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Slides:  

➡ What is ROOT


➡ Installation


➡ Basic usage


➡ Introductions to basic classes and concepts


Exercises (with demo):  

➡ Basic ROOT command line usage


➡ Using macros


➡ Making plots


➡ Data storage and input/output


➡ Physics data simulation


Repo with example scripts and solutions from this 

tutorial 

➡ https://github.com/willp240/rootTute/ 

Format of this Tutorial

This tutorial won’t cover everything. But it will 
hopefully get you started, and point you to where 

to go for more information

https://github.com/willp240/rootTute/
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ROOT is software toolkit for: 

➡ Data plotting (multiple 1 to N-dimensional histogram and graph formats)


➡ Data storage (data structures for event based analyses, I/O of any C++ object)


➡ Data analysis (math functions, fitting to histograms, statistical treatment)


➡ Data processing 


It gives you everything you need to perform a physics analysis! 

It’s used by almost every high energy physics experiment 

➡ Also now being used in other areas of physics, and industry


➡ Your joining a user base of tens of thousands!


➡ Thousands of ROOT plots in scientific publications


What is ROOT
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Example Plots
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More Example Plots
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More Example Plots
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ROOT is mostly written in C++  

➡ Object orientated data handling and analysis framework


➡ C++ interpreter


➡ Python bindings (PyRoot)


ROOT is Open Source Project 

➡ Available under LGPL license


➡ First release 1995


➡ Many new releases since then!


ROOT is fully cross platform 

➡ Windows


➡ MacOS


➡ Unix/Linux 

ROOT Code
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ROOT Primer: 
➡ https://root.cern/primer/


ROOT User Guide: 
➡ https://root.cern/manual/ 


ROOT Tutorial: 
➡ https://root.cern/tutorials/ 


ROOT Class Reference: 
➡ https://root.cern/doc/master/ 


ROOT Forum: 
➡ https://root-forum.cern.ch/ 


General Coding Help: 
➡ http://www.cplusplus.com/doc/tutorial/ 

➡ https://stackoverflow.com/ 

Resources
28 year history + tens of thousands of users 

 =  plenty of resources!

https://root.cern/primer/
https://root.cern/manual/
https://root.cern/tutorials/
https://root.cern/doc/master/
https://root-forum.cern.ch/
http://www.cplusplus.com/doc/tutorial/
https://stackoverflow.com/
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Latest release is 6.28.04 

➡ https://root.cern/releases/release-62804/ 


First install dependencies 

➡ https://root.cern/install/
dependencies/ 


Download and install ROOT  

➡ Get source code, or pre-compiled 
binaries for your operating system


➡ If using code: ./configure && make


➡ source bin/thisroot.sh


More instructions  

➡ https://root.cern/install/ 

Installation

https://root.cern/releases/release-62804/
https://root.cern/install/dependencies/
https://root.cern/install/dependencies/
https://root.cern/install/dependencies/
https://root.cern/install/
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➡ A class is a combination of methods (functions) and attributes (data 

values)


➡ An object is an instance of a class


➡ Members (methods and attributes) can be accessible from outside the 

class (public), or only with other methods of the same class (private)


➡ Members accessed with className.memberName()


➡ Classes can inherit from other classes


➡ Protected members cannot be accessed outside the class, but 

can be accessed by inherited classes


➡ Use . to access members of classes, -> to access members of 

pointers to classes

C++ && Object Orientated Code 
Reminders

https://www.tutorialspoint.com/
cplusplus/cpp_inheritance.htm 

https://www.tutorialspoint.com/cplusplus/cpp_inheritance.htm
https://www.tutorialspoint.com/cplusplus/cpp_inheritance.htm
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Now let’s get started!
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ROOT has a built in C++ interpreter, CLING 

➡ C++ interactive shell 


➡ Just in time compilation

Command Line Interpreter
Commands 

‣ Exit: .q


‣ Show list of commands: .?


