



#### PERLE COLLABORATION MEETING CERN

June 22, 2023



FACULTÉ

DES SCIENCES

Ъ

Université de Paris



**Gilles OLIVIER** 



- Program general considerations
- Genesis of a choice
- ESS elliptical cryomodule presentation
- Components to be reused, modified, not reused
- Cavity, Cold Tuning System & HOM couplers
- Cryogenic and thermal aspects



#### SUMMARY

#### - Program general considerations

- Genesis of a choice
- ESS elliptical cryomodule presentation
- Components to be reused, modified, not reused
- Cavity, Cold Tuning System & HOM couplers
- Cryogenic and thermal aspects



#### PERLE @ ORSAY

- 5 cells elliptical cavities at 801,58MHz
- 2 cryomodules composed of 4 superconducting cavities

#### FIRST MILESTONE

- 1 cryomodule prototype
- Complete cryomodule ready for test
- Limited cryogenic plant
- Full RF power on one cavity

#### SECOND MILESTONE

- Integration of the cryomodule in the PERLE phase 1 layout
- Operation at 250MeV

#### THIRD MILESTONE

- Integration of the second cryomodule
- Final PERLE layout (phase 2)
- Operation at 500MeV







- Program general considerations
- Genesis of a choice
- ESS elliptical cryomodule presentation
- Components to be reused, modified, not reused
- Cavity, Cold Tuning System & HOM couplers
- Cryogenic and thermal aspects



#### WICH DESIGN?

Recently, several projects worldwide have designed cryomodules for elliptical cavities with a cavity configuration (number, length and diameter) which is very close to the one required for PERLE

| Design performed at IJCLab. | PROJECT       | Number of<br>cavities | Number of cells | Frequency<br>(MHz) | β            |
|-----------------------------|---------------|-----------------------|-----------------|--------------------|--------------|
|                             | PERLE à Orsay | 4                     | 5               | 802                | 1            |
|                             | ESS           | 4                     | 6<br>5          | 704                | 0,67<br>0,85 |
|                             | SPL           | 4                     | 5               | 704                | 1            |
|                             |               |                       |                 |                    |              |

Design performed at IJCLab & CERN Some components available



Opportunity to reuse the design and the components



#### MAIN DIMENSIONAL CHARACTERISTICS OF THE CAVITIES



| CHARACTERISTICS                  | ESS (704MHz)              | SPL (704MHz)                 | PERLE / JLAB (802MHz) |
|----------------------------------|---------------------------|------------------------------|-----------------------|
| Coupler to coupler length (mm)   | 1500                      | 1490,5                       | -                     |
| Length flange to flange (mm)     | 1258,8 (Mβ) / 1316,3 (Hβ) | 1397,3                       | 1292,5                |
| Coupler to flange dimension (mm) | 115 (Mβ) / 130 (Hβ)       | 116,4                        | 96,7                  |
| Cells external diameter (mm)     | 378,9 (Mβ) / 385,7 (Hβ)   | 386,5                        | 335                   |
| Beam port internal diameter (mm) | 135,8 (Mβ) / 139,8 (Hβ)   | 129,8 / 139,8 (coupler side) | 130                   |
| Flanges internal diameter (mm)   | 135,8 (Mβ) / 139,8 (Hβ)   | 79,7 (CF100)                 | 130 (CF160)           |
| Vacuum valve diameter            | CF100                     | CF63                         | tbd                   |
| Coupler internal diameter (mm)   | 100                       | 100                          | 100                   |
| Coupler flange                   | D100                      | CF100                        | CF100                 |
| Beam axis to ext. coupler flange | 374,25                    | 403                          | tbd                   |



#### SIMILAR FEATURES

**Gilles OLIVIER** 

CERN proposed to re-use the existing SPL short cryomodule prototype either as it is or replacing the 704 MHz cavities by the perle referenced 802 MHz cavities



- Design of the cryomodule performed by IPNO and updated by CERN.
- Vacuum vessel and parts of cryogenic lines (not welded) delivered.

