From EDELWEISS to TESSERACT

New perspective on DM cryogenic detection
 @ Laboratoire Souterrain de Modane -

EDSU-Tools 2024 conference

Alex Juillard, IP2I Lyon

on behalf of the Tesseract coll.

Outline

- Cryogenic heat-and-ionization detector
- EDELWEISS cryogenic Ge detectors legacy
- Low Energy Excess in cryo detectors
- ♦ Ricochet Ge detector for CEvNS
- + Tesseract proposal @ LSM

Cryogenic Ge: Simultaneous Heat & Ionization

Low Voltage Mode @ ~V : Heat from Recoil ~Heat from charge drift → Particule ID

High Voltage Mode @ > 100 V : Heat = E_{Luke} : huge signal boost → No PID, single e/h sensitivity

Cryogenic Ge : EDELWEISS FID Cryogenic Detector

Heat and Ionization on Ge/Si detector :

- → Elec. Recoil / Nuclear Recoil discrimination
- → Heat only event rejection
- surface event rejection

Initially developed by the EDW & CDMS collab. in the 00s' for the old « standard » 100 GeV SUSY Wimps...

Low Temperature → Sensitivity ✓ & Noise ↘

 $T_{bath} \sim 10 \text{ mK} - 300 \text{ mK}$

800g Ge EDW-III Ge detector in LV mode operation

EDELWEISS : DM search objectives

EDELWEISS-SubGeV: was aiming for a kg-scale payload of few-g to 30g Ge detectors running in two modes:

- **High Voltage:** single-e/h sensitivity by operating in a NTL mode
- Low Voltage: Particle ID ER/NR/'unknown backgrounds' and fiducialization

Both operating modes require sub-100 eV heat energy thresholds

Dark Matter search : EDELWEISS -II / -III setup

- Iocated in LSM in the French Alps
- started in 1994 (w/ Al2O3, Ge in 1996)
- EDW-II (2002-2011)
 - 10 * 400 g Ge
- EDW-III (2012-2022)
 - 36 * FID 800 g Ge
 - R&D on 200g and 33g detector for low mass DM (EDW-SubGeV)
 - 3000 coax. cables (6 km)
 - 350 Si-JFET transistors@ 120K
 - 36*2 « Bolometers Boxes » @ 300K

Geant4 EDWIII model

- 35 tons **PE** + 40 tons **Pb shielding**
- 100 m² active **muon veto**
- Low radioactivity material in the detector vicinity

Low Mass Dark Matter search : state of the art

(Nuclear Recoil DM)

Why 100 eV-scale cryogenic DM experiments aren't leading the sub-GeV search region ?

- Currently, all cryogenic experiments which have reached sub-100 eV thresholds are seeing such an excess limiting their DM reach
- LEE characteristics: time dependent, non-ionizing, mostly independent of sites, dependence with holders/vibrations (?)
- Possible connection to anomalously short coherence time in Q-bits partially

Cryo detector : Low Energy Excess evts

00 ה arXiv:2207.09375 LEE ever 60-12(eV 100 TUM93A Sapp2 512 Comm2 80 0 Sapp2 TUM93A Comm2 Sapp2 TUM93A Comm2 Si2 Detecto 60 Å Rate (day⁻¹) 40 ð 20 0 100 200 500 300 400 600 Time since cooldown (days)

Ex of CRESST work to fix the LEE issue

- Low Energy Excess seen by ALL cryogenic detectors !!
 - Radiogenic bkg more expected to be flat and at the 1-100 dru level :
 - LEE orders of magnitude higher !

Origins under investigation:

- Sensor related events
- Relaxation of holding-induced stress
- Intrinsic crystal effects

Major issue today.

Will limit most of the science cases if not solved/mitigated

Multiple design modifications were applied in the current data-taking campaign to test ideas about the LEE origin.

All thresholds are at O(10 eV)

LEE is observed in all detectors

Commercially grown CaWO₄

Current measurement campaign started in November 2020 and is now at the last stage.

