Introduction to Statistical Inference

한양대학교 김도영

1. Statistical Inference

• Parameter estimation :

Estimating the value of parameters based on measured data

• Hypothesis testing :

Method to decide whether the data at hand sufficiently support a particular hypothesis

(Hypothesis : a statement about the parameters)

2. Parameter estimation

- Parameter of interest θ
- Sample statistic $\widehat{\Theta}$
- Numerical value of the sample statistic $\hat{\theta}$
- Several choices are exist \rightarrow Consider MSE

Estimate the mean of a population

 \rightarrow sample mean, sample median ...

•
$$MSE(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^2\right] = Var(\hat{\theta}) + bias^2$$

 $(Var(\hat{\theta}) = E(\hat{\theta}^2) - [E(\hat{\theta})]^2, bias = E(\hat{\theta}) - \theta)$

Unknown Parameter θ	Statistic Ô	Point Estimate $\hat{\theta}$
μ	$\overline{X} = \frac{\sum X_i}{n}$	\overline{x}
σ^2	$S^2 = \frac{\Sigma (X_i - \overline{X})^2}{n - 1}$	s^2
р	$\hat{P} = \frac{X}{n}$	\hat{p}
$\mu_1 - \mu_2$	$\overline{X}_1 - \overline{X}_2 = \frac{\sum X_{1i}}{n_1} - \frac{\sum X_{2i}}{n_2}$	$\overline{x}_1 - \overline{x}_2$
$p_1 - p_2$	$\hat{P}_1 - \hat{P}_2 = \frac{X_1}{n_1} - \frac{X_2}{n_2}$	$\hat{p}_1 - \hat{p}_2$

3. Hypothesis testing

• Null hypothesis H_0 vs Alternative hypothesis H_1

Deciding whether or not the mean burning rate is 50cm/s

 $\rightarrow H_0$: $\mu = 50$ vs H_1 : $\mu \neq 50$.

- Evidence collection \rightarrow Use P-value or Confidence Interval
- P-value :

Probability computed under the condition that the **null hypothesis is true**, of the test statistic being at least as **extreme as** the value of the test statistic that was **actually observed**.

• Confidence Interval (CI) :

If an infinite number of samples are collected, then $100(1 - \alpha)\%$ of intervals (CI) will contain the true value of the parameter.

(α : significance level, $1 - \alpha$: confidence coefficient)

3-1 Hypothesis testing using P-value

- Type I error α : Rejecting the null hypothesis H_0 when it is true
- Type II error β : Failing to reject the null hypothesis $_{H_0}$ when it is not true
- If P-value is less than the significance level α , we would reject the null hypothesis
- Or use Rejection region RR, which is a set of values for the test statistic for which the null hypothesis is rejected

3-2 Steps of Hypothesis testing

- P-value
- 1. Establish H_0 and H_1
- 2. Calculate the test statistic
- 3. Compute P-value or Rejection Region(RR)
- 4. Compare P-value to α (if P> α , fail to reject H_0)
- Confidence Inverval
- 2. Choose confidence coefficient 1α
- 3. Construct $100(1 \alpha)$ % CI = [L,U] (upper and lover confidence bound for parameter)
- 4. If CI contain true population mean, the we fail to reject H_0

4. Example

- We want to **estimate** the mean burning rate μ .
- We **know** that the distribution of it is **normal** and $\sigma = 2cm/s$.
- We selects a random sample of n=25 and **decided** to specify a type I error $\alpha = 0.05$.
- We obtains a sample average $\bar{x} = 51.3 cm/s$.
- We want to know if mean burning rate is 50 cm/s or not

4. Example

Parameter of interest : mean burning rate μ

1. Hypothesis : $H_0: \mu = 50 \text{ vs } H_1: \mu \neq 50$

2. Test statistic :
$$\bar{x}$$
 ($\bar{X} \sim N\left(50, \frac{2^2}{25}\right)$ under H_0) or $z_0 = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$

3. P-value :
$$2*P(\bar{X} > \bar{x}) = 2*P(Z > \frac{51.3-50}{2/\sqrt{25}}) = 0.0012$$

4. P-value = 0.0012 <
$$\alpha$$
 = 0.05 \rightarrow Reject H_0 at α = 0.05
OR using Confidence interval for μ

1. a
$$100(1-\alpha)$$
% CI for μ is given by $\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

