (Korea), Rez (Czech Republic), SLRI (Thailand)

ALPIDE series production

- Probe testing on **~10%** of the **wafers** before thinning and dicing
- Tested **all > 70000** thinned and diced **chips** individually
- Two separate, automated machines based on common probe card:
	- 'ALICIA' Module Assembly Machine with chip testing extension
	- 'Corea YS-1' dedicated chip testing machine
- **Classification** based on
	- Current consumption at nominal powering
	- Performance of the on-chip biasing DACs
	- Functioning of the on-chip digital circuitry
	- Pixel response to analogue injections
	- Charge threshold scan on every pixel
- **Yield**
	- Electrical yield: 65%
	- Gold* chips (used for the IB): 30%

ALICIA Corea YS-01

ALICE silicon detector introduction | CERN-Korean summer student program | June 28th, 2023 | Felix Reidt 21

Wafer probe testing

* stricter overall cuts, but in particular no bad double column

Modules — Hybrid Integrated Circuits (HICs) — Inner Barrel (IB)

- 9 chips in a row, active area: \sim 1.5 x 27 cm²
- 1 high-speed link of 1.2 Gbit/s per chip
- Clock, control, data and power supplied via Flexible Printed Circuit (FPC) using aluminium as conductor
- Interconnection by wirebonding through vias in the FPC
- No other active components than the ALPIDE chips on the FPCs
- Production quantity: ~ 100
- Production yield: 73%

Wirebonding through vias

Tilted staves with overlap

Jele **Detector staves**

OB

Inner Barrel (IB)

- <radius> (mm): 23, 31, 39
- Length (mm): 270
- Nr. staves: 48 (total) 12 (L0), 16 (L1), 20 (L2)
- Nr. Chips: 432
- Material budget: ~0.36% *X*0 per layer
- Single HIC per stave
- Nr. Pixels / stave: 4.7M

- ϵ <radius> (mm): 194, 247, 353, 405
- Nr. staves: 24 (L3), 30 (L4), 42 (L5), 48 (L6); total: 144
- Nr. chips: 6048 (ML), 17740 (OL)
- Length (mm): 844 (ML), 1478 (OL)
- Material budget: \sim 1.14% X_0 per layer
- Two partially overlapping half-staves per staves
- Nr. modules / half-stave: 4 (ML), 7 (OL)
- Nr. pixels / stave: 59M (ML), 102M (OL)

Outer Barrel (OB) — Middle Layers (MLs) and Outer Layers (OLs)

- Threshold (e⁻)
- Chip-by-chip tuning of the settings of the 196 chips (103M pixels)
- Excellent noise and threshold uniformity maintained across the full stave

Layer and Half-Barrel assembly

Layer assembly and testing

Half Barrel assembly

Service routing: several iterations, stripped power cable jackets, added flexible sleeves for power and data cables

On-surface commissioning

Inner Barrel Top Inner Barrel Bottom

On-surface commissioning — services

Readout Units /

Cooling Plant

On-surface commissioning — Outer Barrel — detection efficiency

- Analysis prior to software alignment
- Hardware alignment sufficient for first studies
- Based on straight line fits through 3 out of 4 layers
- Excluding tracks in corner cases
	- Traversing inactive chips
	- Inter-chip gaps (enhanced due to tracks not originating from the nominal interaction point)
- **Active area shows efficiency > 99%**

On-surface commissioning — Outer Barrel — fake-hit rate

- Measured fake-hit in multiple runs per stave
- Calculation of fake-hit rate applying different masking schemes offline:
	- No pixel masking (), excluding only faulty double columns) ⇒ Meeting requirement
	- Masking pixels found noisy in all runs $(-)$:
		- Fraction of permanently noisy pixels
		- Estimate for the performance achievable with online / hardware in-pixel masking: vast majority of staves < 10-7 / pixel /event ⇒ possible to run the detector w/ a static mask
		- Masking pixels present in 80% (-) and 20% (-) further improves the fake-hit rate
		- Masking based on an individual run leads to a fake-hit rate of 10-10 / pixel / event

Installation — challenges

- Precise positioning of fragile objects inside the TPC bore \rightarrow manipulating from a few meters distances \rightarrow difficult to actually see the position by eye
- Use of 3d scans, surveys and cameras

IB Bottom in the final position

Inner Barrel final positioning

Real time verification using 6 cameras + comparison to 3D CAD scans

ITS2 in the ALICE experimental apparatus

[ITS Outer Barrel installation website](https://alice-collaboration.web.cern.ch/node/35130)

ITS Inner Barrel Bottom and Outer Barrel

ITS2 offspring — example sPhenix

ALICE silicon detector introduction | CERN-Korean summer student program | June 28th, 2023 | Felix Reidt 34

