

PERLE Collaboration Meeting

Lattice design of 250 MeV version of PERLE

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

indico.cern.ch/event/1266985/

Jun 22 – 23, 2023 CERN

Alex Fomin

Rasha Abukeshek, Alex Bogacz, Coline Guyot, Julien Michaud and Luc Perrot

Motivation for 250 MeV version (pros and cons)

Lattice design (maximal compatibility with 500 MeV design prepared by Alex Bogacz)

Optics (comparison with 500 MeV version)

Filling patterns (optimal for lower energies)

Conclusions

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

Pros:

- \rightarrow demonstration of ERL with 6 paths at high current
- \rightarrow more space for experimental areas

Cons:

- \rightarrow about 30 meters of extra beam pipes (all other main elements are chosen to be compatible with both versions)
- \rightarrow a slightly larger footprint (28.6 m \rightarrow 29.9 m)

Alex Fomin

250 MeV version features three Straight Sections replacing Recombiner, Common Section 2, and Spreader

→ reduction of immediate expenses (time for the first results) (second cryo-module and 18 dipoles can be purchased later) (same as in 500 MeV version, but with half of the power)

→ additional expenses / manpower / shutdown time (rebuilding / recommissioning for the full power machine)

Lattice design. 500 MeV vs 250 MeV versions

All elements are compatible with both versions !

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

250 MeV version features three Straight Sections replacing Recombiner, Common Section 2, and Spreader

Туре	Name	Plane	Number		Function	Geometry	L, cm	Deflection, deg		B , T		l, m/	
			v.250	v.500				min	max	min	max	min	
1	Chicane 15cm	hor.		4	Injection and Dump /spreader/correctors/merger	R-Bend	15	0.2	15	0.0	940	100	
2	Chicane 30cm	hor.		2	corrector with double length and inverted field (w.r.t. Type 1)	R-Bend	30	0.4	2.3	0.0	940	100	
3	B-Com 3-lines	vert.	2	4	spreaders/recombiners for 3 energy lines (for all Arcs)	R-Bend	33	6.1	30	0.451	0.866	100	
4	B-Com 2-lines	vert.	2	4	spreaders/recombiners for 2 energy lines (for Arcs 3, 5 & 4, 6)	R-Bend	33	6.1	15.1	0.451	0.866	60	
5	R-Bend 33cm	vert.	8	16	spreaders (one energy line) for Arcs 3, 4, 5 & 6	R-Bend	33	6.1	15.1	0.451	0.873	20	
6	C. Dand 22am	vert.	6	12	spreaders (one energy line) for Arcs 1 & 2	S-Bend	33	3	30	0.472	0.907	40	
Ö	S-Bend 33Cm	hor.	1	8	180° turn of the Arc 1, 2, 3 (6 dipoles per Arc)	S-Bend	33	3	30	0.472	1.342	20	
7	S-Bend 66cm	hor.	1	8	180° turn of the Arc 4, 5, 6	S-Bend	66	3	30	0.453	1.323	20	
Total			60	78									

Total number of dipole (ERL only)

- 60 dipoles for 250 MeV version
- 78 dipoles for 500 MeV version

• the required magnetic field (and beam current) might vary by the factor 2-3 (and 2 respectively) within the same Type of dipole • "S-Bend 33cm" at the Spreader/Recombiner sections is in vertical orientation and in horizontal at the Arcs Is it possible to have the same dipole design?

04/04/2023

Alex Fomin

Dipoles for PERLE v2.1

Types of dipoles (optics v2.0 \rightarrow 2.1) 250 MeV vs 500 MeV

The dimensions of dipoles were slightly adjusted in order to reduce the variety of magnets \rightarrow In optics v2.1 there are 7 types of magnets

IJCLab, Orsay, France

Spreaders / Recombiners / Arcs 250 MeV vs 500 MeV

The ratio of the energies in 250 MeV version is very close to the one in Arcs 2,4,6:

All six arcs are chosen to be the same as in 500 MeV version (for compatibility)

lengths of dipoles are 33 cm (at arcs 1, 2 & 3) and 66 cm (at arcs 4, 5 & 6)

- all dipoles at arcs would be 33 cm (**18 shorter magnets**)
- arcs could be slightly shorter \rightarrow smaller footprint

Distance between the Arcs and Spreaders should be adjustable

- to form an optimal filling pattern, i.e. placement of accelerated bunches between the injected bunches
- tune phase adjustment between accelerations at RF cavities

