
Gearing up for C++
May 10th , 2023

Jonathan Hucker

1

2 Who am I?

● Completed undergrad at Trent University in 2021.

● Currently in final semester of master’s at Queen’s.

● In my research I investigate photoluminescent and scintillation behaviours

of various samples at low temperatures. I’m very passionate about my

research so here is some more info:

● Studied samples include common materials used in the construction of

low background rare event search detectors, coatings used in these

detectors, and scintillating crystals.

● Currently writing a report and analyzing data from an experiment

involving an inorganic crystal scintillator Cs
2
ZrCl

6
.

● While this scintillator exhibits excellent light-yield and energy resolution,

its a very slow scintillator, emitting light on the order of 100s of

microseconds.

● I enjoy camping, baking, and hockey (go Nucks!)

3 How did I get here?

● In my undergraduate career, I took two classes on programming. The first

was a first year introductory programming class on C# which was a

mandatory class to take for physics students. The second was

computational physics, a second year physics/comp-sci class focused on

applications of python through a physics lens.

● Six months ago, I knew next to nothing about C++. The script used to

preform initial analysis of our results was written in C++ and worked okay

for fast fluorescent measurements.

● In the fall I worked on a slow scintillating crystal, which required a more

careful treatment during data analysis and some modifications to our

analysis procedure.

● In principle python could do the job, however the data to be analyzed was

16 raw binary files of 20GB in size each. Preforming initial data analysis

on these files was far too slow (~2-3 hours per file). Hence, I was inspired

to learn C++ to tackle analyzing these large files.

4 Goals for this seminar

● Go over the basics:

● Ensure you can compile a simple script.

● Understand the different objects in the language.

● Learn how to find resources for C++ code for when

something breaks or you encounter something

unfamiliar.

● Collaborate as a team to create a functioning program

out of nothing but a blank notepad (or which ever

code editor you use)

5 Rough Outline:

1) The classic: Hello World and the

typical framework

2) Data types, escape sequences

variables and functions

3) Loops and conditional

statements (if and switch)

4) Arrays and Vectors

5) Read and write files

6) Intro to structs

7) Small groups activity (time

permitted)

Personal Goals:

1) Provide you the tools and

resources needed to

continue learning C++

2) Break the ice with coding

in C++

3) Collectively learn together

to build better code.

6 The Basics

● Compiler: the compiler transforms the written

C++ code to a version that can be understood

by the computer.

● Linker: if you are compiling a code with

multiple C++ files, the linker combines these

compiled files.

● Executable: a fancy word for application such

as google or photoshop. If you were an app

developer using C++, this is the final product

to be used by the consumers.

Source: https://icarus.cs.weber.edu/~dab/cs1410/textbook/1.Basics/compiler_op.html

7 The Classic Hello World Main function: nothing is input into main
and the return of main is an int type

Return statement. Here, return 0 simply implies
“the program executes properly”.

Statement: Something you ask the
computer to do before finishing the
program

8 #include <iostream> ? Standard input-output stream (iostream).
Contains a library of useful objects.
Similar to python packages

std::cout and std::endl are objects apart
of the iostream library.

std::cout can be thought of as print() in
python

std::endl, short for ‘end line”, creates a
new line.

std is referred to as a namespace

There are many other useful libraries to include, here are some
that I have found useful:

cstdlib: C Standard General Utilities Library
ctime: C Time Library
chrono: Time library (different from ctime)
fstream: input/output file stream
All Standard Libraries
Open source C++ libraries

https://cplusplus.com/reference/iostream/
https://cplusplus.com/reference/cstdlib/
https://cplusplus.com/reference/ctime/
https://cplusplus.com/reference/chrono/
https://cplusplus.com/reference/fstream/fstream/
https://en.cppreference.com/w/cpp/header
https://en.cppreference.com/w/cpp/links/libs

9 How do I compile this program?

● To compile our program from a terminal, we must first navigate
to the directory where the program is stored.

● Using the g++ compiler, we can compile the program by typing
g++ followed by our file name: g++ helloword.cpp.

● While it doesn’t initially appear that anything has happened, an
executable file is generated and can be executed by typing
./a.out (or a.exe in windows).

● Rename your executable using the -o flag.
● Other flags exist as well, read about them here.

● To compile with a specific version of C++, such as C++ 11, you
must add this to the end of your command: -std=c++11

https://bytes.usc.edu/cs104/wiki/gcc/

10 using namespace std?

● Namespaces are a way to organize functions and

objects.

● In python, the numpy package package both

contain the function sqrt(). If you wish to import

both math and numpy, and then call the sqrt()

function, which function is called?

