800 MHz developments at CERN

R. Calaga, S. Udongwo, S. G. Zadeh CERN, Rostock University Jun 23, 2023

- A short history of (11+ yrs..)
- Present status for FCC

Special thanks: U. Van-Rienen & E. Jensen

2012-15, LHeC Workshop

In the context of the LHeC studies, the frequency choice of 800 MHz was identified as best compromise (2012-15) with a proposal to build a **test facility** for ERL demonstration similar to LHeC

https://indico.cern.ch/event/183282/contributions/318618/attachments/249525/348968/ERL and Frequency Choice1.pptx

2012-15, LHeC Workshops

ERL Facility Cavities

R. Calaga, CERN, Jun 25, 2015

https://cds.cern.ch/record/1519112?ln=en http://cds.cern.ch/record/2020926?ln=en

5-Cell RF Parameters

Parameter	Ver 1 (Scaled)	Ver 2
Frequency [MHz]	801.58	801.58
Number of cells	5	5
Active cavity length [mm]	935	935
Voltage [MV]	18.7	18.7
$E_p [MV/m]$	45.1	48.0
\mathbf{B}_p [mT]	95.4	98.3
R/Q [Ω]	430	393
Cell-cell coupling (mid-cell)	4.47%	5.75%
Stored Energy [J]	154	141
Geometry Factor $[\Omega]$	276	283
Field Flatness	97%	96%

For example, at 18.7 $\ensuremath{\mathsf{MV}}\xspace/\mathsf{cavity}$:

Cavity dynamic losses (assume Rs = 7-10 n Ω): ~22-31 W

Gradient reach limited by heat load & extraction (~ 1W/cm2 for piping)

Lots to be gained from high Q than small improvements in cavity geometry

2015, LHeC Workshop

2015, LHeC Workshop

ERL, RF Power

"Zero" Beam Loading $P_{g} = \frac{V^{2}}{R/Q} \cdot \frac{\Delta f}{f} \qquad \{Q_{opt} = \frac{1}{2} \cdot \frac{\omega}{\Delta \omega}\}$

Recall: static detuning w/o ER ~50 Hz, highest R/Q not essentially best

RF powering, proper dimensioning & appropriate bandwidth is key for a robust ERL

$\mathrm{SPS}~800~\mathrm{MHz}~\mathrm{IOTs}$

800 MHz IOTs (~60 kW) for the SPS 3^{rd} harmonic system

Chain of 8 IOTs installed powering two cavities in the SPS

2016, LHeC/PERLE Workshop

2016, LHeC Workshop

2017-18

A new Jlab design built under FCC-collaboration

Parameter Table for LHeC Cavity Candidates

Parameter	Unit	Value	Value	Value
Cavity type		JLab	CERN Ver. 1 from CERN-ACC-NOTE-2015 R Calaga, 5/28/15	CERN Ver. 2 from CERN-ACC-NOTE-2015 R. Calaga, 5/28/15
Frequency	MHz		801.58	
Number of cells			5	
Lactive	mm	917.9	935	935
Long. loss factor (2 mm rms bunch length)	V/pC	2.742	2.894	2.626
$R/Q = V_{\rm eff}^2/(\omega^*W)$	Ω	523.9	430	393
R/Q/cell	Ω	104.7	86.0	78.6
G	Ω	274.6	276	283
R/Q·G/cell		28788	23736	22244
Eq. Diameter	mm	328.0	350.2	350.2
Iris Diameter	mm	130	150	160
Tube Diameter	mm	130	150	160
Eq./Iris ratio		2.52	2.19	2.19
Wall angle (mid-cell)	degree	0	12.5	12.5
Epk/Eacc (mid-cell)		2.26	2.26	2.40
B_{pk}/E_{acc} (mid-cell)	mT/(MV/m)	4.20	4.77	4.92
k _{cc}	%	3.21	4.47	5.75
N^2/k_{cc}		7.78	5.59	4.35
cutoff TE11	GHz	1.35	1.17	1.10
cutoff TM ₀₁	GHz	1.77	1.53	1.43

tt of FCC-ee studies, 2017-19

- Minimize intrinsic surface losses (peak fields) & field flatness
- Separation between first two HOMs (TE_{111}, TM_{110}) minimized
- The end-cell aperture increased to reduce Q_{ext} for the first monopole/dipole pass band

