

May 10th 2023 Summer AstroParticle Workshop

Scintillating Bubble Chamber

Dark matter evidence

There is lots of evidence for dark matter (DM)

- Early and late cosmology (CMB, LSS)
- Clusters of galaxies
- Galactic rotation curves

No idea about its composition at the particle level

3

Dark matter : the famous candidate

- <u>Constraints from astrophysics and searches for new particles:</u>
 - CDM (Cold Dark Matter) :

→ Not relativistic

- Non-baryonic
- Massive & stable particle
- Neutral particles
- Very weakly interacting
- Not Standard particle model
- → New physics!

Probing dark matter through gravity

Favorite candidate is Weakly Interacting Massive Particles (WIMP).

Candidates for Dark Matter

Figure adapted from arXiv:1707.04591

How to detect directly WIMP?

Direct Detection :

Elastic scattering on nuclei

→ Look for the recoil of the target nucleus.

- Wimp interacts with nucleus
 - → Nuclear Recoils
 - → Detectable via different channels

(XENON1T, LZ, PANDAX, DEAP-3600, PICO, EDELWEISS ...)

Just to give you an idea !!

The recoil created by the WIMP is comparable to a grain of salt that touches the ground with a force divided by 100 billions.

Very low energy to detect !! --> Hyper sensitive detectors !!

Direct Detection Experiment

Landscape of Dark Matter

Ultimate background

Ultimately: solar, atmospheric and supernovae neutrinos

The coherent neutrinos scattering (CEvNS) will be the limiting irreducible background creating a "**neutrino floor**" for all DM experiments.

CE*v***NS** can produce nuclear recoil and they cannot be shield

- <u>Strategy</u> :
 - \rightarrow Directionality channel or add it in current technology
 - \rightarrow Dedicated CE_vNS calibration using nuclear reactor

CHALLENGES FOR DIRECT DARK MATTER SEARCHES

Enemies : muon-induced neutrons, gammas, neutrons, intrinsic betas decays, alpha background, neutrinos !

Université **m** de Montréal

‡ Fermilab

WIVERSITY OF ALBERTA

UC Santa Barbara

Bubble Chamber

<u>SBC:</u> Scintillating Bubble Chamber

- <u>Active liquid</u>:
 - 10 kg total of Liquid Argon doped with Xenon
 - Xenon acts as a wavelength-shifter (178nm)
- <u>Detector</u>:
 - Superheated liquid within a pressure controlled vessel cooled at 130° Kelvin (-143.15°C)
- <u>Read-out</u>:
 - Piezo-electric sensors/ pressure control unit.
 - Cameras \rightarrow excellent position reconstruction.
 - Silicon Photomultipliers: SiPMs

Detector principle

Bubble chamber principle

- Bubble chambers are filled with superheated fluid:
- \rightarrow Meta-stable state.
- \rightarrow Should not be liquid at this pressure and temperature
- Regulated by temperature and pressure:
- → Each condition of temperature and pressure correspond to an energy threshold.
- → This is the Seitz energy threshold
 → Heat spike model
- Bubble chambers are threshold detectors

→ Energy deposited > Energy threshold

Impressive Background Rejection

Multiple Neutron Scattering

But no energy information!!

Scintillating Bubble chamber

Mixing technologies:

Bubble chamber (PICO) + Scintillation (DEAP, DarkSide-20k) → See talk C. Moore → See talk Friday by S. Manecki

Combine the Electron Recoil discrimination of bubble chambers and the event-by-event energy resolution.

Liquid-noble Bubble chambers didn't seem to work...

• 1956 – Glaser finds:

- No bubbles in pure xenon even at ~1 keV threshold (with gamma source)
- Normal bubble nucleation in 98% xenon + 2% ethylene (scintillation completely quenched)
- 1962 (Stump, Pellett),
 1981 (Harigel, Linser, Schenk)
 - Tracks seen in pure argon, but only at extreme (O (10) eV) energy threshold.

Phys.Rev. 102, 586 (1956)

Scintillation suppresses Bubble nucleation!

M-C.Piro 18

Xenon Bubble Chamber

Proof of principle:

• 30g Xenon Bubble Chamber

- Seitz thresholds as low as 0.5 keV
- Evidence of nucleation by Nuclear Recoils below 5 keV
- No sign of Electron Recoils nucleation at any threshold

Scintillation suppresses Bubble nucleation!

New Detector: The SBC

The SBC Strategy

• Two detectors to be built for low-mass dark matter and CEvNS

SBC-Fermilab - Phase 1

Build and commission the first detector at Fermilab.

SBC-SNOLAB - Phase 2

Build and install a second detector at SNOLAB for low-mass dark matter searches.

SBC-CEvNS - Phase 3

Upgrade and install detector from (1) at a reactor site for CEvNS studies (currently considering Laguna Verde Mexico).

Status and Timeline

The detector

O(10 kg) LAr contained within two fused silica jars, inner and outer jars.

Hydraulic piston controls the inner jar position
Piezoelectric sensor and SiPM

The detector

O(10 kg) LAr contained within two fused silica jars, inner and outer jars.

• It's happening now!

New camera system for SBC (UofA)

- The current camera produce too much radioactivity.
- Design of the relay lens system and a dedicated test bench has been built to test the optimal distance between lenses, the quality and resolution of the image in argon temperature.

SBC Experimental Design

 The full inner assembly: placed inside a stainless-steel vacuum jacket vessel

New Detector: The SBC

The Physics Reach

- Two detectors to be built for low-mass dark matter and CEvNS
- Energy threshold 100 eV

Precision study of **reactor CEvNS** interactions for Argon and Xenon

Collaborating with UNAM to identify reactor site

- Critical to know the response of bubble chambers to nuclear recoils to interpret the dark matter results.
- Known that the Seitz model underestimates the response threshold (PICASSO, COUPP, SIMPLE, PICO, SBC).

• Parametric fit is usually used on neutron calibration data

- New results obtained and published!
 Phys. Rev. D 106, 122003, arXiv: 2205.05771
- A global fit of the simulations to the data performed to calculate the nuclear recoil bubble nucleation efficiency for PICO experiment

M-C.Piro

28

Nucleation efficiency and Bubble growth

- Currently applying this method to the Xe SBC detector with Xenon
- \circ $\,$ Will be applied also for the SBC detector $\,$

 However it is clear that there is a need to improve the theory of the bubble formation and growth in superheated liquids to understand the nucleation efficiency!

Summary

Liquid argon bubble chambers

- o Scalable, electron recoil blind,
- GeV-scale WIMP
- Reactor CEvNS detection technique.
- 10kg LAr active mass is currently under construction at Fermilab.
- Goal is 100 eVnr threshold.
- A GeV-scale WIMP search will be conducted at SNOLAB.
- A future 1 ton-scale detector will have sensitivity down to the solar neutrino floor: → SBC-CEvNS

Thank you!

What is essential is invisible to the eye ... for particle physicists is <u>Dark matter</u>!

@Le petit prince

