
11.05.23

ROOT Tutorial

1Will Parker 1

EIEIO Summer School

Will Parker

11.05.232Will Parker 2

Slides:

➡ What is ROOT

➡ Installation

➡ Basic usage

➡ Introductions to basic classes and concepts

Exercises (with demo):

➡ Basic ROOT command line usage

➡ Using macros

➡ Making plots

➡ Data storage and input/output

➡ Physics data simulation

Repo with example scripts and solutions from this

tutorial

➡ https://github.com/willp240/rootTute/

Format of this Tutorial

This tutorial won’t cover everything. But it will
hopefully get you started, and point you to where

to go for more information

https://github.com/willp240/rootTute/

11.05.233Will Parker 3

ROOT is software toolkit for:

➡ Data plotting (multiple 1 to N-dimensional histogram and graph formats)

➡ Data storage (data structures for event based analyses, I/O of any C++ object)

➡ Data analysis (math functions, fitting to histograms, statistical treatment)

➡ Data processing

It gives you everything you need to perform a physics analysis!

It’s used by almost every high energy physics experiment

➡ Also now being used in other areas of physics, and industry

➡ Your joining a user base of tens of thousands!

➡ Thousands of ROOT plots in scientific publications

What is ROOT

11.05.234Will Parker 4

Example Plots

11.05.2355Will Parker

More Example Plots

11.05.236Will Parker 6

More Example Plots

11.05.237Will Parker 7

ROOT is mostly written in C++

➡ Object orientated data handling and analysis framework

➡ C++ interpreter

➡ Python bindings (PyRoot)

ROOT is Open Source Project

➡ Available under LGPL license

➡ First release 1995

➡ Many new releases since then!

ROOT is fully cross platform

➡ Windows

➡ MacOS

➡ Unix/Linux

ROOT Code

11.05.238Will Parker 8

ROOT Primer:
➡ https://root.cern/primer/

ROOT User Guide:
➡ https://root.cern/manual/

ROOT Tutorial:
➡ https://root.cern/tutorials/

ROOT Class Reference:
➡ https://root.cern/doc/master/

ROOT Forum:
➡ https://root-forum.cern.ch/

General Coding Help:
➡ http://www.cplusplus.com/doc/tutorial/

➡ https://stackoverflow.com/

Resources
28 year history + tens of thousands of users

 = plenty of resources!

https://root.cern/primer/
https://root.cern/manual/
https://root.cern/tutorials/
https://root.cern/doc/master/
https://root-forum.cern.ch/
http://www.cplusplus.com/doc/tutorial/
https://stackoverflow.com/

11.05.239Will Parker 9

Latest release is 6.28.04

➡ https://root.cern/releases/release-62804/

First install dependencies

➡ https://root.cern/install/
dependencies/

Download and install ROOT

➡ Get source code, or pre-compiled
binaries for your operating system

➡ If using code: ./configure && make

➡ source bin/thisroot.sh

More instructions

➡ https://root.cern/install/

Installation

https://root.cern/releases/release-62804/
https://root.cern/install/dependencies/
https://root.cern/install/dependencies/
https://root.cern/install/dependencies/
https://root.cern/install/

11.05.2310Will Parker 10

➡ A class is a combination of methods (functions) and attributes (data

values)

➡ An object is an instance of a class

➡ Members (methods and attributes) can be accessible from outside the

class (public), or only with other methods of the same class (private)

➡ Members accessed with className.memberName()

➡ Classes can inherit from other classes

➡ Protected members cannot be accessed outside the class, but

can be accessed by inherited classes

➡ Use . to access members of classes, -> to access members of

pointers to classes

C++ && Object Orientated Code
Reminders

https://www.tutorialspoint.com/
cplusplus/cpp_inheritance.htm

https://www.tutorialspoint.com/cplusplus/cpp_inheritance.htm
https://www.tutorialspoint.com/cplusplus/cpp_inheritance.htm

11.05.23

Now let’s get started!

11Will Parker 11

11.05.2312Will Parker 12

ROOT has a built in C++ interpreter, CLING

➡ C++ interactive shell

➡ Just in time compilation

Command Line Interpreter
Commands

‣ Exit: .q

‣ Show list of commands: .?