2. For $\alpha = 0.05$, $z_{\alpha/2} = 1.96$, so 95% CI is [L, U] = [50.52, 52.08]

3. The value we observed (51.3) is not in CI \rightarrow Reject H_0 at $\alpha = 0.05$

추정		Variance 알 때 µ		Variance 모를 때 µ	Normal population의 σ	$H, \hat{P} = \frac{X}{n} \sim N(p, \frac{p(1-p)}{n})$	Goodness of fit: k 카테고리
Hypothesis	esis $H_0: \mu = \mu_0$ vs $H_1: \mu \neq > < \mu_0$		=	$H_0: \sigma^2 = \sigma_0^2 vs H_1: \sigma^2 \neq \sigma_0^2$	$H_0: p = p_0 vs H_1: p \neq p_0$	$H_0: p_1 = p_{10}, \dots p_k = p_{k0} vs$	
(From normal or n>=30)		(무조건 정규)		(np>5, n(1-p)>5 or exact)	H_1 : not H_0		
Test statistic	statistic $Z_0 = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$			$T_0 = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$	$X_0^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$Z_0 = \frac{\hat{P} - p_0}{\sqrt{p_0(1 - p_0)/n}}$	$\chi_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i} \sim \chi_{k-p-1}^2$
분포	Standard normal			t-distribution, df=n-1	Chi-square, df=n-1, χ^2_{n-1}	Standard normal	Chi-square, df=n-k-1
P-value	$P(Z \ge z_0) + P(Z \le z_0)$		$z_0)$	$2P(T \ge t_0)$	RR사용, X ₀ ² > $\chi^2_{\alpha_{n-1}}$	$2P(Z \ge z_0)$	$P(\chi^2_{k-p-1} > \chi^2_0)$
$P(Z > < z_0) if H_1 >$		><	$P(T > < t_0) \text{ if } H_1 > <$	or $X_0^2 < \chi_{1-\alpha/2}^2 n^{-1}$	$P(Z > < z_0) if H_1: p > < p_0$		
100(1- α)% CI $\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{\alpha/2}$		$\frac{\sigma}{\sqrt{n}}$	$\mu: \ \bar{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}$	$\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)S}{\chi^2_{1-\alpha/2,n-1}}$	$\frac{2}{1} \qquad p: \hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$		
Upper/Lower Co Bound	er Confidence $\mu < \overline{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}, \ \mu > \overline{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}}$		μ<~, μ>~ 이때 α/2->α		p<~, p>~ 이때 α/2->α		
추정	Varianc	e 악 때 두 평균 차이	Varian	ce 모를 때 두 평균u	Variance 모를 때 두 평균u	Variance 비율(두 펴차 갇	두binomial에서 proportion
	$\mu_D = \mu_1$	$-\mu_2$	大101(7	$r^2 = \sigma^2$	$ top (\sigma^2 \neq \sigma^2) $	으지) σ^2/σ^2	$n_1 n_2 n_1 - n_2$
정규 or n>=30		므 즈 거	·1 - ·2) · 저그	$(0_1 \neq 0_2)$		Estimator: $\hat{n} = \frac{X_1}{2} + \hat{n} = \frac{X_2}{2}$	
			+++	$H : \mu = \mu = \Lambda$		σ ²	Estimator: $p_1 - \frac{1}{n_1}, p_2 - \frac{1}{n_2}$
Hypothesis	$H_0: \mu_1 - \mu_2 = \Delta_0 \text{ vs } H_1: \mu_1 - \mu_2 \neq \Delta_0$		ι	$\mu_0 : \mu_1 : \mu_2 = \Delta_0$ $\mu_1 : \mu_1 - \mu_2 \neq \Delta_0$	=	$H_0: \frac{\sigma_1}{\sigma_2^2} = 1$	$H_0: p_1 = p_2$
Test statistic	$Z_0 = \frac{\overline{X_1} - \overline{X_2} - \Delta_0}{\sqrt{(\sigma_1^2)/n_1 + (\sigma_2^2)/n_2}}$		$T_{0} = \frac{\overline{X_{1}} - \overline{X_{2}} - \Delta_{0}}{S_{p}\sqrt{1/n_{1} + 1/n_{2}}}$		$T_0 = \frac{\overline{X_1} - \overline{X_2} - \Delta_0}{\sqrt{(S_1^2)/n_1 + (S_2^2)/n_2}}$	$F_0 = \frac{S_1^2}{S_2^2} = F_{n_1 - 1, n_2 - 1}$	$Z_0 = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$
분포		Standard normal t-dit		ibution df= $n_1 + n_2 - 2$	t-ditribution, df= <i>v(못외움)</i>	F-분포, df 2개	Standard
P-value (2side/Upp er/Lower)	<i>P</i> (<i>Z</i> >	$2 P(Z > z_0)$ < z_0) for H ₁ : $\mu_D >< \Delta_0$	P(T :	$2 P(T > t_0)$ >< t_0) for H ₁ : μ_D >< Δ_0		RR 사용, $f_0 > f_{\alpha/2,n_1-1,n_2-1}$ or $f_o < f_{1-\alpha/2,n_1-1,n_2-1}$ And $f_0 > < f_{\alpha,n_1-1,n_2-1}$	$2 P(Z > z_0)$ $P(Z > < z_0)$ for H ₁ : p ₁ > < p ₂
100(1-α)%	$\mu_1 - \mu_2: \overline{x_1} - \overline{x_2} \qquad \qquad \mu_1 - \mu_2$		$\mu_1 - \mu$	$u_2: \overline{x_1} - \overline{x_2}$	$\mu_1 - \mu_2$: $\overline{x_1} - \overline{x_2}$	$\frac{S_1^2}{f}$	$\hat{p}_1 - \hat{p}_2$
CI	$\pm z_{\alpha/}$	$_{2}\sqrt{(\sigma_{1}^{2})/n_{1} + (\sigma_{2}^{2})/n_{2}}$	$\pm t_{\alpha/2}$	$2n_{2,n_{1}+n_{2}-2}s_{p}\sqrt{1/n_{1}+1/n_{2}}$	$\pm t_{\alpha/2,\nu} \sqrt{(s_1^2)/n_1 + (s_2^2)/n_2}$	$\frac{\overline{S_2^2}}{S_2^2} \int_{1-\alpha/2, n_2-1, n_1-1}^{1-1} \langle \overline{\sigma_2^2} \\ \langle \frac{S_1^2}{S_2^2} f_{\alpha/2, n_2-1, n_1-1} \rangle$	$\pm z_{\alpha/2} \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$
Upper/Lower	$\mu_1 - \mu_2 <$	$< \sim, \mu_1 - \mu_2 > \sim, 0$ III $\alpha/2 - > \alpha$	$\mu_1 - \mu_2$	$< \sim, \mu_1 - \mu_2 > \sim, 0$ III $\alpha/2 - > \alpha$	μ<~, μ>~ ΟΙЩ α/2->α	σ<~, σ>~, 이때 α/2-> α	참고: $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$ pooled sample
Confidence Bound						참고: $f_{1-\alpha,u,v} = \frac{1}{f_{\alpha,u,v}}$	proportion)

