Introduction to Neutrino Physics

Vedran Brdar (CERN–TH)

Standard Model

Neutrinos in the Standard Model

unlike all other fermions, neutrinos in the Standard Model are only left-handed

 neutrinos in the Standard Model are massless

First Hint for the Neutrino Existence

in β decays, electron was observed to have a continuous rather than a discrete spectrum ⇒ something else was emitted!?

 such a new particle would need to be electrically neutral and interact very weakly ⇒ called neutrino ("the little neutral one" in Italian)

Neutrino Discovery

electron (anti)neutrinos first detected using a nuclear reactor in 1956

(1)
$$\bar{\nu}_e \ p \Longrightarrow n \ e^+$$

(2) $e^+ \ e^- \Longrightarrow \gamma \ \gamma$
(3) $n^{108}Cd \Longrightarrow {}^{109}Cd \ \gamma$ (5µs delayed)

Muon and Tau Neutrinos

- muon neutrino $(
u_\mu)$ discovered at BNL in 1962 via $u_\mu n o p \mu^-$

 tau neutrino (ν_τ) discovered by DONUT collaboration at Fermilab in 2000

(1)
$$\nu_{\tau} \ n \Longrightarrow p \ \tau^{-}$$

(2) τ^{-} decay to e^{-} or μ^{-} or hadrons $+ \nu_{s}$

Number of Neutrino Species

The Solar and Atmospheric Neutrino Problem

- ▶ Sun produces electron neutrinos: $4p \ 2e^- \rightarrow {}^4\text{He} \ 2\nu_e \ Q$
- Observed number of solar v_e events at the Homestake experiment was ~ 3 times smaller than expected
- atmospheric neutrinos are produced from collisions of cosmic rays with nuclei in the Earth's atmosphere
- Observed number of atmospheric ν_{μ} events smaller than expected

Solution: Neutrinos Change Flavor as They Travel

Neutrino Oscillations

Introduction to Neutrino Physics

Neutrino Oscillations

credit: Symmetry Magazine

Neutrinos Have Mass

Beyond The Standard Model

Introduction to Neutrino Physics

13/30

(Some of the) Open Questions

- What is the origin of neutrino mass?
- CP violation in neutrino sector?
- Ordering of neutrino masses?
- Is the neutrino its own antiparticle?
- Absolute neutrino mass scale?
- New Physics?

Introduction to Neutrino Physics

CP violation and neutrino mass ordering?

Introduction to Neutrino Physics

Is the Neutrino its own Antiparticle?

Dirac

Neutrino Mass Scale?

 $m_{eta} = \sqrt{\sum_i |U_{ei}|^2 m_i^2} < 0.8$ eV (Nature 2022)

Anomalies: LSND and MiniBooNE

eV-scale ν_s for LSND and MiniBooNE Anomalies?

Oscillation maxima for standard oscillations expected at

•
$$L/E \sim 500 \text{ km/GeV}$$
 (from $\Delta m_{31}^2 \sim 2.4 \times 10^{-3} \text{eV}^2$)

- $L/E \sim 15000 \text{ km/GeV}$ (from $\Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{eV}^2$)
- ▶ the minimal solution for LSND and MiniBooNE requires an additional mass squared difference $\Delta m_{41}^2 \sim 1 \, \text{eV}^2$

$$U^{4\text{flavor}} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} \qquad \begin{aligned} & \sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2 \\ & P_{\mu e} = 4|U_{\mu 4}U_{e4}|^2 \times \sin^2\left(\frac{(m_4^2 - m_1^2)L}{4E}\right) \\ & P_{\mu \mu} = 1 - 4|U_{\mu 4}|^2(1 - |U_{\mu 4}|^2) \\ & \times \sin^2\left(\frac{(m_4^2 - m_1^2)L}{4E}\right) \end{aligned}$$