‣ Shell commands: .! Eg. .!ls

‣ Execute a macro: .x <file_name>

‣ Load a macro: .L <file_name>

‣ Compile a macro: .L <file_name>+

‣ .help for more!

ROOT as a calculator

Declaring and Using ROOT Classes

Interpreting C++

11.05.2313Will Parker 13

➡ Running multiple lines of code on

the command line can be time

consuming

➡ Instead write macros in a text editor,

and this gets interpreted my CLING

Macros

Run from Outside ROOTLoad and Run

Options

‣ -b batch mode (no graphics)

‣ -l don’t show ROOT banner

‣ -q exit on completion

‣ -h show other options!

11.05.2314Will Parker 14

Use ACLiC (Automatic Compiler of Libraries for CLING)

➡ Faster execution. For longer code this outweighs overhead of

compilation time

➡ If rapidly editing and rerunning, scripting often quicker than recompiling

each time

Compiling Macros

11.05.23

Basic Classes /
Namespaces

15Will Parker 15

11.05.2316Will Parker 16

The TMath namespace provides a selection of common mathematical variables and

functions

➡ Mathematical constants

➡ Trigonometric and other mathematical functions

➡ Statistical functions eg. mean + RMS of arrays, probability distributions

➡ Specialised mathematical functions eg. Bessel functions

➡ https://root.cern.ch/doc/master/namespaceMath.html

TMath

https://root.cern.ch/doc/master/namespaceMath.html

11.05.2317Will Parker 17

Bin variables and plot their frequency

➡ Histograms are commonly used in high energy physics to

visualise data

➡ TH1D is 1D histogram of doubles (TH1F for floats, TH1I for

integers)

➡ TH1D (“name”, “title”, nBins, minX, maxX)

➡ Can have uniform or variable bin sizes

➡ Can Add, Divide, Scale etc.

➡ https://root.cern.ch/doc/master/classTH1D.html

Histograms
Alternative Filling Methods

Extracting Information

https://root.cern.ch/doc/master/classTH1D.html

11.05.2318Will Parker 18

We can also bin in 2D (and higher!)

➡ TH2s inherit from TH1s

➡ https://root.cern.ch/doc/master/classTH2.html

2D Histograms

https://root.cern.ch/doc/master/classTH2.html

11.05.2319Will Parker 19

Draw histograms in different ways using different options: h->Draw(“option”)

➡ Table shows options for all 1D and 2D histograms

➡ Many more options for specific histogram types

➡ https://root.cern.ch/doc/v608/classTHistPainter.html

THistPainter

https://root.cern.ch/doc/v608/classTHistPainter.html

11.05.2320Will Parker 20
This is just a selection!

TH2D Draw Options

11.05.2321Will Parker 21

TCanvas is an area where objects can be drawn

➡ Draw() makes a default TCanvas, but

declaring your own gives you more control

➡ TCanvas can be divided into multiple pads

➡ https://root.cern/doc/master/classTCanvas.html

TCanvas

https://root.cern/doc/master/classTCanvas.html

11.05.2322Will Parker 22

ROOT GUI

11.05.2323Will Parker 23

TGraphs are a collection of distinct points

➡ TGraph: x-y plot with no error bars

➡ TGraphErrors: x-y plot with error bars

➡ TGraphAsymmErrors: x-y plot with asymmetric error bars

➡ https://root.cern.ch/doc/master/classTGraph.html

TGraphs

https://root.cern.ch/doc/master/classTGraph.html

11.05.2324Will Parker 24

Drawing
TAttMarker

➡ SetMarkerStyle(int)

➡ SetMarkerSize(int)

➡ SetMarkerColor(TColor)

➡ https://root.cern.ch/doc/master/classTAttMarker.html

TColor

TAttLine
➡ SetLineStyle(int)

➡ SetLineWidth(int)

➡ SetLineColor(TColor)

➡ https://root.cern.ch/doc/master/classTAttLine.html

➡ https://root.cern.ch/doc/master/classTColor.html

https://root.cern.ch/doc/master/classTAttMarker.html
https://root.cern.ch/doc/master/classTAttLine.html
https://root.cern.ch/doc/master/classTColor.html

11.05.2325Will Parker 25

TColor Palettes
 Many different Palettes to choose from

➡ gStyle->SetPalette(int)

➡ gStyle refers to current TStyle

➡ https://root.cern.ch/doc/master/classTStyle.html

➡ Can define your own TStyle and palette

https://root.cern.ch/doc/master/classTStyle.html

11.05.2326Will Parker 26

TColor Palettes

➡ With a badly chosen palette,
the eye can see boundaries
that aren’t really there

➡ Also be careful to be colour
vision deficiency friendly!