- Various target materials: CaWO₄, Al₂O₃, LiAlO₂, Si
- Different holding structures (sticks, clamps)
- Remove scintillating parts (foil, sticks, scintillating crystals)

EDELWEISS : Dark Matter search in HV mode @ LSM

33 g Ge @ 78V *σ*~1.5 eV_{ee} (0.53 eh pair)

2020 World leading results

(DM scattering on e, DM absorption) with only 58 hours of DM search at LSM!

Spectra <25eV_{ee} =680 eV phonon) *dominated by Low Energy Excess (heat only event)*

- HV mode is not sufficient by itself to probe low mass DM, must be combined w/ heat only event identification
- Similar results on a 200g detector with NbSi thermometer

200 g Ge @ 66V

 $\sigma \sim 4.45 \text{ eV}_{ee}$ (1.5 eh pair)

2022 World leading results

(DM scattering on e, DM absorption) with only 28 days of DM search at LSM!

EDELWEISS: Identification of Low Energy Excess (« heat only »)

EDELWEISS : Future

- EDELWEISS-III setup dismantled in 2023
- EDELWEISS collaboration is not existing anymore
-But *EDW Ge detector technology still alive :*
 - 38g Ge cryo detector development for CEvNS : Ricochet experiment installed and taking data on a 60 MW reactor @ ILL (Grenoble).
 - Ongoing participation of some of the EDW members + new French groups to the TESSERACT @ LSM Project

Empty EDW space @ LSM (feb 2024)

The CE_vNS connexion

Main cryogenic det. DM search experiments have a CEvNS side project:

- Coherent elastic neutrino nucleus scattering
- If you are **sensitive to low mass DM you are sensitive to CE**v**NS**
- You know precisely what you want to measure and you want to measure it precisely
- Depending on the site you can design your experiment accordingly

CEVNS: RICOCHET - MiniCryoCube

 HEMT (High electron Mobility Transistor) @
 1K to replace the standard Si-JFET working at 100K

Bias and feedback
 resistor placed at
 10mK to minimize the thermal noise

 ◆ 35 µm contantan tracks on 100 µm kapton foil for the 10mK-1K path

◆ Intense work on the 1K HEMT based cold elec and 1K-10mK interface :

- Mitigate stray capacitance (ionization reso)
- Mitigate heat load on 10mK stage
 - → low HEMT bias dissipation (~15uW/HEMT)
 - ➡ Use of special material for the 1K-10mK mechanics
- Mitigate Johnson noise of FB and and bias resistor

Ricochet R&D: MiniCryoCube demonstrator @ IP2I Lyon

Presented at: TAUP2023, IDM2023, Nobel Symposium 2023 (NS-182 « Dark Matter

- ER/NR discrimination threshold has been improved by about one order of magnitude w.r.t EDW and SuperCDMS
- Ricochet can now probe reactor neutrinos (CEvNS) (and equiv. 3 GeV WIMP with highly efficient LEE and ER rejection)
 - ➡ Ricochet resolution goals: 10 eV (heat) + 20 eVee (ionisation)
 - ➡ factor of ~2 still missing

TESSERACT : Proposal experiment @ LSM

<u>Transition Edge Sensors with Sub-Ev Resolution And Cryogenic Targets</u>

Snowmass2021 - Letter of Interest

- DOE Funding for R&D and project development \bullet began in June 2020 (Dark Matter New Initiative)
- One experimental design, and different target materials with complementary DM sensitivity, all using TES
- Includes SPICE (Al₂O₃ and GaAs) and HeRALD (LHe)
- ~ 40 people from 8 institutions
- Actively searching for an underground lab
- found an underground Lab and new partners

TESSERACT @ LSM proposal:

