Probe Combination for Cosmic Microwave Background and Large Scale Structure Observations

Carlo Baccigalupi

Conference on Exploring the Dark Side of the Universe, 2024

Outline

- (Some) Fundamental Physics in the Cosmological Light Cone
- Probe Combination
- Operating and Future Probes
- Remarks

Outline

- (Some) Fundamental Physics in the Cosmological Light Cone
- Probe Combination
 - Early Cross-Correlations
 - Present Combinations
- Operating and Future Probes
 - Simons Observatory & Euclid
 - Euclid CMBXC WG Simulations & Analyses
 - CMB-S4 x LiteBIRD
- Remarks

(Some) Fundamental Physics in the Cosmological Light Cone

Expansion & Clustering

Inflationary Perturbations

Inflationary Perturbations

Background

Dark matter distribution today (simulated)

Planck 2020, PR4, Millennium Simulations

Inflationary Perturbations

BICEP/Keck 2014

B-Modes from Cosmological Gravitational Waves

Gravitational waves not supported by sources, diffuse out rapidly below the Horizon scale, about 1 degree in the sky

B-Modes from Cosmological Gravitational Waves

Expansion & Clustering

Dark Energy & Modified Gravity

Gravitational Lensing

Combination, Correlation & Tomography

CMB Lensing

Forming Structures act as Lenses, over a large Redshift Interval, Peaking between 1 and 3

CMB Lensing

Forming Structures act as Lenses, over a large Redshift Interval, Peaking between 1 and 3

The CMB Lensing is a Probe for Dark Energy, by itself and in Cross-Correlation with LSS Probes

Powering CMB Angular Power Spectra

Dark Energy and CMB Lensing

ui.adsabs.harvard.edu/link gateway/2006PhRvD..74j3510A/arxiv:astro-ph/0507644

CMB Lensing Data

ACT Collaboration 2023

ui.adsabs.harvard.edu/link_gateway/2023arXiv230405202Q/arxiv:2304.05202

Probe Combination

Herschel x Planck

Federico Bianchini et al. 2015

Federico Bianchini et al. 2016

Dark Energy Spectroscopic Instrument

Dark Energy Spectroscopic Instrument 2024 https://ui.adsabs.harvard.edu/abs/2024arXiv240403002D/abstract

Dark Energy Dynamics

Dark Energy Spectroscopic Instrument

Dark Energy Spectroscopic Instrument 2024 https://ui.adsabs.harvard.edu/abs/2024arXiv240403002D/abstract

Operating and Future Probes

Roadmap

0.0 FDS dust emission 0.10 mK RJ

Roadmap

Roadmap

Euclid CMBXC: CMB-N-Body Pipeline

Euclid CMBXC Working Group, Simulations & Covariance Key Project

Euclid CMBXC: CMB-N-Body Pipeline

Euclid CMBXC Working Group, Simulations & Covariance Key Project

Operating B-Mode Probes: Simons Observatory

simonsobservatory.org

ui.adsabs.harvard.edu/abs/arXiv:2202.02773

LiteBIRD Collaboration, PTEP 2022

ui.adsabs.harvard.edu/abs/arXiv:2202.02773

	ID	ν	$\delta \nu$ [GHz]	Beam size	No. of	NETarr	Sensitivity
		[GHz]	$(\delta \nu / \nu)$	[arcmin]	detectors	$[\mu K\sqrt{s}]$	$[\mu K-arcmin]$
LFT	1	40	12 (0.30)	70.5	48	18.50	37.42
LFT	2	50	15 (0.30)	58.5	24	16.54	33.46
LFT	3	60	14 (0.23)	51.1	48	10.54	21.31
LFT	4	68	16(0.23)	(41.6, 47.1)	(144, 24)	(9.84, 15.70)	(19.91, 31.77)
comb.						8.34	16.87
LFT	5	78	18 (0.23)	(36.9, 43.8)	(144, 48)	(7.69, 9.46)	(15.55, 19.13)
comb.	111					5.97	12.07
LFT	6	89	20 (0.23)	(33.0, 41.5)	(144, 24)	(6.07, 14.22)	(12.28, 28.77)
comb.						5.58	11.30
LFT/	7	100	23 (0.23)	30.2/	144/	5.11/	10.34
MFT				37.8	366	4.19	8.48
comb.						3.24	6.56
LFT/	8	119	36 (0.30)	26.3/	144/	3.8/	7.69
MFT				33.6	488	2.82	5.70
comb.						2.26	4.58
LFT/	9	140	42 (0.30)	23.7/	144/	3.58/	7.25
MFT				30.8	366	3.16	6.38
comb.						2.37	4.79
MFT	10	166	50 (0.30)	28.9	488	2.75	5.57
MFT/	11	195	59 (0.30)	28.0/	366/	3.48/	7.05
HF'T				28.6	254	5.19	10.50
comb.						2.89	5.85
HFT	12	235	71 (0.30)	24.7	254	5.34	10.79
HFT	13	280	84 (0.30)	22.5	254	6.82	13.80
HFT	14	337	101 (0.30)	20.9	254	10.85	21.95
HFT	15	402	92 (0.23)	17.9	338	23.45	47.45
Total					4508		2.16

LiteBIRD Collaboration, PTEP 2022 ui.adsabs.harvard.edu/abs/arXiv:2202.02773

Campeti, Komatsu, Poletti, Baccigalupi, 2021, JCAP 01, 012, arXiv:2007.04241

Campeti, Komatsu, Poletti, Baccigalupi et al., 2021, JCAP 01, 012, arXiv:2007.04241

Future B-Mode Probes: CMB-Stage IV

Future B-Mode Probes: CMB-Stage IV

arxiv.org/abs/2208.12619

CMB-Stage IV x LiteBIRD

Namiwaka et al. for the LiteBIRD Collaboration https://ui.adsabs.harvard.edu/abs/2023arXiv231205194N/abstract

CMB-Stage IV x LiteBIRD

	$\sigma(r) \times 10^3$
No-delensing	1.44
LiteBIRD internal	1.41
+ CIB	1.30
$+ \delta_g$	1.31
$+ \text{CIB} + \delta_{g}$	1.25
$+ \text{CIB} + \delta_{\sigma} + \text{CMB-S4}$	1.21

Namiwaka et al. for the LiteBIRD Collaboration https://ui.adsabs.harvard.edu/abs/2023arXiv231205194N/abstract

Remarks

- Combining Probes Rapidly Becoming Main Stream in Cosmology, Leading All Constraints
- Incomplete Review in This Talk, Limited to Lensing and Early Universe, All Systems Involved Across the Light Cone, from Galaxies, Clusters, to CMB Polarization from the Early Universe
- Challenges
 - Computational Resources
 - Management of Combined Probes
 - Model Dependence on Astrophysics, Dark Energy and Modified Gravity
 - Accurate Predictivity and Covariance
 - 0
- Probe Combination is now Infrastructure in Large Collaborations, Organized Efforts involving High Performance Computing are Vital to Collaborations,
- Memorandum of Understanding in place and in progress for this and the next Decade