Exploring theoretical solutions to the H_0 and S_8 tensions

Guillermo Franco Abellán **GRAPPA**, University of Amsterdam

3 June 2024 Exploring the Dark Side of the Universe - Tools

GRAPPA.*

GRavitation AstroParticle Physics Amsterdam

Concordance **ACDM** model of cosmology:

Concordance **ACDM** model of cosmology:

Only 6 free parameters!

 Ω_{c} H_0 c L_b . A reio

However, the nature of the dark sector remains unknown

Quintessence **Massive gravity** Horndeski

dark energy?

Λ

multi-field warm inflation single-field

 \bullet

Inflation?

WIMPs

sterile neutrinos

axions

PBHs

dark matter?

In addition, discrepancies have emerged

H₀ tension

Cosmic tensions can shed some light on the mysterious dark sector

Quintessence **Massive gravity** Horndeski

dark energy?

Λ

multi-field warm inflation single-field

Inflation?

WIMPs

sterile neutrinos

axions

PBHs

dark matter?

5

Cosmic tensions can shed some light on the mysterious dark sector

multi-field warm inflation single-field

Inflation?

WIMPs

sterile neutrinos

axions

dark matter?

PBHs

Quintessence **Massive gravity** Horndeski

dark energy?

Λ

Outline

I. Decaying Dark Matter and the S₈ tension

II. Early Dark Energy and the H₀ tension

III. Easing both tensions with Interacting Dark Radiation

Outline

I. Decaying Dark Matter and the S₈ tension

II. Early Dark Energy and the H₀ tension

III. Easing both tensions with Interacting Dark Radiation

What is needed to explain low S₈ values ?

$$S_8 = \sigma_8 \sqrt{\Omega_m/0.3}$$

$$\sigma_8^2 = \int P_m(k, z = 0) W_R^2(k) d\ln k$$

with $R = 1$

One needs to suppress matter growth at scales $k \sim 0.1 - 1 h/Mpc$ while keeping a good fit to other data

What is needed to explain low S₈ values ?

$$S_8 = \sigma_8 \sqrt{\Omega_m/0.3}$$

$$\sigma_8^2 = \int P_m(k, z = 0) W_R^2(k) d\ln k$$

with $R = 1$

One needs to suppress matter growth at scales $k \sim 0.1 - 1 h/Mpc$ while keeping a good fit to other data

Invisible Dark Matter Decay

Invisible Dark Matter Decay

We explore DM decays to massless (Dark Radiation) and massive (Warm Dark Matter) particles

Explaining the S₈ tension

First analysis including linear perts. showed that **DDM can explain S**₈ **tension** with weak-lensing data

Planck18 + BAO + SNIa + S₈ prior (KiDS+BOSS+2dfLenS)

[GFA, Murgia, Poulin 21] [GFA, Murgia++ 22]

Explaining the S₈ tension

First analysis including linear perts. showed that DDM can explain S₈ tension with weak-lensing data

The DDM provides a good fit because it yields a **lower suppression in the past***

* and it also leaves H(z) unaffected

DDM has now been tested with various LSS observables, like galaxy clustering [Simon, GFA++ 22], the MW satellites [DES 22], the Lyman-a forest [Fuss & Garny 22], the SZ clusters [Tanimura++ 23], and WL data from KiDS-1000 [Bucko++ 24]

11

DDM has now been tested with various LSS observables, like galaxy clustering [Simon, GFA++ 22], the MW satellites [DES 22], the Lyman-a forest [Fuss & Garny 22], the SZ clusters [Tanimura++ 23], and WL data from KiDS-1000 [Bucko++ 24]

Various particle physics models have been proposed. Ex:

Gravitino decays $\tilde{G}_{\mu} \rightarrow \tilde{N}_1 + N_1$ [Choi & Yanagida 22]

Minimal model with SM neutrinos $N_2 \rightarrow \bar{N}_1 \nu \nu$ [Fuss++ 24]

11

Outline

I. Decaying Dark Matter and the S₈ tension

II. Early Dark Energy and the H₀ tension

III. Easing both tensions with Interacting Dark Radiation

How does the CMB determine H_0 ?