- Benefit from EDW+Ricochet+CUPID Ge bolometer expertise and low-background cryogenic experience to:
 - 1. Add the French semiconductor Ge bolometer technology (both LV and HV mode) to the TESSERACT science program
 - 2. **Deploy** the future TESSERACT experiment at LSM
- Achieve leading light DM sensitivities on short time scales
- Benefit from exchange of technologies with US partners

TESSERACT : New generation TES sensors

TESSERACT

- SuperCDMS TES technology optimized for small volume crystal.
- **273 meV (RMS) leading to eV-scale threshold already achieved** with a 0.2g Si detector and Tc = 50 mK
- Targeted Tc around 15-20 mK recently achieved

~100 meV threshold achievable on 1 cm³ crystals

Next challenge: parasitic power (vibrations, EMI, IR photons) needs to be <aW to fully reach TES sensitivity

Sub-eV Polar Interactions Cryogenic Experiment: Al₂O₃

1. **Sapphire** supports many **optical phonon modes**. (phonons with a high energy:momentum ratio)

Instead thinking about 'kicking an atom' we now think about recoiling off the lattice, and 'exciting a phonon'. **Optical phonons** are kinematically **well-matched to lowmass dark matter** (similar effective mass)

2. **Sapphire** is a **polar crystal** (couples well to E&M-like inputs)

Allows to **extend DM scattering searches** via light dark photon down to keV masses not accessible to any other target materials

Possibility to extend further down to 100-meV (eV) DM masses thanks to absorption on phonon (electron)

LEE mitigation: Use of > 2 TES channels with various bandwidth response

Momentum

TESSERACT @ LSM : SPICE

Sub-eV Polar Interactions Cryogenic Experiment: GaAs

- GaAs has very high scintillation yield (125 ph/keV, arxiv:1904.09362)
- **GaAs** has a similar DM sensitivity than Ge/Si and similarly allows for control of the backgrounds:
 - **photon:phonon ratio** depends on the recoiling particle type:
 - NR/ER discrimination (~10 eV scale)
 - **photon/phonon coïncidence** in two separate sensors:
 - Low Energy Event rejection (~eV scale)

TESSERACT

phonon/ roton excimer

Helium Roton Apparatus for Light Dark matter

R. Anthony-Petersen et al., arXiv:2307.11877

- Well kinetically matched to GeV-scale DM
- Easy to purify, intrinsically radio pure
- Monolithic and scalable
- LHe cell operated at 20-50 mK with wafer-like cryogenic detectors with TES suspended in vacuum
 - UV/IR photons and He atoms from qp induced evaporation
- First evidence of ER/NR discrimination @10 keV
- Already achieved ~170 eV threshold on He recoils (300 MeV DM)

TESSERACT @ LSM : HeRALD

<u>He</u>lium <u>Roton</u> Apparatus for <u>Light</u> Dark matter

⁴He is unique in two ways:

TESSERACT

 Target material (4He) close to a macroscopic quantum ground state, with no defects/stress/etc.

Superfluid 4He is nearly unique among bulk target materials in this regard : **No Low Energy Excess ??**

Quantum evaporation allows for robust coincidence-based selection of target events at sub-eV scales

Events in calorimetry: single-channel (vacuum gaps mean no shared phonons)

Events in 4He: always multiple channel (evaporated atoms have large angular spread)

→ Near-term HeRALD plans all **involve multi-channel evaporation** readout and testing the above strategy

4He atoms 4He phonons scatter

TESSERACT @ LSM : Ge/Si Cryo detector

TESSERACT

The EDW/Ricochet cryogenic Ge LV technology in TESSERACT will allow to extend the NRDM searches down to 100 MeV with particle ID and LEE rejection in a region of the parameter space inaccessible to non-cryogenic experiments

Ge/Si

TESSERACT back. model = 10 DRU gamma + other backgrounds from EDW-III

TESSERACT @ LSM: summary

All detector technologies will be using:

- 1. athermal phonon TES with sub-eV energy thresholds,
- 2. drastically mitigated Low Energy Excess
- 3. and payloads between 10g to 100g

