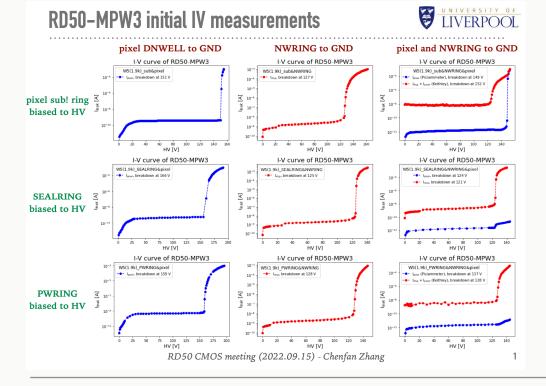
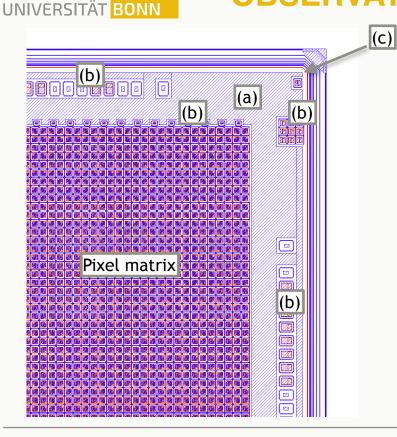


OPTIMISATION STRATEGY FOR THE SENSOR BASED ON THE MPW3 MONOLITHIC DETECTOR

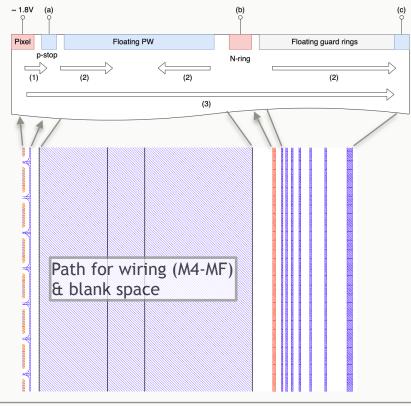

Preliminary and Conceptional Ideas

Sinuo Zhang 30.03.2023



MEASUREMENTS OF THE BREAKDOWN VOLTAGE IN LIVERPOOL

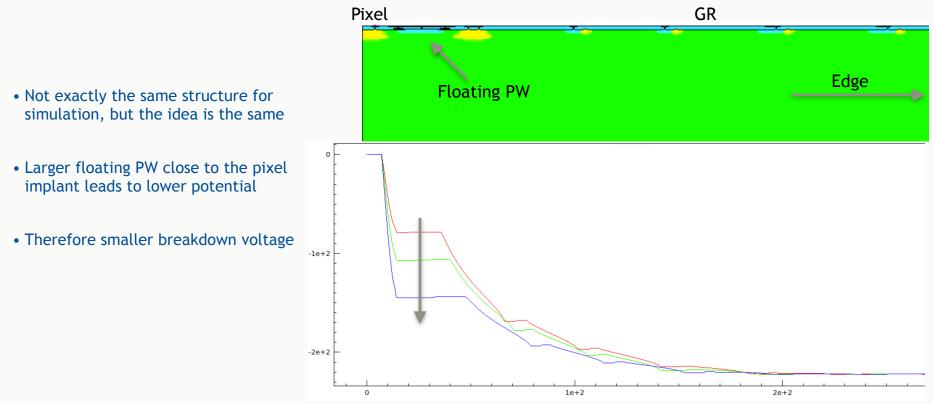
- Measurements of almost all scenarios showing:
 - Large current increase at bias voltage between 120 V and 150V
- Breakdown possibly takes place between the pstop and pixel (distance of 8um)
- Nevertheless, still hard to locate where the breakdown actually takes place
 - May locate at the implants with similar spacing of 8um


OBSERVATIONS FROM THE LAYOUT

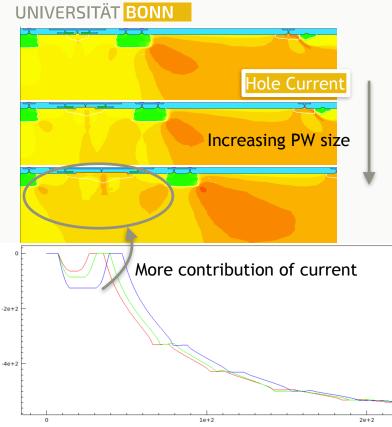
- (a): large floating PW between pixel matrix and GR
 - Directly encloses the pixel matrix
 - Width is not uniform
 - (b): isolated structures
 - Physically isolated from the pixel matrix
 - P-stop/ring connected together
 - Locations do not follow a pattern
 - Individual size and structure
 - (c): sharp corners
 - Appears at various locations
 - Etc. similar cases in the rest part of the chip
 - If bias through p-stop -> potential drop more or less predictable
 - If bias through edge/back (floating p-stop)
 - -> hard to predict the potential distribution among implants