3+1 Model with eV-scale Sterile Neutrino

Non-oscillatory Explanations of MiniBooNE Anomaly

slide from MicroBooNE presentations

Evolving Theory Landscape

- · Decay of O(keV) Sterile Neutrinos to active neutrinos
 - [13] Dentler, Esteban, Kopp, Machado Phys. Rev. D 101, 115013 (2020)
 - [14] de Gouvêa, Peres, Prakash, Stenico JHEP 07 (2020) 141
- · New resonance matter effects
 - [5] Asaadi, Church, Guenette, Jones, Szelc, PRD 97, 075021 (2018)
- · Mixed O(1eV) sterile oscillations and O(100 MeV) sterile decay
 - [7] Vergani, Kamp, Diaz, Arguelles, Conrad, Shaevitz, Uchida, arXiv:2105.06470
- · Decay of heavy sterile neutrinos produced in beam
 - [4] Gninenko, Phys.Rev.D83:015015,2011
 - [12] Alvarez-Ruso, Saul-Sala, Phys. Rev. D 101, 075045 (2020)
 - [15] Magill, Plestid, Pospelov, Tsai Phys. Rev. D 98, 115015 (2018)
 - [11] Fischer, Hernandez-Cabezudo, Schwetz, PRD 101, 075045 (2020)
- Decay of upscattered heavy sterile neutrinos or new scalars mediated by Z' or more complex higgs sectors
 - [1] Bertuzzo, Jana, Machado, Zukanovich Funchal, PRL 121, 241801 (2018)
 - [2] Abdullahi, Hostert, Pascoli, Phys.Lett.B 820 (2021) 136531
 - [3] Ballett, Pascoli, Ross-Lonergan, PRD 99, 071701 (2019)
 - [10] Dutta, Ghosh, Li, PRD 102, 055017 (2020)
 - [6] Abdallah, Gandhi, Roy, Phys. Rev. D 104, 055028 (2021)
- · Decay of axion-like particles
 - [8] Chang, Chen, Ho, Tseng, Phys. Rev. D 104, 015030 (2021)
- A model-independent approach to any new particle
 - [9] Brdar, Fischer, Smirnov, PRD 103, 075008 (2021)

Short-Baseline Neutrino Program

Short-Baseline Neutrino Program at Fermilab

Testing New Physics Beyond Anomalies

Process	Signatures	Background
ALP	Scattering: γ+e/ γ+N (n) Decay in flight : γγ	ν coherent, NC w/ π^0,ν_e CC w/ π^0,etc
LDM	χer→χer, χN→N'n	NC w/ π^{0} $\nu_{\rm e}$ CC, QE, RES
mCP	Multiple e' scatterings	$v_e CC w/\pi^0$
Dark Photon	A→ere*, μrμ*	v CC + mis-ID π, Accidental overlap of CC
HNL	$\label{eq:N} \begin{array}{c} N \rightarrow \nu e^- e^+, \nu \mu^- \mu^+, \nu e \mu, \nu \pi^0, \\ e \pi, \mu \pi \end{array}$	ν CC + mis-ID π,ν_{e} CC w/ π^{0}
v trident	ν → νe ⁻ e ⁺ , νμ ⁻ μ ⁺ , νeμ	$\nu_{\mu}N \rightarrow \nu_{\mu}\pi N \Box \text{ (v CC)}$
BDM/ iBDM	χN→e'N	ν coherent, NC w/ $\pi^{\rm 0},\nu_{\rm e}$ CC

Neutrino Physics at CERN: Proto-DUNE

Introduction to Neutrino Physics

Neutrino Physics at CERN: FASER ν and SND@LHC

the beginning of the field of collider neutrino physics

Introduction to Neutrino Physics

Neutrino Physics and South Korea: RENO

• $\sin^2 2\theta_{13} = 0.0896 \pm 0.0048(\text{stat}) \pm 0.0047(\text{syst})$

Introduction to Neutrino Physics

Neutrino Physics and South Korea: DAMSA

담사, /da:msa/: deep thought, rumination.

Jaehoon Yu

CERN-Korean Summer Student Program, July 2023

Summary. Quo Vadis, Neutrino?

- The golden age of neutrino experiments is beginning
- Goal for the oscillation physics: CP phase, mass ordering, θ_{23} octant
- Plenty of opportunities for new physics discovery at existing and near future experiments
- Ongoing program for neutrino mass measurements
- ► Holy Grail for Neutrino Theory: The Origin of Neutrino Mass
- There's more!

Neutrino Astronomy: IceCube

Introduction to Neutrino Physics

Cosmic Neutrino Background

Introduction to Neutrino Physics

30 / 30