Introduction to Statistical Inference

한양대학교 김도영

1. Statistical Inference

• Parameter estimation :

Estimating the value of parameters based on measured data

• Hypothesis testing :

Method to decide whether the data at hand sufficiently support a particular hypothesis

(Hypothesis : a statement about the parameters)

2. Parameter estimation

- Parameter of interest θ
- Sample statistic Θ
- Numerical value of the sample statistic $\hat{\theta}$
- Several choices are exist \rightarrow Consider MSE

Estimate the mean of a population

 \rightarrow sample mean, sample median ...

•
$$
MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^{2}] = Var(\hat{\theta}) + bias^{2}
$$

$$
(Var(\hat{\theta}) = E(\hat{\theta}^{2}) - [E(\hat{\theta})]^{2}, bias = E(\hat{\theta}) - \theta)
$$

3. Hypothesis testing

• Null hypothesis H_0 vs Alternative hypothesis H_1

Deciding whether or not the mean burning rate is 50cm/s

 \rightarrow H_0 : μ = 50 vs H_1 : $\mu \neq 50$.

- Evidence collection \rightarrow Use P-value or Confidence Interval
- P-value :

Probability computed under the condition that the **null hypothesis is true**, of the test statistic being at least as **extreme as** the value of the test statistic that was **actually observed**.

• Confidence Interval (CI) :

If an infinite number of samples are collected, then $100(1 - \alpha)\%$ of **intervals (CI)** will **contain the true value** of the parameter.

 $(\alpha :$ significance level, $1 - \alpha :$ confidence coefficient)

3-1 Hypothesis testing using P-value

- Type I error α : Rejecting the null hypothesis H_0 when it is true
- Type II error β : Failing to reject the null hypothesis H_0 when it is not true
- If P-value is less than the significance level α , we would reject the null hypothesis
- Or use Rejection region RR, which is a set of values for the test statistic for which the null hypothesis is rejected

3-2 Steps of Hypothesis testing

- P-value
- 1. Establish H_0 and H_1
- 2. Calculate the test statistic
- 3. Compute P-value or Rejection Region(RR)
- 4. Compare P-value to α (if P> α , fail to reject H_0)
- Confidence Inverval
- Choose confidence coefficient 1α
- 3. Construct $100(1 \alpha)\%$ CI = [L,U] (upper and lover confidence bound for parameter)
- 4. If CI contain true population mean, the we fail to reject H_0

4. Example

- We want to **estimate** the mean burning rate μ .
- We know that the distribution of it is **normal** and $\sigma = 2cm/s$.
- We selects a random sample of n=25 and **decided** to specify a type I error $\alpha = 0.05$.
- We obtains a sample average $\bar{x} = 51.3cm/s$.
- We want to know if mean burning rate is $50cm/s$ or not

4. Example

Parameter of interest : mean burning rate μ 1. Hypothesis : $H_0: \mu = 50$ vs $H_1: \mu \neq 50$ 2. Test statistic : \bar{x} ($\bar{X} \sim N$ (50, $\frac{2^2}{35}$ $\left(\frac{2}{25}\right)$ under H_0) or $z_0 =$ \bar{x} − μ_0 σ/\sqrt{n} 3. P-value : $2*P(\bar{X} > \bar{x}) = 2*P(Z > \frac{51.3-50}{3\sqrt{25}})$ $2/\sqrt{25}$)=0.0012 4. P-value = $0.0012 < \alpha = 0.05 \rightarrow$ Reject H_0 at $\alpha = 0.05$ OR using Confidence interval for μ 1. a 100(1 – α)% CI for μ is given by $\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ $\frac{y}{n} \leq \mu \leq \bar{x} + z_{\alpha/2}$ 2. For $\alpha = 0.05$, $z_{\alpha/2} = 1.96$, so 95% CI is $[L, U] = [50.52, 52.08]$ 3. The value we observed(51.3) is not in CI \rightarrow Reject H_0 at $\alpha = 0.05$