ALICE ITS2 — Performance

- Stable operation of 24k chips
- >99% functional pixels
- Very low fake hit rate: < 10-8/pixel/event
- Tuned and stable thresholds

ALICE ITS2 — Performance (2)

- This is the real rate measured on-detector, including final services
- Essentially, apart from a hand-full pixels per chip, the detector is **noise-free**
- Biggest contributor is natural radiation (which is *not* excluded here)

Row [px]

PbSnAg Solder

ALICE silicon detector introduction | CERN-Korean summer student program | June 28th, 2023 | Felix Reidt 36

AL

Kapton

<u>Kapton</u>

glue

 epi ^{Al}

A PARTIES SON Pb 7.36 Text 10 Million 100 LA CALIFORNIA COMPANY 18th November 2022

How to improve on ITS2?

- ITS2 is ultralight but densely packed → **Can the material be further reduced?**
- **• Can we get closer to the interaction point?**

Material budget

• Observations:

- Si makes only 1/7-th of total material budget
- Non-uniformity due to support, cooling & overlaps
- Removal of water cooling:
	- If **power consumption < 20 mW/cm2**
- Removal of the circuit board for power & data:
	- If **integrated on chip**
- Removal of mechanical support:
	- **– Self-supporting arched structure**

ITS3 layout

- Beam pipe radius $18.2 \rightarrow 16.0 \text{ mm}$
- Layer 0 position 24 mm (mean) \rightarrow 18.0 mm

• Getting closer to interaction point:

- Beam pipe thickness $800 \rightarrow 500 \mu m (0.14\% X_0)$
- Layer thickness $0.36 \rightarrow 0.05\% X_0$

-
-

• Reducing material budget:

Performance gain of ITS3 over ITS2

[ALICE-PUBLIC-2018-013]

- Pointing resolution 2x better
- Improved tracking efficiency for low momenta

• Improved physics performance for heavy-flavour baryons and low-mass dielectrons (EOI: ALICE ITS Upgrade in LS3,ALICE-PUBLIC-2018-013)

Mechanical models

Engineering Model 2 ‣ Improved support ‣ Less glue seepage into carbon foam

Breadboard Model

Air cooling

- 3 layers of silicon chips, embedded in Kapton PCB with heating traces
- Exemplary power consumption:
	- matrix: 25 mW/cm2
	- end-cap: 1000 mW/cm2

Integration and services

C-side FPC

- Data transmission up to 10 Gb/s
- Detector service board close to the detector

- Electrical to optical conversion
- Power regulation

Bent half-layer

(power)

Bent MAPS in beam tests

Clearly proving that bent MAPS are working!

ELSEVIER

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 1028, 1 April 2022, 166280

First demonstration of in-beam performance of bent Monolithic Active **Pixel Sensors**

ALICE ITS project¹

Show more \vee

+ Add to Mendeley ∞ Share 55 Cite

https://doi.org/10.1016/j.nima.2021.166280 >

Get rights and content z

Abstract

A novel approach for designing the next generation of vertex detectors foresees to employ wafer-scale sensors that can be bent to truly cylindrical geometries after thinning them to thicknesses of 20–40 μ m. To solidify this concept, the feasibility of operating bent MAPS was demonstrated using 1.5 cm \times 3 cm ALPIDE chips. Already with their thickness of 50 µm, they can be successfully bent to radii of about 2 cm without any signs of mechanical or electrical damage. During a subsequent characterisation using a 5.4 GeV electron beam, it was further confirmed that they preserve their full electrical functionality as well as particle detection performance.

doi.org/10.1016/j.nima.2021.166280

Bent fully processed 65 nm wafer

Technology qualification

- Concentrated effort **ALICE ITS3** together with **CERN EP R&D**
- TPSCo 65 nm CMOS Imaging Sensor process
- **Key benefits** (over 180 nm technology in ITS2):
	- Smaller features/transistors: higher integration density
	- Smaller pitches
	- Lower power consumption
	- **Larger wafers** (200 → 300 mm)

• **MLR1**

- Comprehensive *first* submission: **55** prototype chips
- Goal: qualify the technology (achieved)

• **ER1**

- Goal: first test of stitching
- First sensors tested beginning of June!