● Namespaces in C++ alleviate this problem similar

to how when calling sqrt, we typically call it as

np.sqrt() or math.sqrt() to specify which library the

function originates from.

● In this tutorial, you are welcome to use the

namespace std, though I will continue to

include the std prefix.

● From what I gather, it is prefered/industry

standard to typically not use namespaces to

eliminate the possibility of confusion.

11 Int, float, long, oh my! ● Both C++ and python use data types. There are many different data

types available, left are some of the most common types. Here are a lot

more.

● The string data type, missing from this list, must be included in the header

of your script to use it and needs to be prefixed by std::

● More info on the limits of the various data types can be found here.

Below is an example.

Source:https://www.codeguru.com/cplusplus/cplusplus-data-types-variables-for-beginners/

https://cplusplus.com/doc/tutorial/variables/
https://cplusplus.com/reference/climits/

12 \n ? Escape Sequences
● You may have noticed in the previous example that

contained in the string of characters was \n. You may

have also encounter this symbol in python.

● \n is an example of an escape sequence which creates

a new line.

● Provided is a table of various escape sequences.

More information on escape sequences can be found

here.

● The most common that I use include \n, \t, \’ and \”.

● My favourite is \a.

https://www.ibm.com/docs/en/rdfi/9.6.0?topic=set-escape-sequences

13 Variable Declaration and Initialization
● There are two steps to

stating a variable in C++

● Declaration:

● What is the identifier

(name)? What is the data

type of this variable?

● Initialization:

● What value should the

variable take?

Can you identify all the new elements in this code?

14 Define and Call Your Own Function

● Similarly to how you declare and

initialize a variable, you can

declare and initialize your own

functions.

● Functions have have arguments

or no arguments.

● Functions can have a return or

have no return (void).

● Typically a function is defined

when you need to run a block of

code multiple times.

15 Making a game!

● At this stage, we know enough of the absolute

basics to start to build a more involved code. Let’s

create a game!

● The objective of the game will be to guess a

randomly generated number, super fun!

● Our game will have a main menu, hints, and high

scores!

● We will build this code together, introducing new

topics as we go.

● We will first start with making the main menu using a

do while loop.

16 Main Menu: Do While Loop
● Let’s start building our main menu. In many games, it is useful to be able to return to a main menu. One way we

can set this up is with a do while loop.

● Very straight forward loop: do something while condition is true

● Notice the semicolon after the while statement.

● Do while loops always iterate at least once.

New code just dropped!
● Loops:

● Do
● Operators:

● ++
● !=

17 Main Menu: Conditional Statement: Switch
● A switch is a conditional statement that will execute a block of code if a case is true

● Useful for small number of cases

New code just dropped!
● Conditional:

● Switch statement
● Break statement
● Return statement...but

somewhere else!

Occurs after
break statement

18

● Our game is pretty

boring, let’s add to it.

● We want to generate a

random number and

have the user guess

that number.

● Let’s accomplish this

using another function.

● We will use an if

statement to check if

the user guesses the

correct number.

Play Game Function: if statements

Pssst: don’t forget to call the function!

19

● Do you notice that

each subsequent time

you play the game, it

gets easier?

● The random number

generated is

technically not

random.

● You need to specify

the seed to start the

sequence of random

numbers.

● We can do this in main

with srand.

● Need to #include

<ctime>

srand

Bonus point: any guesses as to what time(NULL)
represents? Hint: try printing this value.

20

● Let’s allow our user to

play the game until

they guess the correct

integer.

● To do this, let’s use a

while loop.

● The while loop will run

a block of code so long

as the condition is

true.

● Don’t forget to ensure

that the loop can end

(unless you want an

infinite loop!)

The while loop

21

● Whoa there, not so fast!

 There is a distinct

difference.

● A do-while loop will

execute the code block

before checking the

condition whereas a

while loop checks the

condition first before

compiling.

● Therefore a do-while

loop will always execute

at least once.

Wait...the do while and while loops look the same?

22

● It will be useful to have an idea of what values already been guessed. Let’s

introduce a method to store multiple values.

● There are C style arrays and C++ vectors (technically called vector

containers)

● Arrays have the following syntax: int myArray[100];

● Int: specifies the data type allocated to each element in the array

● myArray: the identifier of the variable

● [100]: denotes the size of the array (indexing starts at 0)

● Arrays are statically sized, you cannot change their size once created.

● Vectors have the following syntax: std::vector<int> myVector;

● std::vector: the object from the standard library (must #include <vector>)

● <int> specifies the data type for each element in the vector

● myVector: identifier of the vector

● Vectors are dynamically sized, you can change their size and do not

need to specify their size upon declaration.