#### 2 innovative points:

- the cavity string directly supported by the power coupler and with dedicated inter-cavity support features.
- integrates a full length demountable top lid, enabling the cavity string assembly from the cryomodule top



#### **MAIN ISSUES**

- Beam vacuum valve not compatible with beam vacuum (vatterfly valve instead of all metal gate valve)
- Second bursting disk needed
- Internal space very crowded. Difficulties to find additional space for HOM couplers and their cooling
- Cryogenic lines to be adapted. Potentially important refurbishing for HOM active cooling
- Uneasy access to cold tuning system (top cover to be removed)
- New cover needed (second bursting disk, new feedthroughs and instrumentation for HOM, connection to valve box?)
- Is the valve box location compatible with beam spreaders?



Reuse of the SPL cryomodule very difficult Heavy constraints from the beginning, inducing bad compromises

# 2<sup>nd</sup> OPTION: ESS CRYOMODULE (ELLIPTICAL CAVITIES)



- More transversal space between cavities
- No supporting system between cavities
- More space between tank and thermal shield
- Easy access to Cold Tuning System (trap doors)
- Blocking system for transportation
- Design performed at IJCLab
- Design validated (prototypes and ongoing series)

01200

886

- CEA in charge of the In-kind contribution for medium and high beta section (elliptical cavities)
- Design of the cryomodule (common for Mβ and Hβ) by IJCLab (excepted cavities string)
- Components of the Mβ prototype purchased and delivered by IJCLab
- Assembled and tested at CEA Saclay
- Tested at ESS Lund

ESS has agreed to provide the cryomodule components to IJCLab for its first Perle cryomodule



ESS prototype cryomodule in LUND test stand



- Program general considerations
- Genesis of a choice
- ESS elliptical cryomodule presentation
- Components to be reused, modified, not reused
- Cavity, Cold Tuning System & HOM couplers
- Cryogenic and thermal aspects









# No means at IJCLab for the cryomodule assembly (clean rooms size)

Positioning of the whole assembly inside the vacuum vessel by the mean of jacks

Finishing operations: coupler/vessel interface, helium pipes welding, closing of the thermal shield ...







**Gilles OLIVIER** 



- Program general considerations
- Genesis of a choice
- ESS elliptical cryomodule presentation
- Components to be reused, modified, not reused
- Cavity, Cold Tuning System & HOM couplers
- Cryogenic and thermal aspects



### **COMPONENTS TO BE REUSED**



#### And also:

- 2 UHV all metal gate valves (???)
- 2 helium valves
- Angle vacuum valves
- Thermal shield multi layer insulation + parts of cold mass
- Instrumentation (temperature gauges, level gauges, pressure gauges)
- Wiring and connectors



#### Pressure safety devices:

- Bursting disks (x2)
- Controlled valve
- Safety valve

#### 2023, June 22



#### **COMPONENTS NOT REUSED OR MODIFIED**



Magnetic shield (not reused)



Inter cavities bellows & Cold/warm transitions (not reused)



Supporting system to be adapted to Perle cavity. Perle tank diameter < ESS diameter



#### **CRYOGENIC LINES**





- Program general considerations
- Genesis of a choice
- ESS elliptical cryomodule presentation
- Components to be reused, modified, not reused
- Cavity, Cold Tuning System & HOM couplers
- Cryogenic and thermal aspects



#### CAVITY

- First draft
- Design Jlab
- 2+2 HOM couplers
- HOM coupler basis cooled by Lhe
- Compatibility with ESS Cryomodule: positions of main coupler & helium ports, link to the supporting system...