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

 $\Delta E + E_0$: $2\Delta E + E_0$: $3\Delta E + E_0 \approx 1$: 1.92 : 2.84 $2\Delta E + E_0$: $4\Delta E + E_0$: $6\Delta E + E_0 \approx 1$: 1.96 : 2.92 \rightarrow we can use the same magnets, \rightarrow the lattice should be adjusted

If designing 250 MeV version from scratch (no compatibility with 500 MeV)

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

PERLE Collaboration meeting at CERN

250 MeV design of PERLE

Optics (comparison with 500 MeV version)

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

PERLE Collaboration meeting at CERN

500 MeV (Arc1, 89 MeV)

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

250 MeV (Arc1+Arc2, 89 MeV)

500 MeV (Arc2, 171 MeV)

500 MeV (Arc3, 253 MeV)

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

250 MeV (Arc3+Arc4, 171 MeV)

500 MeV (Arc4, 336 MeV)

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

500 MeV (Arc6, 500 MeV)

PERLE Collaboration meeting at CERN

250 MeV design of PERLE

Filling pattern (size of the Arcs)

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

PERLE Collaboration meeting at CERN

Forming the Filling Pattern. Injection and Pass 1

Pass 1

Injection

22/06/2023

- 7 MeV bunches are injected at Linac 1 section
- at the rate of $v_{inj} \approx 40 \text{ MHz}$ (every $t_{inj} = 25 \text{ ns}$)

target current is I = 20 mA

 \rightarrow charge of one bunch $Q \approx 500 \text{ pC} (3 \times 10^9 \text{ e}^-)$

RF Cavity ($v_{RF} = 801.58 \text{ MHz}$)

- \rightarrow spacing between injections $L_{inj} = 20 \lambda_{RF}$ $v_{\text{RF}} / v_{\text{inj}} = 20, \quad \lambda_{\text{RF}} \approx 34.7 \text{ cm}$
- Pass 1 Linac 1 \rightarrow Arc 1 \rightarrow Linac 2 \rightarrow Arc 2 7→ 89 MeV 89→171MeV

Pass 1 length (Arc1 + Arc2 + 2 Linac) $L_{Pass 1} = 167 \lambda_{RF}$ \rightarrow the 9th injected bunch is followed by the accelerated bunch shifted by $7 \lambda_{RF}$

Alex Fomin

Lattice design of 250 MeV version of PERLE

Forming the Filling Pattern. Passes 1 & 2

Passes 1–2

Injection

22/06/2023

7 MeV bunches are injected at Linac 1 section

at the rate of $v_{inj} \approx 40 \text{ MHz}$ (every $t_{inj} = 25 \text{ ns}$)

target current is I = 20 mA

→ charge of one bunch $Q \approx 500 \text{ pC}$ (3×10⁹ e⁻)

RF Cavity (*v*_{RF} = 801.58 MHz)

→ spacing between injections $L_{inj} = 20 \lambda_{RF}$ $v_{RF} / v_{inj} = 20, \lambda_{RF} \approx 34.7 \text{ cm}$

Pass 1Linac 1 \rightarrow Arc 1 \rightarrow Linac 2 \rightarrow Arc 2 $7 \rightarrow 89 \text{ MeV}$ $89 \rightarrow 171 \text{ MeV}$

Pass 1 length (Arc1 + Arc2 + 2 Linac) $L_{\text{Pass 1}} = 167 \lambda_{\text{RF}}$ \rightarrow the 9th injected bunch is followed by the accelerated bunch shifted by $7 \lambda_{\text{RF}}$

Alex Fomin

Pass 2 Linac $1 \rightarrow \text{Arc } 3 \rightarrow \text{Linac } 2 \rightarrow \text{Arc } 4$

171→253 MeV 253→336 MeV

Lattice design of 250 MeV version of PERLE

Forming the Filling Pattern. Passes 1–3

22/06/2023 Alex Fomin

20

Lattice design of 250 MeV version of PERLE

Forming the Filling Pattern. Passes 1–4

Passes 1–4

Injection ($v_{inj} \approx 40 \text{ MHz}$) I = 20 mA ($Q \approx 500 \text{ pC}$, $t_{inj} = 25 \text{ ns}$)

RF Cavity ($v_{RF} = 801.58 \text{ MHz}$) $L_{inj} = 20 \lambda_{RF}$ ($\lambda_{RF} \approx 34.7 \text{ cm}$)

Pass Lengths Linac 1 + Arc j + Linac 2 + Arc k

Pass	Arcs	$L_{\text{Arcs}}, \lambda_{\text{RF}}$	$L_{\text{Pass}}, \lambda_{\text{RF}}$	n inj	Δ, λ_{RF}	Δ <i>t</i> , µs
1	1+2	56 + 57	167	8	7	0.209
2	3+4	56 + 56	166	16	13	0.416
3	5+6	56 + 60.5	170.5	25	3.5	0.629
4						