Arrays and vectors

23Store guess as a vector
● First we must include the vector class

(yes vector containers are technically

classes, more on this later).

● Next we must declare our vector and

give it a useful identifier.

● Recall that vectors are dynamic, you

can change their size.

● To fill our vector, we will call the function

.push_back() from our vector guesses

and input our guess.

● Python equivalent would be .append()

to a list.

● .append() is referred to as a method

whereas .push_back() is a function.

How could we instead use an
array?

24

● To inform the user of guesses they

have already tried, we can print

each element of our vector using a

for loop.

● Syntax is as follows:

● for(init; condition; increment)

● for(int i = 0; i < 10; i++)

{std::cout << i << std::endl;}

● Let’s use a for loop to iterate over

elements of our vector (call a

specific element of a vector with

square brackets [])

● Your increment does not need to be

++, (eg., i--, i = i + 20, i *=)

For loop

25

● The iostream library allowed for user interaction through

a terminal input and outputs

● The ifstream will allow for inputs and outputs from a file.

● Imagine you have an experiment with multiple

parameters that are allowed to change such as pressure,

temperature, voltage, etc...

● If these parameters need to be input into your C++ script,

it is inefficient to hard code variables every time these

variables change.

● Values stored in an excelsheet or text file can be read by

C++, allowing for quick modification of our input

parameters.

● ifstream and ofstream are combined into one library

called ifstream (more information here).

Intro to fstream

istream

ofstreamifstream

ostream

std::cin

outputinput

std::cout

https://cplusplus.com/reference/fstream/ifstream/

26

● Let’s write a function that outputs our correct guess to a text file.

● We will need to include fstream. The return of our function will be void and will need one argument, the correct guess.

● To generate a file type object, we need to declare it from its class and initialize it with a file name.

● From here, use file as you would with cout.

● Although not strictly necessary, closing the file is good practice.

● Once you build this function, call it in Play_Game() when the user guesses the correct guess. Does your text file

generate? What happens if you run the code multiple times?

fstream: write to textfile

27

● You may have noticed that each time your run your program, the file is overwritten.

● We can prevent this std::ios_base::app

● There are other opening modes to consider. std::ios_base::trunc will delete the contents of the file upon opening.

● Here is a reference for other opening modes.

fstream: write to textfile: append

https://cplusplus.com/reference/ios/ios_base/openmode/

28

● Reading multiple values from a file requires a

bit more effort. Here is one way to do it:

● This code snippet prompts the user for a

filename and stores this information in a string

called filename.

● file is an variable of the ifstream class. We

then open the file with file.open().

● We will use a vector of strings to save the data

● The while loop will continue executing until the

end of the file. Recall that while loops execute

until the condition is false.

● std::getline will store the value of the ith

iteration of the loop in string line.

● We then close the file and then print the

previous guesses. Don’t forget to call the

function!

fstream: read from textfile

How could we improve/safeguard the code?

29 Classes and Structs
● Recall that our vectors had some functions associated with them: push_back(), size(). Vectors are a class, meaning

any object created from them will have the same associated functions.

● You can create your own classes with their own properties/functions.

● Instead of creating a class, we will create a struct (very similar idea, difference is how we call them).

● Structs are useful if you require a custom data type to meet a specific purpose.

NOTE: SEMICOLON AFTER
BRACE

30 Using our struct
● Once we declare a variable as a custom struct, we can call the different attributes of our struct. See the following.

Back in the
main() function

31 Time to collaborate!

● Download the text file titled dataFile.txt

● Write a script that accomplishes the following tasks:

● Create a function that reads in the data.

● Create a function that calculates the average of the entries 0 to 199,

then 200 to 399 entries, and so on until entry 999. There will be 5

averages. Subtract the average from each corresponding 200

entries (e.g., subtract the first average from the first 200 entries,

subtract the second average from the second 200 entries...).

● Create a function that outputs the modified data to a text file.

● Call these three functions from the main function

● Afterwards, create a short python script that visualizes the data.

32

● Calculate the average within

each window.

● Subtract this value from each

data point in the

corresponding window.

● Return these values to a

textfile.

● Visualize your results in

python.

33

● There are many topics to continue to explore in C++. Here is a

small list of some places to go next:

● Classes and Structs

● Passing by reference and pointers

● Constructors and Destructors

● Additional C++ libraries

● Header file + implementation file + main file -> makefile

● Make your own C++ scripts!

● Create your own namespaces

● Root!?!

● Inheritance and polymorphism???

What’s next?

34

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