### **COLD TUNING SYSTEM**



Tuner for:

- ESS double spoke
- Myrrha single spoke

- Compact design
- Allows enough space for HOM couplers
- Moved back from the helium tank
- Need of adaptation for flange and tank interfaces
- Need of adaptation for bigger beam pipe
- Pay attention to the overall stiffness
- Designed, tested and validated at IJCLab

| Cavity          | Туре                 | Fréquency<br>(MHz) | Stiffness<br>(KN/mm)  | Sensitivity<br>(KHz/mm) |
|-----------------|----------------------|--------------------|-----------------------|-------------------------|
| Myrrha          | Simple spoke         | 352,21             | 16                    | 181                     |
| ESS             | Double spoke         | 352,21             | 20                    | 135                     |
| ESS medium beta | Elliptical (6 cells) | 704,42             | 1,3 (theor.) to 1,6   | 215                     |
| ESS high beta   | Elliptical (5 cells) | 704,42             | 2,82 (théor.) to 3,54 | 197                     |

Easy access via the trap doors -



Maximum bulk of the tuner





# HOM POWER EXTRACTION / DISSIPATION

- Tens of Watt to be extracted.
- RF losses (<10mW @ 2K) on the coupler port (antenna & cylinder)
- What about HOM power not extracted (beam pipe absorbers)?

Thermal loads due to RF cable:

- Static conduction through the RF cable
- Dynamic loads in the RF cable
- Intermediate thermalizations needed à 2 & 50K
- RF coax cable thermal behaviour to be analysed.

Cooling possibilities:

- Thermalization 2/4K of the antenna
- Thermalization 2/4K of the coupler sleeve
- Active cooling 2/4K of the antenna
- Active cooling 2/4K of the coupler sleeve



Loop coupling with active cooling (Courtesy of CERN/HG team)

2K thermalization (linked to diphasic pipe) (Courtesy of CERN/HG team)

#### **Gilles OLIVIER**



- Program general considerations
- Genesis of a choice
- ESS elliptical cryomodule presentation
- Components to be reused, modified, not reused
- Cavity, Cold Tuning System & HOM couplers
- Cryogenic and thermal aspects



### HEAT LOSSES FOR CRYOGENIC LINES

| ESS medium beta                               |        | Calculated<br>Medium beta |        |                     | Measured<br>MB cryom. |  |
|-----------------------------------------------|--------|---------------------------|--------|---------------------|-----------------------|--|
| Heat balance                                  | 5      | 50K                       |        | 5K                  |                       |  |
|                                               | Stat.  | Dyn.                      | Stat.  | Dyn.                |                       |  |
|                                               |        |                           |        |                     |                       |  |
| Cavity string                                 |        |                           |        |                     |                       |  |
| Beam losses (0.5W/m)                          |        |                           |        | 3.25                |                       |  |
| RF losses                                     |        |                           |        | 20                  | 24 to 40              |  |
| Radiations (14m <sup>2</sup> )                |        |                           | 0.7 (ŀ | -IB: 24,4           | )                     |  |
| Cold to warm transition (x2)                  | 3      |                           | 2      |                     |                       |  |
| Supporting system                             | 6      |                           | 0.25   |                     |                       |  |
| Helium piping                                 |        |                           |        |                     |                       |  |
| Supporting system                             | 0.2    |                           | 0.4    |                     |                       |  |
| Bursting disks (x2)                           | 3      |                           | 0.15   |                     |                       |  |
| Helium valves (x2)                            | 1      |                           | 0.2    |                     |                       |  |
| Safety relief valves (x2)                     | 0.03   |                           | 0.03   |                     |                       |  |
| Thermal shield radiations (21m <sup>2</sup> ) | 31.5 - |                           |        |                     | → 70 to 80            |  |
| Couplers (x4)                                 |        |                           |        |                     |                       |  |
| Sleeve cooling (4*23 mg SHe at 5K)            |        |                           | 4      | (4)                 |                       |  |
| Radiation from antenna to cavity              |        |                           | 2.8    |                     |                       |  |
| Instrumentation, heaters and actuators        | 1.5    |                           | 2.7    |                     |                       |  |
| TOTAL Static load                             | 46.23  |                           | 13.23  |                     | → 16 to 20            |  |
| TOTAL Dynamic load                            |        |                           |        | 23.25               |                       |  |
| TOTAL                                         | 46     | 5.5                       | (HB    | : 27,65)<br>HB: 41) |                       |  |

Static & Dynamic 2/4K heat loads for 4 cavities



Heavy figures for helium consumption at 2K. Dimensioning of the low pressure circuit to be assessed



### THANK YOU FOR YOUR ATTENTION