ALICE silicon detector introduction | CERN-Korean summer student program | June 28th, 2023 | Felix Reidt 48

See: [doi.org/10.48550/](http://doi.org/10.48550/arXiv.2212.08621) [arXiv.2212.08621](http://doi.org/10.48550/arXiv.2212.08621)

MLR1 testing condensed summary

ER1: wafer-scale sensors

- First MAPS for HEP using stitching
	- one order of magnitude larger than previous chips
- "**MOSS**": 14 x 259 mm, 6.72 MPixel (22.5 x 22.5 and 18 x 18 µm2)

- "MOST": 2.5 x 259 mm, 0.9 MPixel $(18 \times 18 \text{ µm}^2)$
	- more dense design
- Plenty of small chips (like MLR1)

- conservative design, different pitches

Bonded sensor tests

- First MOSS chips bonded
- Functional tests started and promising

ALICE 3 — Vertex Detector and Tracker

• **11 barrels, 12 discs**

- inner-most part within beam pipe
- large active area: **~60 m2**
	- order of magnitude more than ITS2,
	- the currently largest MAPS application
- low material budget: **0.1% X0** / inner layer – less than ITS2, while being larger Outer
- high intrinsic resolution: **2.5 µm**

**Vertex
Detector Detector**

ALICE silicon detector introduction | CERN-Korean summer student program | June 28th, 2023 | Felix Reidt 63 $\frac{1}{100}$ introduction LCEDNI Korean summer student program L lune 28th

Tracker

ALICE 3 — Silicon Tracker — Specifications

Vertex Detector (VD)

- Pointing resolution $\propto r_0 \cdot \sqrt{x/X_0}$ (multiple scattering regime)
	- Radius and material of first layer crucial
	- Minimal radius given by required aperture: **R ≈ 5 mm at top energy**, $R \approx 15$ mm at injection energy
		- **→ retractable vertex detector**

Tracking Detectors (Middle Layers + Outer Tracker)

• **Relative pT resolution** ∝

(limited by multiple scattering) *B* ⋅ *L*

- Integrated magnetic field crucial
- Overall material budget critical

x/*X*⁰

ALICE 3 Vertex Detector and Tracker — in numbers

Improving performance concerning all aspects

** pixel matrix

• X Change compared to ITS2

Different optimisations needed for the different ALICE 3 Vertex Detector and tracking layers

* goal, not crucial, like not possible due to power budget *** pixel matrix *** innermost layers / outer layers

ITS3 — Radiation hardness - detection efficiency & FHR

ITS3 — Timing resolution

Sensor only

With front-end

Vertex Detector (IRIS) Mechanics

Petal inside design

- Active cooling to -25ºC inside the petal to remove heat generated by the sensors
- A cold plate is in thermal contact through carbon paper / foam to the sensors

Tracker Module R&D

- Targeting easy replacement while maintaining low material budget
	- → simplify detector construction
	- \rightarrow important to achieve a high yield
- Using silicon heater chips to optimise module and chip layout

For information on the CERN EP R&D developments [here](https://indico.cern.ch/event/1233482/#sc-38-4-low-mass-mechanics-for)

ALICE ITS2 OB module on large-scale 3D printed ceramic cold plate developed in the CERN EP R&D context

LEGO-like modules developed in the CERN EP R&D context

Silicon heater of 2 cm by 2 cm for module integration studies

Tracker Module R&D — MAPS foil

- Novel module concept leading to flexible modules
- Kapton serves as mechanical support and protection
- Potential alternative for wafer-scale chips
- Production process similar to the one of Printed-Circuit Boards (PCBs)

Next generation: 3 x 3 ALPIDE sensors embedded in to Kapton

[10.1016/j.nima.2022.167673](https://dx.doi.org/10.1016/j.nima.2022.167673)

Single ALPIDE sensor embedded into Kapton

Cross section of the MAPS foil

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 1046, 11 January 2023, 167673

The MAPS foil

S. Beolé^a, F. Carnesecchi ^b, G. Contin^c, R. de Oliveira ^b, A. di Mauro ^b, S. Ferry ^b, H. Hillemanns ^b, A. Junique ^b, A. Kluge ^b, L. Lautner ^{b d}, M. Mager ^b & **x**, B. Mehl ^b, K. Rebane ^{b e}, F. Reidt ^b, <u>I. Sanna ^{b d}, M. Šuljić ^b, A. Yüncü ^f</u>

Show more $\sqrt{}$

+ Add to Mendeley & Share 55 Cite

https://doi.org/10.1016/j.nima.2022.167673 a Under a Creative Commons license >

Abstract

We present a method of embedding a Monolithic Active Pixel Sensor (MAPS) into a flexible printed circuit board(FPC) and its interconnection by means of through-hole copper plating. The resulting assembly, baptised "MAPS foil", is a flexible, light, protected, and fully integrated detector module. By using widely available printed circuit board manufacturing techniques, the production of these devices can be scaled easily in size and volume, making it a compelling candidate for future large-scale applications.

A first series of prototypes that embed the ALPIDE chip has been produced, functionally tested, and shown to be working.

Summary

- ALICE silicon detectors are at frontier of technology
- ITS2
	- largest and most granular pixel detector in high-energy physics
- ITS3
	- first wafer-scale bent silicon pixel detector
- ALICE3
	- retractable vertex detector
	- targeting unprecedented detector performance
	- largest pixel detector to be built (~60 m²)

ITS Outer Barrel during insertion tests

Thanks a lot for your attention