‣ Shell commands: .! Eg. .!ls


‣ Execute a macro: .x <file_name>


‣ Load a macro: .L <file_name>


‣ Compile a macro: .L <file_name>+


‣ .help for more!

ROOT as a calculator

Declaring and Using ROOT Classes

Interpreting C++
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➡ Running multiple lines of code on 

the command line can be time 

consuming 

➡ Instead write macros in a text editor, 

and this gets interpreted my CLING

Macros

Run from Outside ROOTLoad and Run

Options 

‣ -b batch mode (no graphics)


‣ -l don’t show ROOT banner


‣ -q exit on completion


‣ -h show other options! 
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Use ACLiC (Automatic Compiler of Libraries for CLING) 

➡ Faster execution. For longer code this outweighs overhead of 

compilation time


➡ If rapidly editing and rerunning, scripting often quicker than recompiling 

each time

Compiling Macros
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Basic Classes / 
Namespaces

15Will Parker 15
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The TMath namespace provides a selection of common mathematical variables and 

functions 

➡ Mathematical constants


➡ Trigonometric and other mathematical functions


➡ Statistical functions eg. mean + RMS of arrays, probability distributions


➡ Specialised mathematical functions eg. Bessel functions


➡ https://root.cern.ch/doc/master/namespaceMath.html 

TMath

https://root.cern.ch/doc/master/namespaceMath.html
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Bin variables and plot their frequency 

➡ Histograms are commonly used in high energy physics to 

visualise data 

➡ TH1D is 1D histogram of doubles (TH1F for floats, TH1I for 

integers)


➡ TH1D (“name”, “title”, nBins, minX, maxX)


➡ Can have uniform or variable bin sizes


➡ Can Add, Divide, Scale etc. 


➡  https://root.cern.ch/doc/master/classTH1D.html 

Histograms
Alternative Filling Methods

Extracting Information

https://root.cern.ch/doc/master/classTH1D.html
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We can also bin in 2D (and higher!) 

➡ TH2s inherit from TH1s 


➡ https://root.cern.ch/doc/master/classTH2.html 

2D Histograms

https://root.cern.ch/doc/master/classTH2.html
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Draw histograms in different ways using different options: h->Draw(“option”)


➡ Table shows options for all 1D and 2D histograms


➡ Many more options for specific histogram types


➡ https://root.cern.ch/doc/v608/classTHistPainter.html 

THistPainter

https://root.cern.ch/doc/v608/classTHistPainter.html
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This is just a selection!

TH2D Draw Options
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TCanvas is an area where objects can be drawn 

➡ Draw() makes a default TCanvas, but 

declaring your own gives you more control


➡ TCanvas can be divided into multiple pads


➡ https://root.cern/doc/master/classTCanvas.html 

TCanvas

https://root.cern/doc/master/classTCanvas.html
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ROOT GUI
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TGraphs are a collection of distinct points 

➡ TGraph: x-y plot with no error bars


➡ TGraphErrors: x-y plot with error bars


➡ TGraphAsymmErrors: x-y plot with asymmetric error bars


➡ https://root.cern.ch/doc/master/classTGraph.html 

TGraphs

https://root.cern.ch/doc/master/classTGraph.html
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Drawing
TAttMarker

➡ SetMarkerStyle( int )


➡ SetMarkerSize( int )


➡ SetMarkerColor( TColor )


➡ https://root.cern.ch/doc/master/classTAttMarker.html  

TColor

TAttLine
➡ SetLineStyle( int )


➡ SetLineWidth( int )


➡ SetLineColor( TColor )


➡ https://root.cern.ch/doc/master/classTAttLine.html 

➡ https://root.cern.ch/doc/master/classTColor.html  

https://root.cern.ch/doc/master/classTAttMarker.html
https://root.cern.ch/doc/master/classTAttLine.html
https://root.cern.ch/doc/master/classTColor.html
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TColor Palettes
 Many different Palettes to choose from