To rise H_0 while keeping θ_s fixed:

Decrease $r_s(z_{rec})$ (Early-time solutions)

...late-time solutions are disfavored by low-redshift data

[Knox & Millea 19] [Efstathiou 21]

...late-time solutions are disfavored by low-redshift data

[Knox & Millea 19] [Efstathiou 21]

"EDE can solve the Hubble tension if it contributes $f_{\text{EDE}}(z_c) \sim 10\%$ around $z_c \sim z_{\text{eq}}$ "

[Poulin++ 19] [Smith++ 19]

"EDE can solve the Hubble tension if it contributes $f_{\text{EDE}}(z_c) \sim 10\%$ around $z_c \sim z_{\text{eq}}$ "

$$V(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]$$

[Poulin++ 19] [Smith++ 19]

Axion-like potential — Canonical example, most widely studied in the literature

See [Poulin++ 23] for a recent review

"EDE can solve the Hubble tension if it contributes $f_{\text{EDE}}(z_c) \sim 10\%$ around $z_c \sim z_{\text{ea}}$ "

Axion-like potential $V(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right) \right]^3$

Variation: Early Modified Gravity (EMG)

The addition of a **non-minimal** coupling to gravity provides a much better fit to CMB data

[<u>Poulin++ 19</u>] [<u>Smith++ 19</u>]

Canonical example, most widely studied in the literature See [Poulin++ 23] for a recent review

[GFA, Braglia++ 23]

16

But many other models apart

from EDE have been proposed...

Lost in the landscape of solutions

Early Dark Energy Can Resolve The Hubble Tension

Vivian Poulin¹, Tristan L. Smith², Tanvi Karwal¹, and Marc Kamionkowski¹

The Neutrino Puzzle: Anomalies, Interactions, and Cosmological Tensions

Christina D. Kreisch,¹,^{*} Francis-Yan Cyr-Racine,^{2,3},[†] and Olivier Doré⁴

The Hubble Tension as a Hint of Leptogenesis and Neutrino Mass Generation

Miguel Escudero^{1, *} and Samuel J. Witte^{2, †}

Can interacting dark energy solve the H_0 tension?	Dark matte tension
Eleonora Di Valentino, ^{1, 2, *} Alessandro Melchiorri, ^{3, †} and Olga Mena ^{4, ‡}	Kyriakos Vattis, S

A Simple Phenomenological Emergent Dark Energy Model can Resolve the Hubble Tensic XIAOLEI LI^{1, 2} AND ARMAN SHAFIELOO^{1, 3}

Early recombination as a solution to the H_0 tension

Toyokazu Sekiguchi¹, * and Tomo Takahashi², †

Early modified gravity in light of the H_0 tension a

Matteo Braglia,^{1, 2, 3}, Mario Ballardini,^{1, 2, 3}, Fabio Finelli,^{2, 3}, and

Relieving the Hubble tension with primordial mag

Karsten Jedamzik¹ and Levon Pogosian^{2,3}

Rock 'n' Roll Solutions to the Hubble Tension

Prateek Agrawal¹, Francis-Yan Cyr-Racine^{1,2}, David Pinner^{1,3}, and Lisa Randall¹

er decaying in the late Universe can reli

Savvas M. Koushiappas, and Abraham Loeb

Lost in the landscape of solutions

Early Dark Energy Can Resolve The Hubble Tension

Vivian Poulin¹, Tristan L. Smith², Tanvi Karwal¹, and Marc Kamionkowski¹

The Neutrino Puzzle: Anomalies, Interactions, and Cosmological Tensions

Christina D. Kreisch,¹,^{*} Francis-Yan Cyr-Racine,^{2,3},[†] and Olivier Doré⁴

The Hubble Tension as a Hint of Leptogenesis and Neutrino Mass Generation

Miguel Escudero^{1, *} and Samuel J. Witte^{2, †}

Can interacting dark energy solve the H_0 tension?	Dark matte tension
Eleonora Di Valentino, ^{1, 2, *} Alessandro Melchiorri, ^{3, †} and Olga Mena ^{4, ‡}	Kyriakos Vattis, S

A Simple Phenomenological Emergent Dark Energy Model can Resolve the Hubble Tensic XIAOLEI LI^{1, 2} AND ARMAN SHAFIELOO^{1, 3}

Early recombination as a solution to the H_0 tension

Toyokazu Sekiguchi¹, * and Tomo Takahashi², †

Early modified gravity in light of the H_0 tension a

Matteo Braglia,^{1, 2, 3}, Mario Ballardini,^{1, 2, 3}, Fabio Finelli,^{2, 3}, and

Relieving the Hubble tension with primordial mag

Karsten Jedamzik¹ and Levon Pogosian^{2,3}

Rock 'n' Roll Solutions to the Hubble Tension

Prateek Agrawal¹, Francis-Yan Cyr-Racine^{1,2}, David Pinner^{1,3}, and Lisa Randall¹

er decaying in the late Universe can reli

Savvas M. Koushiappas, and Abraham Loeb

Each author uses a different compilation of data...