11.05.2327Will Parker 27

TFunctions
TF1, TF2, TF3 classes for 1, 2, & 3 dimensional functions

➡ Can be “built-in” TFormula or user defined function

➡ https://root.cern.ch/doc/master/classTF1.html

https://root.cern.ch/doc/master/classTF1.html

11.05.2328Will Parker 28

Fitting
Functions can be fit to histograms and graphs

➡ Can be “built-in” TFormula or user defined function

➡ Fit parameters are printed to screen

➡ Use TF1::SetParameter(parameter_number,

parameter_value) for initial guess

➡ https://root.cern.ch/root/htmldoc/guides/users-
guide/FittingHistograms.html

https://root.cern.ch/root/htmldoc/guides/users-guide/FittingHistograms.html
https://root.cern.ch/root/htmldoc/guides/users-guide/FittingHistograms.html
https://root.cern.ch/root/htmldoc/guides/users-guide/FittingHistograms.html

11.05.2329Will Parker 29

FitPanel
Can also use GUI to perform fit

11.05.2330Will Parker 30

TLegend
TLegend class can be drawn onto TCanvas

➡ Each TLegendEntry is made of a reference to a ROOT

object, a text entry, and an option of a graphical attribute

➡ https://root.cern.ch/doc/master/classTLegend.html

➡ Let’s also tidy up axis labels and plot title while we’re at it

https://root.cern.ch/doc/master/classTLegend.html

11.05.2331Will Parker 31

TFiles
C++ objects can be written to disk in ROOT

➡ All ROOT objects have Write() method

➡ Conventionally write to files with “.root”

suffix

➡ Open on command line with:

➡ root file.root

➡ Or within C++ code as:

➡ TFile* f = new TFile("filename.root","OPEN");

➡ Code snippet examples in following slides

➡ https://root.cern.ch/doc/master/classTFile.html

‣ “OPEN” = open an existing root file

‣ “CREATE” = create a new root file

‣ “RECREATE” = create a new root

file, overwrite if it already exists

‣ “UPDATE” = append to existing file

https://root.cern.ch/doc/master/classTFile.html

11.05.2332Will Parker 32

TTrees
TTrees are a data structure for storing large amounts of the same objects

➡ TTrees are optimised for reduced disk space and fast access

➡ TTrees can have many entries containing the same structure of objects

➡ Often one entry == one event

➡ A TTree contains a list of TBranches

➡ A TBranch contains a TLeaf

➡ A TLeaf contain the data type and the data

➡ Analogous to TTree being a table, each entry is a row, each TBranch is a column

➡ https://root.cern.ch/doc/master/classTTree.html

➡ Also have:

➡ TNtuple: a TTree containing only floats

➡ TNtupleD: a TTree containing only doubles

➡ TChain: a collection of files containing TTrees

https://root.cern.ch/doc/master/classTTree.html

11.05.2333Will Parker 33

Writing TTrees
Making a TTree and writing it to a TFile

11.05.2334Will Parker 34

Writing TTrees
Writing to a TTree from a data file

data.txt

11.05.2335Will Parker 35

Reading TTrees
Reading a TTree from a ROOT file

11.05.23

The TBrowser can be used to navigate files and make plots

36Will Parker 36

TBrowser

11.05.2337Will Parker 37

Other Tools
 ROOT can do so much more than we’ve covered here!

➡ Random number generation

➡ TRandom3* r3 = new TRandom3();

➡ double r = r3->Rndm(); // From Uniform Distribution

➡ double g = r3->Gaus(); // From Gaussian Distribution

➡ Physics vectors:

➡ Lorentz vectors and 3D vectors in various coordinate systems

➡ ROOFit for modelling event distributions

➡ TMVA for machine learning

➡ ROOTStats for advanced statistical tools

➡ & more!

