From Cu to Nb: towards the fabrication of the dressed cavity H. Wang, R. Rimmer, G. Park, J. Henry, S. Soloman JLab C. Barbagallo, IJCLab

Progress on copper cavity

2-cell copper model

Do we need BLA's?

Dumbbell tuning for copper 5-cell

PERLE

I study: Carmelo

Other suitable HOM-damping schemes :

- •Rectangular waveguide dampers (A)
- •JLab-Type coaxial couplers (B)
- •TESLA-Type coaxial couplers (C)

•Add absorbers in cavity-interconnecting beam tubes (D)

•Coupling through Fundamental Power Coupler (E)

The 5-cell SRF cavity for PERLE

The first 801.58 MHz 5-cell elliptical Nb cavity has already been fabricated and successfully tested at JLab in October 2017 [1].

Cavity Parameters	Unit	Value
Frequency	[MHz]	801.58
Temperature	[K]	2.0
Cavity active length	[mm]	917.9
R/Q	[Ω]	523.9
Geometry Factor (G)	[Ω]	274.6
B_{nk}/E_{acc} (mid-cell)	[mT/(MV/m)]	4.20
$E_{nk}^{\mu}/E_{acc}^{\mu}$ (mid-cell)	[-]	2.26
Cell-to-cell coupling k _{cc}	[%]	3.21
Iris radius	[mm]	65
Beam Pipe radius	[mm]	65
Mid-cell equator diameter	[mm]	328
End-cell equator diameter	[mm]	328
Wall angle	[degree]	0
Cutoff TE ₁₁	[GHz]	1.35
Cutoff TM ₀₁	[GHz]	1.77

Final Vertical Test Result at 2K (Five-cell CRN5)

Cavity is now at FNAL for more tests

quench limit ~30 MV/m

Main post-processing steps

	Unit	CRN5
Bulk BCP	μm	216
High-T heat treatment	°C, hrs.	800, 3
Final EP	μm	30
HPR cycles		4
Low-T bake-out	°C, hrs.	120, 12

ERL roadmap/path forward

- Develop firm requirements for PERLE
 - BBU thresholds
 - Bunch parameters
 - Fill pattern
- Complete HOM study
 - Carmelo visits to Jlab
 - ---Determine if new end cells needed
- Use Cu models to verify design
- Finalize FPC interface
- Modify Jlab prototype cavity
- Fabricate prototype HOM couplers
- Vertical test at Jlab or CERN
- Integrate into He tank and SPL module
- Build or procure 4 production cavities

EIC Cooler 591 MHz 5-cell

- In CDR common design assumed for HSR, RCA and cooler ERL
- Baseline scaled from ESR 1-cell
 - Warm BLA HOM dampers
 - Symmetric FPC's
 - Long tapers
- ERL has the most 5-cell cavities
 - Lower HOM power
 - Tight space constraints
 - Evaluating other HOM options

591 MHz 5-cellcavity

EIC SRF cavity: 5-cell 591 MHz SRF cavity

- RCS requirements for 5-cell 591 MHz SRF cavity.
 - Total voltage 60 MV for 3 cavities.
 - Ramping of electron bunch energy requires cavity resonant frequency fast tuning up to 4 kHz in ~ 100 ms.
 - Couple bunch instability requires longitudinal impedance < 1.6 M Ω (bunch merging at 1 GeV).
 - Transversal bunch instability requires impedance < 12 MΩ/m.
- Scaled from the high current 650 MHz SRF linac cavity design for eRHIC (previous BNL version of EIC).
- A Copper 650 MHz cavity was built for HOM study.
- A 650 MHz Nb cavity was prototyped, processed and tested vertically up to 18.2 MV, limited by radiation.
- The 650 MHz Nb cavity serves as a practicing cavity for EIC, and we are reprocessing the cavity and retesting the cavity soon.