	Target	Search type	Mass range	LEE rejection	Particle ID
SPICE Polar crystals	Al ₂ O ₃ , SiO ₂	ERDM	100 meV - MeV	multi TES channel	None
SPICE Scintillator	GaAs	NRDM/ ERDM	eV - MeV MeV - GeV	Phonon/ photon coïncidence	Dual Phonon- photon readout
HERALD	He	NRDM	MeV - GeV	Multiple He4/ photon detector	Pulse shape discrimination
	Ge, Si	ERDM	eV - MeV	SSED	None
	Ge, Si, C	NRDM	MeV - GeV	Phonon/ Ionization coincidence	Dual phonon- ionisation readout

TESSERACT @ LSM: Conclusion

TESSERACT

- Tesseract will be installed at LSM
- Installation of a **1st cryostat in the next** 3 years funded by CNRS
- extra DoE funding available

Neck like structure will prevent line of sight backgrounds

~1 DRU ER / <1e-3 DRU NR

TESSERACT @ LSM: Conclusion

Key of success :

- Low Threshold detector
- Control and identification of the Low Energy Excess (Heat Only Event)
- Ultra low background
- Limit dark count on Ge HV detector (IR induced leakage, shallow site impurities etc) 24

Back-up

EDELWEISS: 2 modes of operation

EDELWEISS : Identification of Low Energy Excess (« heat only »)

- Tricks = use the Luke effect
 - Concentrate it
 - trigger a « LEE » veto thermometer
 - single e-h sensitivity possible

Proof of concept in 2023 !

SSED is working...but threshold still high as of today

h+

CEVNS : RICOCHET @ ILL

60 MW reactor @ ILL / Grenoble
Ricochet installation started in 2022
5-10 years program

- ◆ US-France-Russia collab.
- Specifications goals for french cryogenic Ge techno.
 - ~0.75 kg Ge (18*40g)
 - 20 eV ioni + 10eV chal (10* better than EDWIII)
- + Low Energy Excess (heat only) Identification above the ionization threshold

CEVNS: RICOCHET @ ILL

- 58 MW nominal thermal power
 - 8.8 m away from the core
 - ~7 evts/day w/ 50 eV threshold (much less if 20 eV not reached on ionization)
- 3 to 4 cycles per year: ON/OFF modulation to subtract uncorrelated backgrounds
- Significant overburden (~15 m.w.e) to reduce cosmics
- Ricochet integration finalized
 - First reactor data early-2024

Outer shielding: Inner shielding:

- PE: 35 cm
- Pb: 20 cm
- Muon veto
- Soft iron
- PE/Cu: 30 cm
- Pb/Cu: 15 cm
- Cryogenic Muon Veto
- Mu-Metal

CE_VNS : RICOCHET @ ILL

- Reaching 8.7 mK on the 6th of February 2024 on the first cryogenic (Run012)
- 1 miniCryoCube installed (Run013), full 1K PE/Pb shielding installed (Run014) started mid-Feb
 - Commissioning ongoing (Reactor OFF and ON)

CEVNS : RICOCHET - detector optimization

Salagnac & al: arXiv:2111.12438

Threshold defined for all experiments as 5σ

- \cdot Individual detector size optimisation :
 - · Balance between :
 - heat threshold
 - ionization (capacitance)
 - event rate

• 30-50 g is a good compromise for Ge

Fig. 6 Electrostatic simulation of a Full Inter-Digitized electrodes scheme on a 38 g germanium crystal $(\Phi = 30 \text{ g}, h = 10 \text{ mm})$. The crystal is surrounded at 2 mm distance by a chassis connected to the ground (not shown). The capacitance of the 4 electrodes with respect to the ground is about 20 pF (Color figure online.)

31

CEVNS: RICOCHET - detector optimization

Low-Voltage approach for optimal particle identification

- Fiducial volume: 62 %
- Surface event rejection: YES
- Total capacitance: 18 pF

14

Heat energy [keVee]

14