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1. Statistical Inference

• Parameter estimation : 

Estimating the value of parameters based on measured data

• Hypothesis testing :

Method to decide whether the data at hand sufficiently support a particular 
hypothesis

(Hypothesis : a statement about the parameters)



2. Parameter estimation

• Parameter of interest 𝜃

• Sample statistic Θ

• Numerical value of the sample statistic መ𝜃

• Several choices are exist → Consider MSE 

Estimate the mean of a population

→ sample mean, sample median ...

• 𝑀𝑆𝐸 መ𝜃 = 𝐸 መ𝜃 − 𝜃
2
= 𝑉𝑎𝑟 መ𝜃 + 𝑏𝑖𝑎𝑠2

(Var መ𝜃 = 𝐸 መ𝜃2 − 𝐸 መ𝜃
2
, 𝑏𝑖𝑎𝑠 = 𝐸 መ𝜃 − 𝜃)



3. Hypothesis testing

• Null hypothesis 𝐻0 vs Alternative hypothesis 𝐻1
Deciding whether or not the mean burning rate is 50cm/s 

→ 𝐻0 : µ = 50 vs 𝐻1 : µ ≠ 50.

• Evidence collection → Use P-value or Confidence Interval

• P-value : 
Probability computed under the condition that the null hypothesis is true, of 
the test statistic being at least as extreme as the value of the test statistic that 
was actually observed.

• Confidence Interval (CI) :

If an infinite number of samples are collected, then 𝟏𝟎𝟎 𝟏 − 𝜶 % of intervals (CI) 

will contain the true value of the parameter. 

(𝛼 : significance level, 1 − 𝛼 : confidence coefficient)



3-1 Hypothesis testing using P-value
• Type I error 𝛼 : Rejecting the null hypothesis 𝐻0 when it is true

• Type II error 𝛽 : Failing to reject the null hypothesis 𝐻0 when it is not true

• If P-value is less than the significance level 𝛼, we would reject 
the null hypothesis

• Or use Rejection region RR, which is a set of values for the 
test statistic for which the null hypothesis is rejected

RR



3-2 Steps of Hypothesis testing

• P-value

1. Establish 𝐻0 and 𝐻1

2. Calculate the test statistic

3. Compute P-value or Rejection Region(RR)

4. Compare P-value to 𝛼 (if P>𝛼, fail to reject 𝐻0)

• Confidence Inverval

2. Choose confidence coefficient 1 − 𝛼

3. Construct 100 1 − 𝛼 % CI = [L,U] (upper and lover confidence bound for parameter)

4. If CI contain true population mean, the we fail to reject 𝐻0



4. Example

• We want to estimate the mean burning rate 𝝁. 

• We know that the distribution of it is normal and 𝝈 = 2𝑐𝑚/𝑠. 

• We selects a random sample of n=25 and decided to specify 
a type I error 𝜶 = 0.05. 

• We obtains a sample average ҧ𝑥 = 51.3𝑐𝑚/𝑠.

• We want to know if mean burning rate is 𝟓𝟎𝒄𝒎/𝒔 or not



4. Example

Parameter of interest : mean burning rate 𝜇

1. Hypothesis : 𝐻0: 𝜇 = 50 vs 𝐻1: 𝜇 ≠ 50

2. Test statistic : ҧ𝑥 ( ത𝑋~𝑁 50,
22

25
 under 𝐻0) or 𝑧0 =

ҧ𝑥−𝜇0

𝜎/ 𝑛

3. P-value : 2*P( ത𝑋 > ҧ𝑥)=2*P(Z >
51.3−50

2/ 25
)=0.0012 

4. P-value = 0.0012 < 𝛼 = 0.05 → Reject 𝐻0 at 𝛼 = 0.05

OR using Confidence interval for 𝜇

1. a 100 1 − 𝛼 % CI for 𝜇 is given by ҧ𝑥 − 𝑧𝛼/2
𝜎

𝑛
≤ 𝜇 ≤ ҧ𝑥 + 𝑧𝛼/2

𝜎

𝑛

2. For 𝛼 = 0.05, 𝑧𝛼/2 = 1.96, so 95% CI is 𝐿, 𝑈 = [50.52,52.08]

3. The value we observed(51.3) is not in CI → Reject 𝐻0 at 𝛼 = 0.05





5. Apply to Particle Physics

• Data has both background(b) and signal(s) 
→ Data is given by d=b+s (the mean count)

• Goal : Find the mean Higgs boson event 
count s.