Frequency	591 MHz
R/Q	502 Ω
Geometry factor	273
Epk/Eacc	2.27
Bpk/Eacc	4.42 mT/(MV/m)
Coupling factor	2.8
Wall thickness	4.4 mm
Tuning range	+/- 174 kHz (+/-2mm)
Lorentz detuning factor	0077 Hz/(MV)^2
First modal frequency	> 107 Hz

Conclusions

- Good progress on copper model measurements
- Open questions:
 - Do we need beam line absorbers?
 - How much space is needed for helium tank attachment?
 - Do we need active cooling of antennas?
- Next steps:
 - Validate HOMS on 5-cell copper cavity
 - Prepare for implementing ports on Nb 5-cell
 - Plan for four production cavities
- Strong synergy with EIC cooler ERL

Back up

PERLE CM concept based on SNS cryostat

Jlab modular cryostat

Dimensions loosely based on SNS cryomodule

• RF test of **953 MHz** of 1-cell (*EIC1*) cavity

EIC1

HOM damping options

748 5 MHz II ah High Current

beam line absorber

(~1 kW)

up to 200 W at 80 K temperature

High-current cell shape

HZB

LEP-type LHC narrowband LEP-type Soleil D-coupler Soleil L-coupler for loop coupler for dipole modes for dipole modes longitudinal modes

antenna coupler

Demountable LEP-type coupler conceived for TESLA cavity

Present TESLA cavity hook coupler (based on a HERA coupler design) Final/sole C100 LL

HOM endgroup

2nd HG/LL

protoype HOM endgroup

Single-crystal sapphire RF feedthroughs

at 70 K temperature

KEKB multi-kW cavity beam line absorber Cornell injector beam line absorber for DESY inter-cryomodule beam line absorber for 100 W

F. Marhauser

New Jlab variants

Lmid

Endcell contours

• Modified end cell profiles

- Reduction of TM011 and TM012 modes
- Some increases in dipole modes

Case 1	Parameters*	JLab Case 1	JLab Case 2	JLab Case 3
Lend < Lmid	Frequency [MHz]	801.58	801.58	801.58
1 Deep-drawing die set	Number of Cells	5	5	5
	Material	Bulk Nb.	Bulk Nb.	Bulk Nb.
Case 2	Temperature [K]	2.0	2.0	2.0
Lend = Lmid	Cavity active length [mm]	917.911	935.536	935.536
2 Deep-drawing die sets	Mid-cell length [mm]	187.107	187.107	187.107
Case 3 Lend = Lmid	End-cell length [mm]	178.295	187.107	187.107
	R/Q [Ω]	524.25	520.63	522.70
	(R/Q)/(cell number) [Ω]	104.85	104.13	104.54
2 Deep-drawing die sets	Geometry Factor (G) [Ω]	274.505	201.490	278.112
	G∗(R/Q) [Ω²]	143909.2	149901.7	145369.1
	(R/Q)∗G/(cell number) [Ω²]	28781.85	29980.35	29073.83
	B_{pk}/E_{acc} (mid-cell) [mT/(MV/m)]	4.62	4.70	4.66
	E _{pk} /E _{acc} (mid-cell) [-]	2.38	2.30	2.27
	Iris radius [mm]	65	65	65
	Beam Pipe radius [mm]	65	65	65
	Mid-cell equator diameter [mm]	328	328	328
	End-cell equator diameter [mm]	328	328	325
	Wall angle [degree]	0	11.95	0
	Cell-to-cell coupling of mid cells [%]	2.93	2.92	2.91
	$k_{ }(\sigma_z = 3 \text{ mm}) \text{ [V/pC]}$	2.74	2.4	2.74
	Cutoff TE11 [GHz]	1.35	1.35	1.35
	Cutoff TM01 [GHz]	1.77	1.77	1.77

Frequency (GHz)

HOM coupler optimization

- HOM couplers are geometrically optimized according to the HOM spectrum ($Z_{||}$ and Z_{\perp})
- The S-parameters between the beam pipe port 1 and port 2 at the coaxial output of the coupler are studied.
- The DQW coupler exhibits a better monopole coupling for TM010 mode than the probe design.
- The hook coupler provides higher damping of the first two dipole passbands (TE111 and TM110)

Jlab 802.5 MHz prototype (F. Marhauser et. al.)

- Shared DNA with Jlab FEL, JLEIC cooler and CEBAF "C75" cavities
- 1-cell and 5-cell Nb prototypes
- 2x Cu 1-cells for thin film coating
- 2-cell Cu "kit" for further HOM development
- End group design was to come from CERN
- Most parts available for PERLE if useful
- Dies and fixtures available at Jlab.

193.[193] R.A. Rimmer, W. Clemens, D. Forehand, J. Henry, P. Kneisel, K. Macha, F. Marhauser, L. Turlington, and H. Wang. Recent Progress on High-Current SRF Cavities at JLab. *Pro- ceedings of the International Particle Accelerator Conference (IPAC'10)*, 2010.