- Data has both **background**(b) and **signal**(s) $\frac{\mathbb{P}}{\mathbb{P}}$ \rightarrow Data is given by **d=b+s** (the mean count)
- Goal : **Find** the mean Higgs boson event count **s**.
- Let's analyze the summary results of the measurement of the Higgs boson in the 4-lepton final states. (H \rightarrow ZZ)

 \Rightarrow N=25(observed 4-lepton events) with background estimate of $B \pm \delta B = 9.4 \pm 0.5$

H₀: background-only (no signal) vs H₁: background plus signal

- Distribution of d (events)
- **1. Each collision** between protons is a **Bernoulli trial** (Higgs boson is created or not)
- 2. The collection of the Bernoulli trial can be represented by a **Binomial distribution** (pmf: $f(x) = {n \choose x} p^x (1-p)^{n-x}$)
- 3. If $\lambda = np$ is fixed, then $\lim_{n \to \infty} f(x) = \frac{e^{-\lambda}\lambda^x}{x!} =$ **Poisson distribution**
- 4. Full model : p(n, m | s, b) = Poisson(n, s + b)Poisson(m, kb)

Data: $p(n|s,b) = Poisson(n,s+b) = \frac{(s+b)^n e^{-(s+b)}}{n!}$, background: p(m|kb) = Poisson(m,kb)

- Average of Poisson distribution = $\lambda (f(x) = \frac{e^{-\lambda}\lambda^x}{x!})$
- Variance of Poisson distribution = λ
- Let N is the total number of observation and M is the number of background observation(unknown) \rightarrow M will be the average value

•
$$B \pm \delta B = 9.4 \pm 0.5$$
 and background $= p(M|kb) = Poissson(M,kb)$
 $\rightarrow B = E(b) = \frac{M}{k}, \delta B^2 = Var(b) = \frac{1}{k^2}Var(kb) = \frac{M}{k^2}$
 $\rightarrow B = \frac{M}{k}, \delta B = \frac{\sqrt{M}}{k} \rightarrow M = \left(\frac{B}{\delta B}\right)^2 = 353.4, k = \frac{B}{\delta B^2} = 37.6$
• Full likelihood : $p(D|s,b) = \frac{(s+b)^N e^{-(s+b)}}{N!} \frac{(kb)^M e^{-kb}}{\Gamma(M+1)} \equiv L(s,b)$ (D=N,M)

- Construct Confidence interval of s
- 1. Use maximum likelihood estimates(MLE)

 $\frac{\partial \ln p(D|s,b)}{\partial b} = 0 \rightarrow \hat{s} = N - b \ , \ \frac{\partial \ln p(D|s,b)}{\partial b} = 0 \ \rightarrow \hat{b} = \frac{N + M - (1+k)s + \sqrt{(N+M - (1+k)s)^2 + 4(1+k)Ms}}{2(1+k)} \rightarrow \text{We can use } L(s,b) = L(s)$

2. Let $\lambda(s) = \frac{L(s)}{L(\hat{s})}$ and $t(s) = -2 \ln \lambda(s) = t(\hat{s} + s - \hat{s}) \approx t(\hat{s}) + t'(\hat{s})(s - \hat{s}) + t''(\hat{s})(s - \hat{s})^2/2 \approx (s - \hat{s})^2/\sigma^2 \approx \chi_1^2$ (chi-square distribution)

3. We know the distribution of s, so we can calculate the confidence interval using the table of the chi-square distribution

4. For 68%CI = [10.9,21.0] but N=25 is not in the CI, so we reject the null hypothesis. (=we observed the particle)

3. If the p-value is **judged to be small enough**, the null hypothesis is rejected. (=we observed the particle)

References

- Montgomery, D. C., Runger, G. C., & Hubele, N. F. (2010). *Engineering Statistics*. Wiley.
- Prosper, H. B. (2019). *Practical Statistics for Particle Physicists.* CERN.