Lost in the landscape of solutions

Early Dark Energy Can Resolve The Hubble Tension

Vivian Poulin¹, Tristan L. Smith², Tanvi Karwal¹, and Marc Kamionkowski¹

The Neutrino Puzzle: Anomalies, Interactions, and Cosmological Tensions

Christina D. Kreisch,¹,^{*} Francis-Yan Cyr-Racine,^{2,3},[†] and Olivier Doré⁴

The Hubble Tension as a Hint of Leptogenesis and Neutrino Mass Generation

Miguel Escudero^{1, *} and Samuel J. Witte^{2, †}

Can interacting dark energy solve the H_0 tension?	Dark matte tension
Eleonora Di Valentino, ^{1, 2, *} Alessandro Melchiorri, ^{3, †} and Olga Mena ^{4, ‡}	Kyriakos Vattis, S

A Simple Phenomenological Emergent Dark Energy Model can Resolve the Hubble Tensic XIAOLEI LI^{1, 2} AND ARMAN SHAFIELOO^{1, 3}

Early recombination as a solution to the H_0 tension

Toyokazu Sekiguchi¹, * and Tomo Takahashi², †

Early modified gravity in light of the H_0 tension a

Matteo Braglia,^{1, 2, 3}, Mario Ballardini,^{1, 2, 3}, Fabio Finelli,^{2, 3}, and

Relieving the Hubble tension with primordial mag

Karsten Jedamzik¹ and Levon Pogosian^{2,3}

Rock 'n' Roll Solutions to the Hubble Tension

Prateek Agrawal¹, Francis-Yan Cyr-Racine^{1,2}, David Pinner^{1,3}, and Lisa Randall

er decaying in the late Universe can reli

Savvas M. Koushiappas, and Abraham Loeb

Each author uses a different compilation of data...

... is it possible to rank the different models?

18

GOAL:

Identify which **underlying mechanisms are more likely** to be responsible for explaining the discrepancy

GOAL:

Identify which underlying mechanisms are more **likely** to be responsible for explaining the discrepancy

Take a sample of proposed solutions

GOAL:

Identify which underlying mechanisms are more **likely** to be responsible for explaining the discrepancy

Use a wide array of data

Take a sample of proposed solutions

Planck 2018 + BAO + SNIa + SH0ES

GOAL:

Identify which **underlying** mechanisms are more **likely** to be responsible for explaining the discrepancy

Ex: EDE Use a wide array of data **Apply different metrics** GT QDMAP

Take a sample of proposed solutions

Planck 2018 + BAO + SNIa + SH0ES

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{ m DMAP}$ Tension		$\Delta\chi^2$	ΔAIC		Finalist	
$\Lambda \mathrm{CDM}$	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X	
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.8σ	\boldsymbol{X}	-6.10	-4.10	X	X	
SIDR	1	-19.385 ± 0.024	3.2σ	3.3σ	\boldsymbol{X}	-9.57	-7.57	\checkmark	🗸 🌖	
mixed DR	2	-19.413 ± 0.036	3.3σ	3.4σ	\boldsymbol{X}	-8.83	-4.83	X	X	
DR-DM	2	-19.388 ± 0.026	3.2σ	3.1σ	\boldsymbol{X}	-8.92	-4.92	X	X	
$\mathrm{SI}\nu+\mathrm{DR}$	3	$-19.440\substack{+0.037\\-0.039}$	3.8σ	3.9σ	X	-4.98	1.02	X	X	
Majoron	3	$-19.380\substack{+0.027\\-0.021}$	3.0σ	2.9σ	\checkmark	-15.49	-9.49	\checkmark	✓ ②	
primordial B	1	$-19.390\substack{+0.018\\-0.024}$	3.5σ	3.5σ	X	-11.42	-9.42	\checkmark	🗸 🌖	
varying m_e	1	-19.391 ± 0.034	2.9σ	2.9σ	\checkmark	-12.27	-10.27	\checkmark	🗸 🔴	
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.9σ	\checkmark	-17.26	-13.26	\checkmark	🗸 😐	
EDE	3	$-19.390\substack{+0.016\\-0.035}$	3.6σ	1.6σ	\checkmark	-21.98	-15.98	\checkmark	✓ ②	
NEDE	3	$-19.380\substack{+0.023\\-0.040}$	3.1σ	1.9σ	\checkmark	-18.93	-12.93	\checkmark	✓ ②	
\mathbf{EMG}	3	$-19.397\substack{+0.017\\-0.023}$	3.7σ	2.3σ	\checkmark	-18.56	-12.56	\checkmark	✓ ②	
CPL	2	-19.400 ± 0.020	3.7σ	4.1σ	X	-4.94	-0.94	X	X	
PEDE	0	-19.349 ± 0.013	2.7σ	2.8σ	\checkmark	2.24	2.24	X	X	
GPEDE	1	-19.400 ± 0.022	3.6σ	4.6σ	X	-0.45	1.55	X	X	
$\rm DM \rightarrow \rm DR + \rm WDM$	2	-19.420 ± 0.012	4.5σ	4.5σ	X	-0.19	3.81	X	X	
$\rm DM \rightarrow \rm DR$	2	-19.410 ± 0.011	4.3σ	4.5σ	X	-0.53	3.47	X	X	