UROS, 5-cell 801.58 MHz

		PERLE	FCC-tt
<u>https://cds.cern.ch/record/2776785</u> (S. G. Zadeh thesis)	Injection energy [MeV]	5-10	Тор-ир
	Maximum beam energy [GeV]	1	182.5
	Bunch charge [pC]	320	36850
	RMS Bunch Length (SR/BS) [mm]	3	1.97/2.54
	Beam Current [mA]	15	5.4
	Bunch spacing [ns]	25	3396
	RF frequency [MHz]	801.58	400.79 / 801.58
	RF Voltage	300 MV/pass	10.93 GV
	Duty factor	CW	CW

Cavity Comparisons (2018-19)

Parameters	UROS. FCC-ee	CERN LHeC v2	Jlab v2	10 ⁴
Frequency [MHz]	801.58	801.58	801.58	10 ³
Number of Cells	5	5	5	-10^{2}
Material	Bulk Nb.	Bulk Nb.	Bulk Nb.	۲ ۲
Temperature [K]	2.0	2.0	2.0	$= \begin{bmatrix} 10^{1} \\ 2 \end{bmatrix}$
R/Q [Ω] *	521	393	523.9	$\underline{}$ 10 ⁰
Geometry Factor [Ω]	273.7	283	274.7	10 ⁻¹
G.R/Q [Ω]	142597	111219	143915	10-2
B_{pk}/E_{acc} (mid-cell) [mT/(MV/m)]	4.2	4.92	4.2	0.5
E_{pk}/E_{acc} (mid-cell)	2.0	2.4	2.26	
Cavity Active Length [mm]	919.5	935	917.9	
Iris radius [mm]	60	80	65	10 ⁴
Beam Pipe radius [mm]	78	80	65	10 ³
Wall angle (mid-cell) [degree]	100	102.5	90	ਓ 10 ²
Cell to cell coupling of mid cells [%]	2.25	5.75	3.21	kΩ/n
Field Flatness [%]	99	96	-	$\boxed{\begin{array}{c} 1 \\ \hline 1 \\ 1 \\$
$m{k}_{ }(\sigma_z=2\mathrm{mm})$ [V/pC]	3.37	2.63	2.74	$\underline{\underline{N}}$ 10 ⁰
Cutoff TE ₁₁ [GHz]	1.126	1.10	1.35	10 ⁻¹
Cutoff TM ₀₁ [GHz]	1.471	1.43	1.77	10 ⁻²
Cryo dynamic losses / cavity (E _{acc} =18.7 MV & Q ₀ =10 ¹⁰) [W]	67.1	89	66.7	0.5
Wall plug power / cavity (COP=800 W/W) [kW]	53.7	71.2	53.4	

Note: Impedances are for bare cavity and the peaks are not fully resolved.

*Note: Input power not to be forgotten ($Qe \sim 8 \times 10^6 \rightarrow$ 40-60 kW, detuning $\sim 50 Hz$)

Coaxial HOM Couplers

- The notch effect of all couplers is tuned to 801.58 MHz for the monopole coupling.
- The DQW HOM coupler can deliver a high value of transmission at both first higher order dipole and monopole band.

Impedances are for bare cavity and the peaks are not fully resolved.

https://cds.cern.ch/record/2776785 (S. G. Zadeh thesis)

Damping schemes for the tt running

Five damping schemes are compared in the following slides. An extra "high freq" waveguide in addition to co-axial couplers is very effective for high power extraction with short bunches

https://cds.cern.ch/record/2776785 (S. G. Zadeh thesis)

Cernv2, Jlab and UROS cavity impedance with coaxial HOM coupler

*There are different versions of Jlab cavity. For further information see "Next Generation HOM damping" by F. Marhauser

https://indico.in2p3.fr/event/19904/ (PERLE HOM meeting)

HOM power, UROS Cavity (2019)