Filling Pattern

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

Forming the Filling Pattern. Passes 1–5

Passes 1–5

Injection ($v_{inj} \approx 40 \text{ MHz}$) I = 20 mA ($Q \approx 500 \text{ pC}$, $t_{inj} = 25 \text{ ns}$)

RF Cavity ($v_{RF} = 801.58 \text{ MHz}$) $L_{inj} = 20 \lambda_{RF}$ ($\lambda_{RF} \approx 34.7 \text{ cm}$)

Pass Lengths Linac 1 + Arc j + Linac 2 + Arc k

Pass	Arcs	$L_{\text{Arcs}}, \lambda_{\text{RF}}$	$L_{\text{Pass}}, \lambda_{\text{RF}}$	n _{inj}	$\Delta, \lambda_{\rm RF}$	Δ <i>t</i> , µs
1	1+2	56 + 57	167	8	7	0.209
2	3+4	56 + 56	166	16	13	0.416
3	5+6	56 + 60.5	170.5	25	3.5	0.629
4	5+4	56 + 56	166	33	9.5	0.837
5						

Filling Pattern

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

Forming the Filling Pattern. Continues cycle

Lattice design of 250 MeV version of PERLE

Passes 1–6

Injection ($v_{inj} \approx 40 \text{ MHz}$) I = 20 mA ($Q \approx 500 \text{ pC}$, $t_{inj} = 25 \text{ ns}$)

RF Cavity ($v_{RF} = 801.58 \text{ MHz}$) $L_{inj} = 20 \lambda_{RF}$ ($\lambda_{RF} \approx 34.7 \text{ cm}$)

Pass Lengths Linac 1 + Arc j + Linac 2 + Arc k

Pass	Arcs	$L_{\text{Arcs}}, \lambda_{\text{RF}}$	$L_{\text{Pass}}, \lambda_{\text{RF}}$	n inj	$\Delta, \lambda_{\rm RF}$	Δ <i>t</i> , µs
1	1+2	56 + 57	167	8	7	0.209
2	3+4	56 + 56	166	16	13	0.416
3	5+6	56 + 60.5	170.5	25	3.5	0.629
4	5+4	56 + 56	166	33	9.5	0.837
5	3+2	56 + 57	167	41	16.5	1.046
6	1	56	_	_	_	-

Filling Pattern

22/06/2023

Alex Fomin

Distance between the arcs \rightarrow path length of the bunch between consecutive the injected bunches)

To reduce the risk of beam break-ups \rightarrow uniform filling pattern

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

PERLE Collaboration meeting at CERN

500 MeV

Full length of one turn: **(160 + Δ)** *λ*_{RF} $\Delta = 7, 6, 10.5, 6, 7$ chosen shift: \rightarrow 2.7 m at IPs (28.6 m total)

studies by A. Bogacz, P. Williams, R.Apsimon, and K. Andre

250 MeV

(180 - Δ) *λ*_{RF} Full length of one turn: $\Delta = 7, 7, 2.5, 7, 7$ optimal shift:

- \rightarrow bunches of lowest energies are separated (more important than for 500 MeV version)
- \rightarrow more detailed studies will follow)
- \rightarrow 29.9 m of total length

Lattice design of 250 MeV version of PERLE

 $(177.5 - 170.5) \lambda_{RF} / 2 = 3.5 \lambda_{RF} \approx 1.3 \text{ m} (\lambda_{RF} = 37.4 \text{ cm})$

Conclusions

Motivation of 250 MeV version of PERLE

- reduced immediate expenses (second cryo-module, 18 dipoles and 21 quads can be purchased later)
- demonstration of ERL with 6 paths at high current (same as in 500 MeV version, but with half of the power)
- more space for experimental areas

Main differences of 250 MeV

- a slightly larger footprint (28.6 m \rightarrow 29.9 m) shorter Arc6, but longer common section
- different filling pattern (optimal for low energies) more detailed studies will follow
- less quadruple magnets all compatible with current design (< 22 T/m < 34 T/m)

Benchmarking codes for lattice design and beam dynamics simulation

- Iongitudinal beam dynamic from 7MeV to 82MeV with field-map & calculation tool (work of Coline Guyot)

compatible with the upgrade to 500 MeV version (the same elements used, only about 30 meters of extra beam pipes)

additional expenses / manpower / shutdown time (rebuilding / recommissioning for the full power machine)

• small difference between Optim6 and MadX calculations of dipole fringe field effect (~1% correction of the quad field)