[Schöneberg, GFA++ 22]

Model	$\Delta N_{ m param}$	M_B	Gaussian	$Q_{ m DMAP}$		$\Delta \chi^2$	ΔAIC		Finalist	
	<u> </u>		Tension	Tension		$-\lambda$			1 11101150	
$\Lambda { m CDM}$	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X	
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.8σ	X	-6.10	-4.10	X	X	
SIDR	1	-19.385 ± 0.024	3.2σ	3.3σ	X	-9.57	-7.57	\checkmark	🗸 🌖	
mixed DR	2	-19.413 ± 0.036	3.3σ	3.4σ	X	-8.83	-4.83	X	X	
DR-DM	2	-19.388 ± 0.026	3.2σ	3.1σ	X	-8.92	-4.92	X	X	
$\mathrm{SI}\nu\mathrm{+DR}$	3	$-19.440\substack{+0.037\\-0.039}$	3.8σ	3.9σ	X	-4.98	1.02	X	X	
Majoron	3	$-19.380\substack{+0.027\\-0.021}$	3.0σ	2.9σ	\checkmark	-15.49	-9.49	\checkmark	✓ ②	
primordial B	1	$-19.390\substack{+0.018\\-0.024}$	3.5σ	3.5σ	X	-11.42	-9.42	\checkmark	🗸 🌖	
varying m_e	1	-19.391 ± 0.034	2.9σ	2.9σ	\checkmark	-12.27	-10.27	\checkmark	🗸 🔴	
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.9σ	\checkmark	-17.26	-13.26	\checkmark	🗸 😑	
EDE	3	$-19.390\substack{+0.016\\-0.035}$	3.6σ	1.6σ	\checkmark	-21.98	-15.98	\checkmark	✓ ②	
NEDE	3	$-19.380\substack{+0.023\\-0.040}$	3.1σ	1.9σ	\checkmark	-18.93	-12.93	\checkmark	✓ ②	
\mathbf{EMG}	3	$-19.397\substack{+0.017\\-0.023}$	3.7σ	2.3σ	\checkmark	-18.56	-12.56	\checkmark	✓ ②	
CPL	2	-19.400 ± 0.020	3.7σ	4.1σ	X	-4.94	-0.94	X	X	
PEDE	0	-19.349 ± 0.013	2.7σ	2.8σ	\checkmark	2.24	2.24	X	X	
GPEDE	1	-19.400 ± 0.022	3.6σ	4.6σ	X	-0.45	1.55	X	X	
$\rm DM \rightarrow \rm DR{+}\rm WDM$	2	-19.420 ± 0.012	4.5σ	4.5σ	X	-0.19	3.81	X	X	
$\mathrm{DM} \to \mathrm{DR}$	2	-19.410 ± 0.011	4.3σ	4.5σ	X	-0.53	3.47	X	X	

[Schöneberg, GFA++ 22]