POTENTIAL FROM MATRIX TO THE EDGE

(I) Current biasing method: - HV at (a)


• Potential drop (1), the rest not really relevant

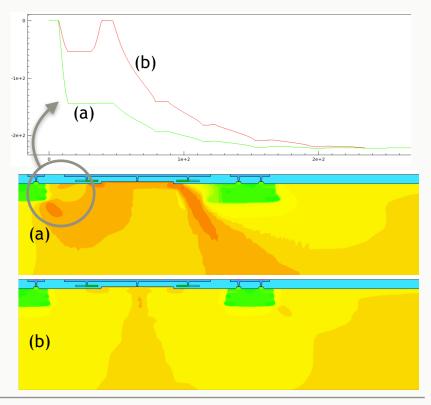
(II) Edge bias (-HV at (c)) with floating p-stop:


- Potential drop (3), across the entire periphery
- Large floating PW suppresses the potential
- Potential drop (1) dominates
- (III) Edge bias (-HV at (c)) with floating p-stop and biased N-ring (OV or ~1.8V at (b))
 - Potential drop (2), potential drop consists of two parts
 - Guard ring region determined by the geometry
 - Large floating PW + p-stop can cause large potential drop, although it should be less significant as the previous case

UNIVERSITÄT BONN

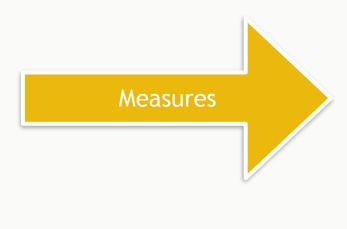
(II) EDGE BIAS (-HV AT (C)) WITH FLOATING P-STOP

(II) EDGE BIAS (-HV AT (C)) WITH FLOATING P-STOP AND BIASED N-RING (0V OR ~1.8V AT (B))



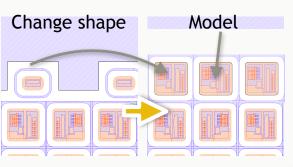
- The biased n-ring (at the same voltage as the pixel) holds the potential of the floating PW at a higher level
- Potential drop at the PW increases with larger width

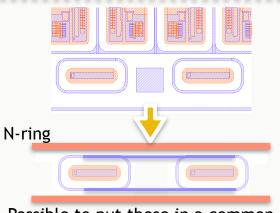
COMPARE BOTH CASES (II) & (III)

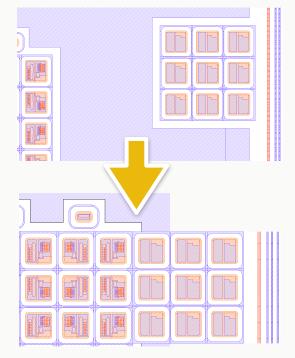

- Set the n-ring to a fixed voltage will significantly reduce the voltage drop at the same bias voltage
- Current contribution (from impact ionisation) is reduced

SUMMARY OF THOUGHTS

- 1. If we use edge bias, the guard ring structure may not be the only part requires optimisation
- 2. The large floating PW can cause a dominating potential drop
- 3. The structure like an n-ring can be very helpful to regulate the potential distribution

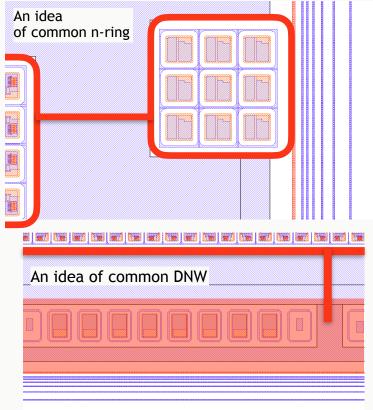

1. Round sharp corners V


- Less possibility to have high field
- 2. <u>Re-organise the isolated structures in the periphery</u>
 - More ordered implant geometry
 - Easier to predict and debug (if necessary)
- 3. Reduce the size of the floating PW
 - ➡ Reduce potential drop
- 4. Implement N-ring/DNW
 - Regulate potential & field, provide shielding
- 5. Optimise guard ring