• Let’s analyze the summary results of the measurement of the 
Higgs boson in the 4-lepton final states. (H→ZZ)

⇒ N=25(observed 4-lepton events) with background estimate of 
𝑩 ± 𝜹𝑩 = 𝟗. 𝟒 ± 𝟎. 𝟓

• 𝑯𝟎 : background-only (no signal) vs 𝑯𝟏 : background plus signal





5. Apply to Particle Physics

• Distribution of d (events)

1. Each collision between protons is a Bernoulli trial (Higgs boson 
is created or not)

2. The collection of the Bernoulli trial can be represented by a 
Binomial distribution (pmf: 𝑓(𝑥) = 𝑛

𝑥
𝑝𝑥 1 − 𝑝 𝑛−𝑥)

3. If 𝜆 = 𝑛𝑝 is fixed, then lim
𝑛→∞

𝑓(𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
=Poisson distribution

4. Full model : 𝒑 𝒏,𝒎 𝒔, 𝒃 = 𝑷𝒐𝒊𝒔𝒔𝒐𝒏 𝒏, 𝒔 + 𝒃 𝑷𝒐𝒊𝒔𝒔𝒐𝒏 𝒎, 𝒌𝒃

Data: 𝑝 𝑛 𝑠, 𝑏 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑛, 𝑠 + 𝑏 =
𝑠+𝑏 𝑛𝑒− 𝑠+𝑏

𝑛!
, background: 𝑝 𝑚 𝑘𝑏 = 𝑃𝑜𝑖𝑠𝑠𝑠𝑜𝑛(𝑚, 𝑘𝑏)



5. Apply to Particle Physics

• Average of Poisson distribution = 𝜆 (𝑓(𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
)

• Variance of Poisson distribution = 𝜆

• Let N is the total number of observation and M is the number 
of background observation(unknown) → M will be the average value 

• 𝐵 ± δ𝐵 = 9.4 ± 0.5 and background = 𝑝 𝑀 𝑘𝑏 = 𝑃𝑜𝑖𝑠𝑠𝑠𝑜𝑛 𝑀, 𝑘𝑏

→ 𝐵 = 𝐸 𝑏 =
𝑀

𝑘
, 𝛿𝐵2 = 𝑉𝑎𝑟 𝑏 =

1

𝑘2
𝑉𝑎𝑟 𝑘𝑏 =

𝑀

𝑘2

→ 𝐵 =
𝑀

𝑘
, δ𝐵 =

𝑀

𝑘
→ 𝑀 =

𝐵

𝛿𝐵

2
= 353.4, 𝑘 =

𝐵

𝛿𝐵2
= 37.6

• Full likelihood : 𝑝 𝐷 𝑠, 𝑏 =
𝑠+𝑏 𝑁𝑒− 𝑠+𝑏

𝑁!

𝑘𝑏 𝑀𝑒−𝑘𝑏

Γ(𝑀+1)
≡ 𝐿(𝑠, 𝑏) (D=N,M)



5. Apply to Particle Physics

• Construct Confidence interval of s

1. Use maximum likelihood estimates(MLE) 
𝜕 ln 𝑝 𝐷 𝑠, 𝑏

𝜕𝑏
= 0 → Ƹ𝑠 = 𝑁 − 𝑏 , 

𝜕 ln 𝑝 𝐷 𝑠, 𝑏
𝜕𝑏

= 0 → 𝑏 =
𝑁+𝑀− 1+𝑘 𝑠+ 𝑁+𝑀− 1+𝑘 𝑠 2+4 1+𝑘 𝑀𝑠

2(1+𝑘)
→We 

can use 𝐿 𝑠, 𝑏 = 𝐿 𝑠

2. Let 𝜆 𝑠 =
𝐿 𝑠

𝐿 Ƹ𝑠
and 𝑡 𝑠 = −𝟐 𝐥𝐧𝝀 𝒔 = 𝑡 Ƹ𝑠 + 𝑠 − Ƹ𝑠 ≈ 𝑡 Ƹ𝑠 + 𝑡′ Ƹ𝑠 𝑠 − Ƹ𝑠 + 𝑡′′ Ƹ𝑠 𝑠 − Ƹ𝑠 2/2 ≈

𝑠 − Ƹ𝑠 2/𝜎2 ≈ 𝝌𝟏
𝟐 (chi-square distribution)

3. We know the distribution of s, so we can calculate the 
confidence interval using the table of the chi-square distribution

4. For 68%CI = [10.9,21.0] but N=25 is not in the CI, so we 
reject the null hypothesis. (=we observed the particle) 



5. Apply to Particle Physics

• Use P-value

1. Compute P-value

p − value = 

𝑘=𝑁=25

∞

𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑘, 9.4 = 1.76 ∗ 10−5

2. Use Z-value → Z = 2 erf−1 1 − p − value = 𝟒. 𝟏𝟒𝝈

3. If the p-value is judged to be small enough, the null hypothesis 
is rejected. (=we observed the particle) 



References

• Montgomery, D. C., Runger, G. C., & Hubele, N. F. (2010). Engineering Statistics. Wiley.

• Prosper, H. B. (2019). Practical Statistics for Particle Physicists. CERN. 


	슬라이드 1: Introduction to  Statistical Inference
	슬라이드 2: 1. Statistical Inference
	슬라이드 3: 2. Parameter estimation
	슬라이드 4: 3. Hypothesis testing
	슬라이드 5: 3-1 Hypothesis testing using P-value
	슬라이드 6: 3-2 Steps of Hypothesis testing
	슬라이드 7: 4. Example
	슬라이드 8: 4. Example
	슬라이드 9
	슬라이드 10: 5. Apply to Particle Physics
	슬라이드 11
	슬라이드 12: 5. Apply to Particle Physics
	슬라이드 13: 5. Apply to Particle Physics
	슬라이드 14: 5. Apply to Particle Physics
	슬라이드 15: 5. Apply to Particle Physics
	슬라이드 16: References