Late-time solutions are the most disfavored

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{ m DMAP}$ Tension		$\Delta\chi^2$	ΔAIC		Finalist	
ΛCDM	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X	
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.8σ	X	-6.10	-4.10	X	X	
SIDR	1	-19.385 ± 0.024	3.2σ	3.3σ	X	-9.57	-7.57	\checkmark	🗸 🏮	
mixed DR	2	-19.413 ± 0.036	3.3σ	3.4σ	X	-8.83	-4.83	X	X	
DR-DM	2	-19.388 ± 0.026	3.2σ	3.1σ	X	-8.92	-4.92	X	X	
$\mathrm{SI}\nu\mathrm{+DR}$	3	$-19.440\substack{+0.037\\-0.039}$	3.8σ	3.9σ	X	-4.98	1.02	X	X	
Majoron	3	$-19.380\substack{+0.027\\-0.021}$	3.0σ	2.9σ	\checkmark	-15.49	-9.49	\checkmark	 2 	
primordial B	1	$-19.390\substack{+0.018\\-0.024}$	3.5σ	3.5σ	X	-11.42	-9.42	\checkmark	🗸 🏮	
varying m_e	1	-19.391 ± 0.034	2.9σ	2.9σ	\checkmark	-12.27	-10.27	\checkmark	🗸 😑	i
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.9σ	\checkmark	-17.26	-13.26	\checkmark	🗸 😐	
EDE	3	$-19.390\substack{+0.016\\-0.035}$	3.6σ	1.6σ	\checkmark	-21.98	-15.98	\checkmark	 2 	
NEDE	3	$-19.380\substack{+0.023\\-0.040}$	3.1σ	1.9σ	\checkmark	-18.93	-12.93	\checkmark	 2 	
\mathbf{EMG}	3	$-19.397\substack{+0.017\\-0.023}$	3.7σ	2.3σ	\checkmark	-18.56	-12.56	\checkmark	2	
CPL	2	-19.400 ± 0.020	3.7σ	4.1σ	X	-4.94	-0.94	X	X	
PEDE	0	-19.349 ± 0.013	2.7σ	2.8σ	\checkmark	2.24	2.24	X	X	
GPEDE	1	-19.400 ± 0.022	3.6σ	4.6σ	X	-0.45	1.55	X	X	
$\rm DM \rightarrow \rm DR{+}\rm WDM$	2	-19.420 ± 0.012	4.5σ	4.5σ	X	-0.19	3.81	X	X	
$\mathrm{DM} \to \mathrm{DR}$	2	-19.410 ± 0.011	4.3σ	4.5σ	X	-0.53	3.47	X	X	

[Schöneberg, GFA++ 22]

Late-time solutions are the most disfavored

Early-time solutions (like EDE) appear the most successful

[Schöneberg, GFA++ 22] [Khalife++ 24] -----> Updated version of the contest

Unfortunately, the most successful models are **unable to explain the S₈ tension**

[Schöneberg, GFA++ 22] [Khalife++ 24] → Updated version of the contest What kind of mechanism is required to **address both tensions** simultaneously?

Outline

I. Decaying Dark Matter and the S₈ tension

II. Early Dark Energy and the H₀ tension

Self-interacting dark radiation fluid undergoing a "step" in its abundance (when T<m)...

Self-interacting dark radiation fluid undergoing a "step" in its abundance (when T<m)...

...which additionally scatters with dark matter

DR

Self-interacting dark radiation fluid undergoing a "step" in its abundance (when T<m)...

...which additionally scatters with dark matter

DR

Self-interacting dark radiation fluid undergoing a "step" in its abundance (when T<m)...

...which additionally scatters with dark matter

Comparing different proposals

Wess-Zumino Dark Radiation (WZDR) + Yukawa coupling to Dark Matter

"Interaction is weak and with all of DM"

[Joseph++ 2023]

Comparing different proposals

Wess-Zumino Dark Radiation (WZDR) + Yukawa coupling to Dark Matter

"Interaction is weak and with all of DM"

[Joseph++ 2023]

Stepped Partially Acoustic Dark Matter (SPartAcous)

"Interaction is **strong** and with only a fraction of DM"

[Buen-Abad++ 2023]

Comparing different proposals

Wess-Zumino Dark Radiation (WZDR) + Yukawa coupling to Dark Matter

"Interaction is weak and with all of DM"

[Joseph++ 2023]

Stepped Partially Acoustic Dark Matter (SPartAcous)

"Interaction is **strong** and with only a fraction of DM"

[Buen-Abad++ 2023]

[Schöneberg, GFA++ 2023]

Forthcoming cosmological surveys will provide us with unprecedented data to probe the dark sector...