PERLE Collaboration meeting at CERN

Thank you

Alex Fomin

Lattice design of 250 MeV version of PERLE

PERLE Collaboration meeting at CERN

Lattice design. 500 MeV vs 250 MeV versions

500 MeV Shorter common area \rightarrow 28.6 m total length

Two cryo-modules (500 MeV)

- two common sections: Injector+Cryo and Cryo+Dump (~10m)
- two Spreader and two Merger sections
- extended Arc6 (hosting low-beta IRs)

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

One cryo-module (250 MeV)

- one common sections: Injector+Cryo+Dump (~12m)
 - one Spreader and one Merger section
 - low-beta IRs at the straight line (between Arcs 5 & 6)

~10.1 m (27 λ_{RF})

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

500 MeV \rightarrow 250 MeV

- Injection and Dump are on the same side
- Drifts around Dipole Correctors shortened by <u>1-2 cm</u>
- Length of the straight section

$$27\lambda \rightarrow 32\lambda$$
 ($\lambda = 37.4$ cm)

10.1 m → 12.0 m

	± 82 MeV									7 Me	V			
	Сгуо			Quad	d Corre	ctors			Dump		Dipol	e Corre	ectors	
	753	20	30	5	15	5	30	<u>~6.9</u>	~15	~10	~30	~10	~15	3
S	Straight sections 2,4,	6												

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

Quadrupole Magnets

Field, T and Field Gradient, T/m (500 MeV)

			10 cm	15 cm	10 cm	Sprea	aders		10 cm	10 cm	10 cm	10 cm		10 cm	15 cm	10 cm	Arcs	10 cm		10 cm
1	-0.45	0.47	-4.3	4.9	-5.0	-0.47	0.47		4.0	-3.4	-0.53	-0.42	0.48	-4.7	5.1	-4.9	0.48	2.9	0.48	-5.3
2	-0.87	0.9	-8.2	9.5	-9.5	-0.9	0.9		7.3	-6.1	-1.8	0.61	0.92	-9.2	9.7	-9.3	0.92	6.2	0.92	-11.2
3	-0.45	0.45	-29.7	28.0	-23.4	-0.45	0.45		-16.0	19.0	-27.2	9.6	1.36	-9.2	16.7	-13.5	1.36	4.5	1.36	-14.1
4	-0.87	0.87	-32.0	35.7	-37.9	-0.87	0.87		-7.6	10.6	-10.8	10.2	0.9	-18.6	28.4	-25.3	0.9	15.7	0.9	-20.1
5	-0.45	0.45	0.45	-0.45	10 cm	15 cm	10 cm		-9.5	20.0	-14.8	31.9	1.12	-27.2	36.4	-27.5	1.12	17.9	1.12	-29.2
6	-0.87	0.87	0.87	-0.87	-28.1	27.7	-16.4	iIR	-54.9	44.4	30.9	-46.2	1.34	-32.6	43.0	-32.5	1.34	21.2	1.34	-34.1

Number of quadrupoles vs gradient (250 MeV)

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

500 MeV: 144 quadruples (16 at saturation)

250 MeV: 127 quadruples (17 quads less) all are below the saturation (34.15 T/m)

Quadrupole Magnet (work by Rasha Abukeshek)

Multi-coil design

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

Parameters	Value
Height	250 mm
Yoke thickness	35 mm
Length	150 mm
Aperture radius	20 mm
Pole width	44 mm
Max. gradient	44.1 T/m
NI per coil	1750.7 A.turn
Pole tip field	0.685 T

✓ 15 cm quadrupole: design is

ready up to the 4th arc.

✓ arcs 5 and 6: design saturation.

Suggested solution: pole tapering

Filling pattern

	Τ	wo Cryomodules (500 MeV)	
After	<i>E</i> , MeV		Е,
Pass 0	7	Linac 7	
Pass 1	171	Arc2 Linac Arc1 171 89	
Pass 2	336	Arc4 Linac Arc3 336 253	-
Pass 3	500	Arc6 Linac Arc5 IPs 500 418	
Pass -2	336	Arc4 Linac Arc5 336 418	
Pass -1	171	Arc2 Linac Arc3	
Dump	7	Linac Arc1 7 89	

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

Filling pattern

Chosen for 500 MeV

shifts after each turn: $\Delta = 7, 6, 10.5, 6, 7$

- \rightarrow 2.7 m free space at IPs
- \rightarrow total length 28.6 m

Optimal filling pattern

shifts after each turn: $\Delta = 7, 7, 2.5, 7, 7$

- \rightarrow separation of lowest energies bunches
- → more important for 250 MeV version