11.05.2338Will Parker 38

PyROOT
You can access the full ROOT C++ functionality from python with PyROOT

➡ Get the power of C++ compiled libraries with the flexibility of python (eg.

dynamic typing)

➡ Can interoperate with standard data science python tools (eg. numPy,
pandas)

➡ import ROOT to get started

➡ All the classes we’ve discussed can be accessed with ROOT.TH1D,

ROOT.TF1, ROOT.TGraphErrors etc.

➡ Compatible with python >= 2.7

➡ https://root.cern/manual/python/

https://root.cern/manual/python/

11.05.2339Will Parker 39

Summary
ROOT is a powerful toolkit for high energy physics analyses!

➡ We have looked at:

➡ Using the command line interpreter and running macros

➡ Making and plotting histograms and graphs

➡ Fitting functions

➡ Reading/writing to/from files

➡ Where to find more information and help

11.05.2340Will Parker 40

Exercises!

11.05.23

Getting used to the ROOT command line

➡ Open ROOT

➡ Declare some variables and do some calculations

➡ Draw a TCanvas

➡ Open the TBrowser and explore!

41Will Parker 41

Exercise 1

11.05.23

Writing and running a basic macro

➡ In a macro, declare a histogram

➡ Fill it with some values, in any way you choose

➡ Declare a new TFile, and save the histogram

➡ Open the new ROOT file and draw the histogram

➡ Play with the aesthetics of the plot via the GUI

42Will Parker 42

Exercise 2

11.05.23

Plotting the Gaussian approximation to the Poisson distribution

➡ Plot the Poisson distribution for λ = 5, 10, 25, 50, 100

➡ For each, also plot the Gaussian distribution with μ = λ, σ = √λ

➡ Use a different colour for each λ, and different line styles for

Poisson and Gaussian

➡ Save the canvas to a PDF file

43Will Parker 43

Exercise 3

11.05.23

Recreate this data - Monte Carlo comparison plot exactly (or as close as you can!)

44Will Parker 44

Exercise 4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

20

40

60

80

100

120

Ev
en

ts
Data
MC

00.20.40.60.811.21.41.61.82
0.8

1

1.2

R
at

io

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Energy (GeV)

1−
0
1

δ/
∆

11.05.23

Simulating a dataset from a particle detector
Part A:

➡ Imagine you have a 5m radius spherical target mass, surrounded by PMTs

➡ Generate x, y, z and energy for 1000 events

➡ Assume this signal is uniformly distributed in position

➡ Assume an energy of, say, 2.5 MeV

➡ Now generate x, y, z and energy for 1000 background events

➡ Let’s say it has the same energy as our signal

➡ But radially drops off as 1/r^2 away from the edge of the detector. Maybe there’s some external radiation that leaches into
the target mass but only penetrates so far

➡ Now let’s generate some reconstructed values

➡ Assume a position resolution of 100 mm in each coordinate

➡ Assume an energy resolution of 3 %

➡ What if the resolution is a weak function of the radius?

➡ Now repeat for 100,000 events and save these values in a TTree in a file

Part B:

➡ Check the radial distributions look as expected

➡ Plot True vs Reconstructed R for all events

➡ Plot (Reconstructed E - True E) / True E as a function of True E

Part C:

➡ We are now going to try and reject those background events by cutting on radius

➡ Make a ROC curve (purity against sacrifice) for different values for a radial cut

Part D:

➡ Now repeat this whole process but for a background rate reduced by a factor of 10. How does the ROC curve change?

45Will Parker 45

Project
5m

11.05.23

Collecting real data and plotting correlations

➡ Ask your friends >= 5 questions about themselves with numeric answers

(eg, birthdate, age, height, shoe size, favourite number, number of pets/

pairs of shoes/hammocks they own). Get creative!

➡ Record each answer in a text file, separated by a space, with a new line

for a new friend

➡ Read this into a TTree, and save the TTree to file

➡ Open the file and plot different variables against each other. You can cut

on variables (including ones your not plotting)

➡ See if you can pull out any amusing correlations!

➡ But remember this does not necessarily imply causation!!!

46Will Parker 46

Bonus Exercise 5