NAIVE EXAMPLES: RE-ORGANISE

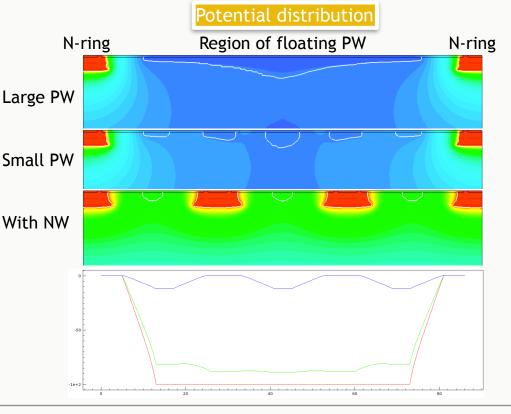
- For the structures having a "pstop" with the same voltage as the matrix, we can merge the p-stop and integrate them into the matrix
- Can change the shape of certain structures besides the matrix and merge into the matrix. Can also use models which acts merely as a passive pixel
- For the structures hard to change, we can eliminate the floating PW and put in n-ring. Would be nice if they can be in a common DNW and be a part of the n-ring

Possible to put these in a common DNW ?

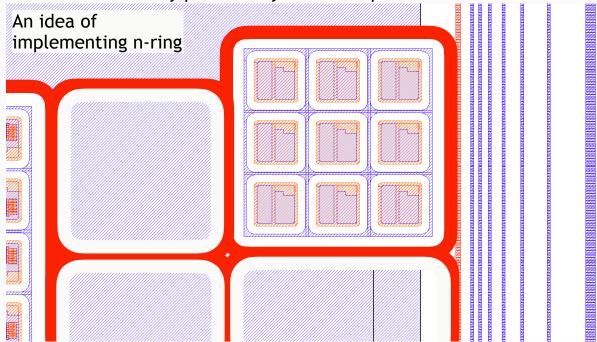


A column of passive structures/models ...

IMPLEMENT N-RING/DNW & REDUCE PW


- Both approaches are related
 - Use n-ring (with a fixed potential) to occupy the space of PW (floating potential)
- N-ring:
 - Encloses the pixel matrix -> shape the field of edge pixels & collect the leakage outside the matrix
 - Encloses isolated structures which requires a similar potential at the p-stop/ring (like the test structures)
 - Connect all the n-ring to the n-ring at the guard-ring -> build a common potential
- DNW:
 - If structures can be put into a common DNW (connected to the N-ring), the potential distribution will be more ordered
 - e.g. with low voltage, for signals, etc.
 - HV related parts requires different approaches

REDUCE PW & IMPLEMENT N-RING/DNW


- Enclosing the floating PW with n-ring is maybe still not enough
- Too low potential may still occur at the large PW, and can cause high E-field (triggers breakdown) or punch-through
- Very extreme case: The PW is so large that the region beneath cannot be easily depleted
 - -> the PW will have the same potential as the backside
 - -> breakdown is merely determined by the spacing between PW and the surrounding n-ring
- Possible approaches (require more discussions):
 - Divide the PW into small parts
 - Add N-ring between small PW parts
 - Simply reduce the PW size, create large spacing
 - Add contact to PW to add voltage
 - Use DNW to hold the PW, merge DNW to N-ring

REDUCE PW & IMPLEMENT N-RING/DNW

Very preliminary and conceptional

- From the inspection of the design layout, several features might affect the performance of the sensor part of the detector, if the edge biasing and floating p-stop would be adopted:
 - Sharp corners -> unexpected high E-field
 - Large floating PW with an irregular shape, and the structures isolated from the pixel matrix -> potential distribution hard to predict
 - Guard ring geometry still has the room for optimisation
- The effect from floating PW has been visualised using TCAD simulation
 - A large floating PW can lead to large potential drop (high field), or punch-through
 - Using n-ring with fixed potential to divide the PW can provide a better potential distribution
- Possible measures:
 - Round sharp corners
 - Re-organise isolated structures -> build a more ordered layout
 - Use n-ring with a fixed voltage to enclose structures and divide the PW -> may help to reduce the effect of large PW
 - Use common DNW to contain some of the structures can also help to regulate the potential distribution
 - Implement a guard ring structure based on the previous knowledge