➡ gStyle->SetPalette( int )


➡ gStyle refers to current TStyle


➡ https://root.cern.ch/doc/master/classTStyle.html 


➡ Can define your own TStyle and palette

https://root.cern.ch/doc/master/classTStyle.html
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TColor Palettes

➡ With a badly chosen palette, 
the eye can see boundaries 
that aren’t really there


➡ Also be careful to be colour 
vision deficiency friendly!
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TFunctions
TF1, TF2, TF3 classes for 1, 2, & 3 dimensional functions 

➡ Can be “built-in” TFormula or user defined function


➡ https://root.cern.ch/doc/master/classTF1.html 

https://root.cern.ch/doc/master/classTF1.html
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Fitting
Functions can be fit to histograms and graphs 

➡ Can be “built-in” TFormula or user defined function


➡ Fit parameters are printed to screen


➡ Use TF1::SetParameter( parameter_number, 

parameter_value) for initial guess


➡ https://root.cern.ch/root/htmldoc/guides/users-
guide/FittingHistograms.html 

https://root.cern.ch/root/htmldoc/guides/users-guide/FittingHistograms.html
https://root.cern.ch/root/htmldoc/guides/users-guide/FittingHistograms.html
https://root.cern.ch/root/htmldoc/guides/users-guide/FittingHistograms.html
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FitPanel
Can also use GUI to perform fit
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TLegend
TLegend class can be drawn onto TCanvas 

➡ Each TLegendEntry is made of a reference to a ROOT 

object, a text entry, and an option of a graphical attribute


➡ https://root.cern.ch/doc/master/classTLegend.html 


➡ Let’s also tidy up axis labels and plot title while we’re at it

https://root.cern.ch/doc/master/classTLegend.html


11.05.2331Will Parker 31

TFiles
C++ objects can be written to disk in ROOT 

➡ All ROOT objects have Write() method


➡ Conventionally write to files with “.root”


suffix


➡ Open on command line with:


➡  root file.root


➡ Or within C++ code as:


➡ TFile* f = new TFile("filename.root","OPEN");


➡ Code snippet examples in following slides


➡ https://root.cern.ch/doc/master/classTFile.html

‣ “OPEN” = open an existing root file


‣ “CREATE” = create a new root file


‣ “RECREATE” = create a new root 

file, overwrite if it already exists


‣ “UPDATE” = append to existing file

https://root.cern.ch/doc/master/classTFile.html
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TTrees
TTrees are a data structure for storing large amounts of the same objects 

➡ TTrees are optimised for reduced disk space and fast access 

➡ TTrees can have many entries containing the same structure of objects


➡ Often one entry == one event


➡ A TTree contains a list of TBranches


➡ A TBranch contains a TLeaf


➡ A TLeaf contain the data type and the data


➡ Analogous to TTree being a table, each entry is a row, each TBranch is a column


➡ https://root.cern.ch/doc/master/classTTree.html


➡ Also have:


➡ TNtuple: a TTree containing only floats


➡ TNtupleD: a TTree containing only doubles


➡ TChain: a collection of files containing TTrees

https://root.cern.ch/doc/master/classTTree.html
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Writing TTrees
Making a TTree and writing it to a TFile 



11.05.2334Will Parker 34

Writing TTrees
Writing to a TTree from a data file 

data.txt
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Reading TTrees
Reading a TTree from a ROOT file 
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The TBrowser can be used to navigate files and make plots

36Will Parker 36

TBrowser
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Other Tools
 ROOT can do so much more than we’ve covered here! 

