»The LHeC Overview and Status«

B.J. Holzer for the LHeC and FCC-he Study Group

The Large Hadron-Electron Collider at the HL-LHC

LHeC Study Group

CERN-ACC-Note-2020-0002 Version v1.0 Geneva, April 29, 2020

Published in J.Phys. G

LHeC Layout and Main Parameters:

	Electrons
Energy (GeV)	50
N_p /bunch (10 ¹¹)	2.2
N _e /bunch (10 ⁹)	3.1
bunch distance (ns)	25
I _e (mA)	20
Emittance (nm)	0.31
Beam size @ IP (µm)	6/6
Luminosity (cm ⁻² s ⁻¹)	9*10 ³³
wall plug power: 100 MW	

LHeC Layout and Main Parameters:

	Electrons	
Energy (GeV)	50	
N _p /bunch (10 ¹¹)	2.2	
N _e /bunch (10 ⁹)	3.1	
bunch distance (ns)	25	
I _e (mA)	20	
Emittance (nm)	0.31	
Beam size @ IP (µm)	6/6	
Luminosity (cm ⁻² s ⁻¹)	9*10 ³³	
wall plug power: 100 MW		

three sizes proposed 1/3 ... 1/4 .../ 1/5 LHC

\$ < ---> beam energy

LHeC: What has been done:

high Q sc. RF system Jefferson Lab Prototype design of a 5 cell sc. cavitiy crucial test: PERLE

Linac Focusing Structure: 130 ° FODO

Alex Bogacz

Return Arcs Alex Bogacz

Spreaders / Recombiners Alex Bogacz / K. Andre isochronous optics for arc 1,2,3 keep the bunch length short low emittance optics arc 4,5,6 $\mathcal{H}_x = \gamma_x(\eta_x)^2 + 2\alpha_x\eta_x\eta'_x + \beta_x(\eta'_x)^2$

Non-dispersive (i.e. "achromatic") vertical deflection system

LHeC: What has been done:

The Interaction Region / Beam Separation

K. Andre

Minimum of power & crit. energy of synchrotron light emission

Emittance & Beam Beam Effect Kevin Andre'

IR Optics for minimum Optics mismatch

Energy Recovery Performance: $\approx 98 \%$... why not 100 % ??

Synchrotron Radiation & MDI

Kevin Andre', Peter Kostka D. Hanstock, A. Kumar, D. Clayton, C. Monaghan, Laurent Forthomme

$$P_b(L,\theta) = \frac{e}{6\pi\varepsilon_0} \gamma^4 I_e \frac{\theta^2}{L}$$

ALICE 3 / LHeC Interaction Region

... it is a Three Beam Problem

Concurrent LHeC operation with IP1,5,8

Alternating operation ALICE 3 / LHEC

T.v. Witzleben

keep the non-colliding proton beam in the same magnet structure —> Separate the non-colliding beam during LHeC operation —> Aperture need —> develop a colliding p1-optics

-> develop a relaxed p2-optics

T.v. Witzleben

T.v. Witzleben

Colliding Proton Beam

Matched Beam Optics p & e

 $\sigma_x^*(e) = \sigma_x^*(p) \qquad \sigma_y^*(e) = \sigma_y^*(p)$

T.v. Witzleben

Colliding Proton Beam

Matched Beam Optics p & e

$$\sigma_x^*(e) = \sigma_x^*(p) \qquad \sigma_y^*(e) = \sigma_y^*(p)$$

Colliding p-beam:

ATS compatible, concurrent to IP1, 5, 8 alternating LHeC & ALICE

 $\beta^* = 35 \ cm$

—> LHC Standard: NbTi

ATS: quadrupoles in IR2 —> Lumi IP1 ... and the other way round ??? ... and IR2 —> IR 3 ???

Tiziana v. Witzleben

Position [m]

Proton Beam Optics ATLAS LHeC/ALICE CMS LHCb 20000 Save Aperture for the colliding beam β_x* B1 15000 $\beta_v * B1$ ר 10000 r "Relaxed" optics for non-colliding proton beam $\beta_x * B2$ $\beta_v * B2$ -> reduced aperture need in Triplet Quadrupoles! 000 5000 10000 15000 20000 25000

0

Tiziana v. Witzleben

separate 2nd proton beam to avoid (parasitic) encounters

Tiziana v. Witzleben

separate 2nd proton beam to avoid (parasitic) encounters

Distance between the two proton beams in their shared aperture in σ of the colliding beam.

Tiziana v. Witzleben

Save Aperture for the colliding beam "Relaxed" optics for non-colliding proton beam -> reduced aperture need in Triplet Quadrupoles!!

Can we do that ? —> techn. feasibility ...