 σ

 \overline{n}

- **Data** has both **background**(b) and **signal**(s) → Data is given by **d=b+s** (the mean count)
- Goal : **Find** the mean Higgs boson event count **s**.
- Let's analyze the summary results of the measurement of the Higgs boson in the 4-lepton final states. $(H \rightarrow ZZ)$

⇒ **N=25**(**observed 4-lepton events**) with **background estimate** of $B \pm \delta B = 9.4 \pm 0.5$

 \cdot H_0 : background-only (no signal) vs H_1 : background plus signal

- Distribution of d (events)
- **1. Each collision** between protons is a **Bernoulli trial** (Higgs boson is created or not)
- 2. The collection of the Bernoulli trial can be represented by a **Binomial distribution** (pmf: $f(x) = {n \choose x}$ χ $p^{x}(1-p)^{n-x}$
- 3. If $\lambda = np$ is fixed, then lim $n\rightarrow\infty$ $f(x) =$ $e^{-\lambda} \lambda^x$ χ ! =**Poisson distribution**
- 4. Full model : $p(n, m|s, b) = Poisson(n, s + b) Poisson(m, kb)$

Data: $p(n|s, b) = Poisson(n, s + b) = \frac{(s+b)^n e^{-(s+b)}}{n!}$ $n!$, background: $p(m|kb) = Poisson(m, kb)$

- Average of Poisson distribution = λ ($f(x)$ = $e^{-\lambda} \lambda^x$ $\chi!$)
- Variance of Poisson distribution = λ
- Let **N** is the **total number of observation** and **M** is the **number of background** observation(unknown) \rightarrow M will be the average value

•
$$
B \pm \delta B = 9.4 \pm 0.5
$$
 and background = $p(M|kb) = Poisson(M, kb)$
\n $\rightarrow B = E(b) = \frac{M}{k}, \delta B^2 = Var(b) = \frac{1}{k^2}Var(kb) = \frac{M}{k^2}$
\n $\rightarrow B = \frac{M}{k}, \delta B = \frac{\sqrt{M}}{k} \rightarrow M = \left(\frac{B}{\delta B}\right)^2 = 353.4, k = \frac{B}{\delta B^2} = 37.6$
\n• Full likelihood : $p(D|s, b) = \frac{(s+b)^N e^{-(s+b)}}{N!} \frac{(kb)^M e^{-kb}}{\Gamma(M+1)} \equiv L(s, b)$ (D=N,M)

- Construct Confidence interval of s
- 1. Use maximum likelihood estimates(MLE)

 $\partial \ln p(D|S,b)$ ∂b $= 0 \rightarrow \hat{s} = N - b$, $\partial \ln p(D|S,b)$ ∂b $= 0 \rightarrow \hat{b} = \frac{N+M-(1+k)s+\sqrt{(N+M-(1+k)s)^2+4(1+k)Ms}}{2(1+k)s}$ $2(1+k)$ \rightarrow We can use $L(s, b) = L(s)$

2. Let $\lambda(s) = \frac{L(s)}{L(s)}$ $L(\hat{\mathcal{S}})$ and $t(s) = -2 \ln \lambda(s) = t(\hat{s} + s - \hat{s}) \approx t(\hat{s}) + t'(\hat{s})(s - \hat{s}) + t''(\hat{s})(s - \hat{s})^2/2$ ≈ $(s-\hat{s})^2/\sigma^2 \approx \chi_1^2$ (chi-square distribution)

3. We know the distribution of s, so we can calculate the confidence interval using the table of the chi-square distribution

4. **For 68%CI = [10.9,21.0]** but N=25 is not in the CI, so we **reject the null hypothesis**. (=we observed the particle)

3. If the p-value is **judged to be small enough**, the null hypothesis is rejected. (=we observed the particle)

References

- Montgomery, D. C., Runger, G. C., & Hubele, N. F. (2010). *Engineering Statistics*. Wiley.
- Prosper, H. B. (2019). Practical Statistics for Particle Physicists. CERN.