➡ Random number generation


➡ TRandom3* r3 = new TRandom3();


➡ double r = r3->Rndm(); // From Uniform Distribution


➡ double g = r3->Gaus(); // From Gaussian Distribution


➡ Physics vectors:


➡ Lorentz vectors and 3D vectors in various coordinate systems


➡ ROOFit for modelling event distributions


➡ TMVA for machine learning


➡ ROOTStats for advanced statistical tools


➡ & more!
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PyROOT
You can access the full ROOT C++ functionality from python with PyROOT 

➡ Get the power of C++ compiled libraries with the flexibility of python (eg. 

dynamic typing)


➡ Can interoperate with standard data science python tools (eg. numPy, 
pandas)


➡ import ROOT to get started


➡ All the classes we’ve discussed can be accessed with ROOT.TH1D, 

ROOT.TF1, ROOT.TGraphErrors etc.


➡ Compatible with python >= 2.7


➡ https://root.cern/manual/python/ 

https://root.cern/manual/python/
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Summary
ROOT is a powerful toolkit for high energy physics analyses! 

➡ We have looked at:


➡ Using the command line interpreter and running macros


➡ Making and plotting histograms and graphs


➡ Fitting functions


➡ Reading/writing to/from files


➡ Where to find more information and help
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Exercises!
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Getting used to the ROOT command line 

➡ Open ROOT


➡ Declare some variables and do some calculations


➡ Draw a TCanvas


➡ Open the TBrowser and explore!

41Will Parker 41

Exercise 1
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Writing and running a basic macro 

➡ In a macro, declare a histogram


➡ Fill it with some values, in any way you choose


➡ Declare a new TFile, and save the histogram


➡ Open the new ROOT file and draw the histogram


➡ Play with the aesthetics of the plot via the GUI

42Will Parker 42

Exercise 2
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Plotting the Gaussian approximation to the Poisson distribution 

➡ Plot the Poisson distribution for λ = 5, 10, 25, 50, 100


➡ For each, also plot the Gaussian distribution with μ = λ, σ = √λ


➡ Use a different colour for each λ, and different line styles for 

Poisson and Gaussian


➡ Save the canvas to a PDF file

43Will Parker 43

Exercise 3
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Recreate this data - Monte Carlo comparison plot exactly (or as close as you can!) 

44Will Parker 44

Exercise 4
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Simulating a dataset from a particle detector 
Part A:


➡ Imagine you have a 5m radius spherical target mass, surrounded by PMTs


➡ Generate x, y, z and energy for 1000 events 


➡ Assume this signal is uniformly distributed in position


➡ Assume an energy of, say, 2.5 MeV


➡ Now generate x, y, z and energy for 1000 background events


➡ Let’s say it has the same energy as our signal


➡ But radially drops off as 1/r^2 away from the edge of the detector. Maybe there’s some external radiation that leaches into 
the target mass but only penetrates so far


➡ Now let’s generate some reconstructed values


➡ Assume a position resolution of 100 mm in each coordinate


➡ Assume an energy resolution of 3 %


➡ What if the resolution is a weak function of the radius? 


➡ Now repeat for 100,000 events and save these values in a TTree in a file

Part B:


➡ Check the radial distributions look as expected


➡ Plot True vs Reconstructed R for all events


➡ Plot (Reconstructed E - True E) / True E as a function of True E

Part C:


➡ We are now going to try and reject those background events by cutting on radius


➡ Make a ROC curve (purity against sacrifice) for different values for a radial cut

Part D:


➡ Now repeat this whole process but for a background rate reduced by a factor of 10. How does the ROC curve change?

45Will Parker 45

Project
5m
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Collecting real data and plotting correlations 

➡ Ask your friends >= 5 questions about themselves with numeric answers 

(eg, birthdate, age, height, shoe size, favourite number, number of pets/

pairs of shoes/hammocks they own). Get creative!


➡ Record each answer in a text file, separated by a space, with a new line 

for a new friend


➡ Read this into a TTree, and save the TTree to file


➡ Open the file and plot different variables against each other. You can cut 

on variables (including ones your not plotting)


➡ See if you can pull out any amusing correlations! 


➡ But remember this does not necessarily imply causation!!!

46Will Parker 46

Bonus Exercise 5