Yes & No

==>YES

Interaction Region: Protons ... it's a three beam problem

Matthew Smith

hor Orbit: Separation at IP

vert. Orbit: crossing angle at IP

Interaction Region: Protons ... it's a three beam problem

Matthew Smith

hor Orbit: Separation at IP

vert. Orbit: crossing angle at IP

compensate influence of e-quads on p-optics & orbit

Interaction Region: Protons ... it's a three beam problem

Matthew Smith

 $\beta_{p1}^{*} = 35 \ cm$ $\beta_{p2}^{*} = 21 \ m$ -

hor Orbit: Separation at IP

vert. Orbit: crossing angle at IP

compensate influence of e-quads on p-optics & orbit

re-match of p-optics (2 beams) and correction of p-orbit

Interaction Region: Luminosity

Tiziana v. Witzleben

 $N_e = 3.1 \cdot 10^9$ $\varepsilon_{pn} = 2.5 \ \mu m$ $\varepsilon_0 = 3 \cdot 10^{-10} rad m$ $\beta_{x,y} = 35 \ cm$

 $\sigma_{xp}^* = \sigma_{yp}^* 10 \ \mu m$

$$L = \frac{N_e \cdot N_p \cdot n_b \cdot f_{rev} \cdot \gamma_p}{4\pi \cdot \epsilon_p \cdot \beta_p^*} \quad * \Sigma_i H_i$$

hourglass factor, $H_1 \approx 0.9$ pinch or beam-beam factor, $H_2 \approx 1.3$ > $\Sigma_i H_i \approx 1$ filling factor $H_3 = H_{coll} \approx 0.8$

 $L \approx 2 \cdot 10^{33} cm^{-2} s^{-1}$

Luminosity: pushing for the maximum

ATS design

Tiziana v. Witzleben

Luminosity: pushing for the maximum

Tiziana v. Witzleben

- —> larger beam size in triplet
 —> larger crossing angle p1 / p2
 —> more aperture need
 —> stronger matching quadrupoles (Q7 ... Q12)
 - —> new magnet technology for the triplet: Nb₃Sn

 $L \approx 2 \dots 5 \cdot 10^{33} cm^{-2} s^{-1}$

Luminosity: pushing for the maximum ?

Tiziana v. Witzleben Sophie Gresty

$$\beta_{x,y} = 35 \ cm \longrightarrow \beta_{x,y} = 15 \ cm$$

- ... not the easiest task
- *—> larger beam size in triplet*
- *—> larger crossing angle p1 / p2*
- -> more *aperture need*
- -> stronger matching quadrapoles (Q7 ... Q12)
- -> new magnet technology for the triplet ... and beyond: Nb₃Sn
- --> additional chromatic contribution
- -> sextupole strength limited

-> ATS towards IR3 ... which is the momentum cleaning section, where the ratio β/D and μ are fixed --

—> dynamic aperture problems

LHeC 2019, E. Cruz / R. Martin L*=15m, 1 beam, DA limited

Synchrotron light power in arcs 🗸

- absorber design
- cooling

Synchrotron light power in arcs 🗸

- absorber design
- cooling

Machine Detector Interface

• geometry of synchrotron light fan

 \checkmark

- absorber design
- protection of acc. magnets

Synchrotron light power in arcs 🗸

- absorber design
- cooling

Machine Detector Interface

- geometry of synchrotron light fan
- absorber design
- protection of acc. magnets

Front-to-End tracking ✓

• ERL performance / emittance preservation (including beam-beam effect & decelaration mode)

Synchrotron light power in arcs 🗸

- absorber design
- cooling

Machine Detector Interface

- geometry of synchrotron light fan
- absorber design
- protection of acc. magnets

Front-to-End tracking ✓

• ERL performance / emittance preservation (including beam-beam effect & decelaration mode)

Design for prototypes of special machine elements <---

- half-quadrupole in IR
- spectrometer dipole in spreader

Synchrotron light power in arcs 🗸

- absorber design
- cooling

Machine Detector Interface

- geometry of synchrotron light fan
- absorber design
- protection of acc. magnets

Front-to-End tracking ✓

• ERL performance / emittance preservation (including beam-beam effect & decelaration mode)

Design for prototypes of special machine elements <---

- half-quadrupole in IR
- spectrometer dipole in spreader

Proton Optics —> *pushing Luminosity* ✓

Optics & Lattice of LHeC nearly done, looks very promising

Optics & Lattice of LHeC nearly done, looks very promising ==> we need a proof of principle

Conclusion

Optics & Lattice of LHeC nearly done, looks very promising ==> we need a proof of principle we need PERLE

Dynamic Aperture

$$\beta_{x,y} = 35 \ cm \longrightarrow \beta_{x,y} = 15 \ cm \dots \ 10 \ cm \dots$$

One beam situation: $L^* = 15 m$

Dynamic Aperture

$$\beta_{x,y} = 35 \ cm \longrightarrow \beta_{x,y} = 15 \ cm \dots \ 10 \ cm \dots$$

One beam situation: $L^* = 15 m$

LHeC Workshop Chavannes, 2019

ATS extended to Arc 23

DA Studies for
$$\beta^* = 10$$
cm

$$Q' \propto \frac{(L^*)^2}{\beta^*}$$

second proton beam ?? DA ? Δp/p cleaning ? Standard: L* = 21m