- The HOM power in a non-resonant excitation case, is approximated by $P_{HOM} = k_{||}q_b I$
- If beam spectral line falls on the HOM resonance of the cavity then the voltage builds up in the cavity and the HOM power can rise significantly. In such a case, the HOM power can be estimated from $P = \frac{R}{2} O_{1} L_{2}^{2}$

P _{res}	=	\overline{Q}	Q_L	<i>I</i> ₀ ⁴
		Y		

	PERLE	tt
5-cell cavity at 800 MHz		
Bunch Length [mm]	3	1.97/2.54
P [kW]	0.01	1.09/0.89

Non-resonant HOM power calculated from $P_{HOM} = k_{||}q_b I$

	PERLE	tt	
5-cell cavity at 800 MHz			
f [*] [GHz]	P _{res} [W]		
1.49	16	8	
2.36	20	10	

* Resonance excitation power of two monopole modes with the

highest longitudinal impedance

Joachim-Jungius-Förderpreis 2022 (01.07.2022)

v.I.: Tom Streicher (GFUR Vorsitzender), Preisträgerin Dr. Victoria Aladin (MNF), Preisträger Dr. Shahnam Gorgi Zadeh (IEF), Prof. Udo Kragl (Prorektor für Forschung und Wissenstransfer) Foto: Thomas Rahr / ITMZ **Dr.-Ing. Shahnam Gorgi Zadeh** (Institut für Allgemeine Elektrotechnik, Betreuerin Prof. Dr. rer. nat. habil. Ursula van Rienen) wird am 1. Juli 2022 mit dem Joachim-Jungius-Förderpreis 2022 der Gesellschaft der Förderer der Universität Rostock e.V. (GFUR) für seine Dissertation "Accelerating cavity and higher order mode coupler design for the Future Circular Collider" ausgezeichnet. Die weiteren Preisträger sind Dr. Victoria Aladin und Dr. Lukas Kölsch (beide Mathematisch-Naturwissenschaftliche Fakultät).

Thesis completed with a special mention of **summa cum laude**!

Can we improve further the UROS 5-cell design for ttbar and full energy booster ? (Thesis subject of S. Udongwo)

C3795

Compromise the fundamental mode performance for HOM improvement. The goal is longitudinal "HOM free" multi-cell cavity which should also reduce the overall HOM power for short e-bunches

HOM Figures of Merit Comparison

Variable	FCCUROS5 (2019)	C3795 (2023)
k_{\parallel} [V/pC] $(SR,\sigma_z=$ 1.67 mm)	3.784	2.632
k_{\perp} [V/pC/m] (SR, σ_z =1.67 mm)	3.539	2.017
P_{HOM} [W] $(SR, \sigma_z = 1.67 \text{ mm})$	1115	698

Beam Current [mA] = 10mA, Bunch Intensity N_b [10¹¹] = 2.26

FCC-ee tt studies, 2023

Plot of static and dynamic power loss, no of cav and input power (P_{in}) vs E_{acc}

20

C3795 HOM performance, FCC-ee

Cavity + HOM coupler assembly longitudinal impedance plot

Cavity + HOM coupler assembly transverse impedance plot showing first dipole passband modes

Jlab Cavity at FNAL (high Q_0)

Next Steps, Prototype

5-cell cavity at FNAL for testing (<u>S. Posen</u>)

- Test cavity as received
- with mid-T bake, EP, mid-T bake \rightarrow test
- Nb₃Sn coating trials (tbc)

Single cell copper cavities at CERN for Nb-Coating

- Nb coating on Cu single cell in preparation
- <u>Recent studies</u> on 1.3 GHz seamless cavities shows promising results & Q-slope mitigation with HIPIMS coating

Final Comments

It took more than a decade to convince the accelerator community that 800 MHz (and nearby frequencies) are optimum for high current machines CW machines

PERLE made the step forward to embark on this journey & will likely set the standard for such technology

In my personal opinion, this will be a necessary step to implement an eventual FCC-ee/eh with 800 MHz

Loss Factor vs Bunch Length

*Remember: 400 \rightarrow 800 MHz: approx x1.5 increase in # of cells

https://accelconf.web.cern.ch/SRF2015/papers/frba04.pdf