Possible adjustments

- the lengths of each even Arcs can be reduced by the same value as each of all odd Arcs increased (and vice versa)
- length of any Arc can be adjusted by integer number of 20 ($\Delta \rightarrow \Delta \pm 20n$)
- all shifts can be inverted ($\Delta \rightarrow -\Delta$)

A1	57	4	7	
A2	56	3	1	7
A3	57	4	6	1
A4	55	2	0	6
A5	57	4	10.5	Ö
A6	59.5	6.5	10.5	

A1	57	4	7		
A2	56	3	/	7	
A3	57	4	7	1	
A4	56	3		7	
A5	57	4	0.5	1	
A6	58.5	5.5	9.0		

A1	57	4			
A2	55	2	6	0	
A3	57	4	7	6	
A4	56	3	1	7	
A5	57	4	165	1	
A6	72.5	12.5	10.5		

Transition between Optim6 and MadX

Optim6

MadX

g1S01 B[kG]=-4.506411 Angle[deg]=0 EffLen[cm]=2
b1S01 L[cm]=34.55752 B[kG]=-4.506411 G[kG/cm]=0
G1S01 B[kG]=-4.506411 Angle[deg]=30 EffLen[cm]=3.849

(all in vertical plane: TILT = $\pi/2$)

b1S01a:	DIPEDGE,	H=1.5151515,	E1=0,	FINT=0.5,	HGAP=0.02;
b1S01b:	SBEND,	L=0.3455752,	ANGLE= $-\pi/6$;	
b1S01c:	DIPEDGE,	H=1.5151515,	E1=-π/6,	FINT=0.5,	HGAP=0.02;

Matching

	Place	Inital	Matched
	qq1s01	-4.26551	-4.265 82
Field are diate	qq1s02	4.87074	4. 92812
T/m	qq1s03	-4.96549	-4.9654 7
	qq1s04	-5.28356	-5.28 686
	qq1s05	4.07249	4.07 428
α_X	center	-0.0 14401	0
<u>α_</u> y	center	0.000 17	0

1					
0.0459 <mark>3</mark>	1				
		1			
			1		
				1	
					1

The edge focusing of a dipole is not identical in two codes With a small correction (~1%) of the filed gradient in quadrupoles the lattice can be symmetrized

22/06/2023

Alex Fomin

Lattice design of 250 MeV version of PERLE

1				
	1			
		1		
			1	
				1

0

1	0.34558				
0	1				
		0.86603	0.33		-0.08842
		-0.75758	0.86603		-0.50000
		-0.5000 <mark>0</mark>	0.08842	1	-0.01556
					1

1		
-0.78 <mark>64</mark>	1	
		1
		0.87477

0.34558				
1				
	0.86603	0.33		-0.08842
	-0.75758	0.86603		-0.5000 <mark>1</mark>
	-0.50001	0.08842	1	-0.01556
				1

1					
-0.78 <mark>85</mark>	1				
		1			
		0.87477	1		
				1	
					1

Transition between Optim6 and MadX

							Ī
							50 -
Opti	im6					D. CM	- - -
g1S0	01 B[kG]=-4.50	06411 Angle	[deg]=0	EffLen[cm]=2	2	Dis	
b150	1 L[cm]=34.5	5752 B[kG]	=-4.506411 (G[kG/cm]=0			50
G1S0	1 B[kG]=-4.50	06411 Angle	[deg]=30	EffLen[cm]=3	3.849		-50 -
Mac	IX	(all	in vertical	plane: TILT	= π/2)		14 T
b1501	a: DIPEDGE, H=	1.5151515. E	1=0. FI	NT=0.5. HGAP:	=0.02;		12 -
b1S01	b: SBEND, L=	0.3455752, A	NGLE= $-\pi/6$;	, -			10
b1S01	c: DIPEDGE, H=	1.5151515, E	1=-π/6, FI	NT=0.5, HGAP	=0.02;		10 -
						Ε	8 -
	Matching					eta.	
		Place	Inital	Matched		<u>م</u>	6 -
		qq1s01	-4.26551	-4.265 82			4 -
	Field gradient	qq1s02	4.87074	4. 92812			
	T/m	qq1s03	-4.96549	-4.9654 7			2 -
		qq1s04	-5.28356	-5.28 686			
		qq1s05	4.07249	4.07 428			+

-0.0**14401**

0.000**17**

0

0

22/06/2023

<u>α_</u>χ

*α_*y

Alex Fomin

center

center

Lattice design of 250 MeV version of PERLE

also benchmarked with CODAL (Coline Guyot)