Legacy Survey of Space and Time

25

Forthcoming cosmological surveys will provide us with unprecedented data to probe the dark sector...

...but analysing these data will be extremely time-consuming with standard methods

Legacy Survey of Space and Time

25

New techniques in **deep learning**/ simulation-based inference (SBI) will allow us to **accelerate parameter inference** in cosmology

Ex: projected limits on decaying DM from Stage IV galaxy surveys

Cosmic tensions might represent our best chance to learn about the dark sector

[Sandbox studio - Symmetry Stu

- **Cosmic tensions might represent our best** chance to learn about the dark sector
- **Decaying DM** and **Early Dark Energy** provide the right phenomenology to explain the S₈ and H₀ tensions, respectively. To ease both tensions, **interacting DR** models are the most successful

[Sandbox studio - Sy

- **Cosmic tensions might represent our best** chance to learn about the dark sector
- **Decaying DM** and **Early Dark Energy** provide the right phenomenology to explain the S₈ and H₀ tensions, respectively. To ease both tensions, **interacting DR** models are the most successful

Future surveys will allow to detect/rule out these models (new deep-learning tools will be crucial)

[Sandbox studio - Sym

- **Cosmic tensions might represent our best** chance to learn about the dark sector
- **Decaying DM** and **Early Dark Energy** provide the right phenomenology to explain the S₈ and H₀ tensions, respectively. To ease both tensions, **interacting DR** models are the most successful

Future surveys will allow to detect/rule out these models (new deep-learning tools will be crucial)

[Sandbox studio - Sym

THANK YOU! g.francoabellan@uva.nl

BACK UP SLIDES

Impact of decaying DM on cosmological observables

Expansion history H(z)

Not much impacted by $CDM \rightarrow DR+WDM (\rho_{wdm} \sim \rho_{cdm} \sim a^{-3})$

CMB anisotropy spectra C_ℓTT,EE Impact even for late decays, it affects both LISW and CMB lensing

Linear matter power spectrum P_m(k)

CDM \rightarrow DR+WDM suppresses power at k > k_{fs}

Summary of current bounds on invisible DM decay

[Bucko++ 24]

Note :
$$\varepsilon \simeq \frac{v_k}{c}$$

Some caveats of EDE

Connexions of EDE with string theory and late DE [Cicoli++ 23] [Freese+ 21]

[Boylan-Kolchin++ 21] [Bernal++ 21]

Prior-volume effects in EDE analyses

For $f_{\text{EDE}} \lesssim 4\%$, parameters z_c and ϕ_i become irrelevant, so posteriors are weighted towards Λ CDM

Marginalised **posteriors** and **profile likelihood** strongly **disagree**

EDE in light of CMB data from ACT and SPT

Hints coming from **ACT**, but they vanish when including high-& TT data from **Planck**

[<u>Smith++ 22</u>] [<u>Poulin++ 23</u>]

Comparing two simple EDE scenarios

$$S = \int d^4x \sqrt{-g} \left[\frac{F(\phi)}{2} R - \frac{g^{\mu\nu}}{2} \partial_{\mu}\phi \partial_{\nu}\phi - \Lambda - V(\phi) + L_m \right]$$

[GFA, Braglia++ 23]

Early Dark Energy

$$F(\phi) = M_{\rm pl}^2$$
$$V(\phi) = \lambda \phi^4 / 4$$

Early Modified Gravity

$$F(\phi) = M_{\rm pl}^2 + \xi \phi^2$$
$$V(\phi) = \lambda \phi^4 / 4$$

This combination of CMB data shows a **preference** for a non-minimal **coupling** to gravity

EDE in light of DESI-Y1 BAO data

Adding DESI weakens the **bounds on EDE**, as it prefers a lower Ω_m value (negatively correlated with H₀)

The H_0 Olympics with new SH0ES and SPT data

What about Lyman-a data?

eBOSS Lyman-α data shows a ~5σ tension with ΛCDM fit to CMB (preferring a steeper slope of P(k) at ~Mpc scales) [Rogers & Poulin, 24]

Tension worsened for EDE [Goldstein++ 23]

Wess-Zumino Dark Radiation (WZDR) coupled to DM can restore concordance with Ly-a data (while still reducing the H₀ tension)

[Bagherian++ 24]

