Searches for 0νββ decay with bolometric detectors

Giovanni Benato EDSU Tools 2024 Île de Noirmoutier, June 2-7, 2024

0νββ decay

ββ decay signature

- Continuum for $2νββ$ decay
- \bullet Peak at Q_{BB} for 0νββ \rightarrow Only necessary and sufficient signature!
- Additional signatures from event topology, pulse-shape discrimination, multi-channel readout, daughter tagging, …

0νββ rate

$$
(\mathsf{T}_{1/2}^{\ \ 0\vee\beta\beta})^{-1} = \mathsf{G}_{0\nu}^{\ \ .} |M_{0\nu}|^2 \cdot |f|^2 / m_e^{\ \ 2}
$$

- \bullet T_{1/2}^{0νββ} = 0νββ halflife
- \bullet G_{ov} = phase space (known)
- \bullet M_{ov} = nuclear matrix element
- \bullet f = new physics term

Experimental fauna

Liquid scintillators

- High efficiency
- **Easily scalable**
- Poor resolution
- KAMLAND-Zen, SNO+

ETQUID or GAS **Time Projection Chambers**

- Event Topology
- Enriched/depleted runs
- Multiple isotopes
- nEXO, NEXT, PandaX-III, LZ, DARWIN

Germanium detectors

- **Excellent energy resolution** and background
- **Granularity**
- Single isotope
- LEGEND, CDEX

EXPERATURE **Bolometric detectors**

- Excellent energy resolution
- Multiple isotopes
- Granularity
- CUORE, CUPID family, AMoRE

Experimental fauna

 $G[S]$

Istituto Nazionale di Fisica Nucleare

 \vert S

4

Bolometric detectors

- Crystal absorber coupled to phonon or temperature sensor $\rightarrow \Delta T \propto #$ of phonons \propto deposited energy
- \bullet Δ T of the order of 0.1 mK \rightarrow must be operated at 10-30 mK
- Slow response (from us to s)
- Many materials suitable as an absorber \rightarrow can study 0νββ decay on multiple isotopes
- **•** Energy resolution in [5,20] keV range \rightarrow in most cases, dominated by thermal noise and a yet unidentified energy-dependent term
- No dead layer
	- \rightarrow sensitive to surface contamination of surrounding passive materials

Backgrounds

- Cosmic rays
	- \rightarrow Go underground, and install a muon veto
- **238U and 232Th** contamination in detector and passive materials
	- \rightarrow Strict protocols of material selection and cleaning
	- \rightarrow Massive Pb and Cu shielding against external y's
	- \rightarrow Particle identification to actively suppress α background
	- \rightarrow Time-dependent analysis to identify subsequent events from the same decay chain
- Neutrons \rightarrow Passive shielding
- Anthropogenic radioactivity \rightarrow Usually not so worrisome
- Pileup of 2νββ decay events \rightarrow Affects only crystals with 100 Mo due to large decay rate

Scintillating bolometers

- Scintillation process depends on density of energy deposition and hence on particle type \rightarrow LY dependence
	- \rightarrow Time profile dependence
- Dual readout technique necessary for next-generation experiments \rightarrow Heat for optimal energy resolution
	- \rightarrow Scintillation for particle discrimination
- Detection of scintillation light performed with secondary bolometer \rightarrow Ge or Si crystal wafer instrumented with thermal sensor
- Light detector cannot touch the main absorber to avoid thermal cross-talk \rightarrow Light collection sub-optimal

Phonon readout technologies

Neutron-Transmutation-Doped Ge thermistors

- Neutron-doped Ge chips
- Slow response time (>ms)
- Huge dynamic range
- Easy mass production
- Affordable for heat and light
- Applicable to any absorber

Metallic Magnetic Calorimeters

- Metallic paramagnetic sensor transducing temperature rise into a magnetic flux change
- Read-out with SQUID
- Fast (us)
- Large dynamic range + good resolution

Transition Edge Sensors

- Fast response time (us)
- Great for low-threshold measurements
- Small dynamic range

 $G|S$

- Difficult mass production
- Not directly applicable to all crystals

Neganov Trofimov Luke amplification

- Create E-field in semiconductor crystal to drift electron-hole pairs
- Phonon emission by e-h pairs
- Well demonstrated with NTDs

CUORE

- $\bullet\;\;$ 988 TeO₂ crystals \rightarrow 742 kg of detector mass
	- \rightarrow 206 kg of isotope
	- \rightarrow No particle discrimination
- Natural abundance (34%)
- Passive Pb and borated PE shieldings
- Largest dilution refrigerator ever operated
- Stable operation singe 2019
- Accumulated exposure > 2 ton∙yr

S

CUORE

S

CUPID-0

 $G \mid S$

 $\mathbf S$

INFN

- 26 **ZnSe** crystals (24 enriched at 95% in ⁸²Se)
- Light detectors: Ge wafers + NTDs
	- \rightarrow Particle discrimination through pulse shape of light signal
- Phase I with reflector foil to maximize light collection: 9.95 kg∙yr
- Phase II without reflector foil: 5.74 kg∙yr
- Energy resolution ~22 keV FWHM
- **● T1/2 ⁰νββ(82Se) > 4.6∙1024 yr @ 90% c.i.**
- \bullet T_{1/2}^{2νββ}(⁸²Se) > [8.69 ± 0.05(stat)^{+0.09}_{-0.06}(syst)]⋅10²⁴ yr

Giovanni Benato EDSU Tools 2024 — June 2-7, 2024

CUPID-Mo

- \bullet 20 Li_2MoO_4 crystals enriched at 97% in ^{100}Mo
- 20 Ge wafers instrumented as light detectors
- Total exposure: 2.16 kg∙yr
- **• T**_{1/2}^{0vββ} > 1.8⋅10²⁴ yr @ 90% c.i.
- \bullet T_{1/2}^{2νββ} = [7.07 ± 0.02 (stat.) ± 0.11 (syst.)] ⋅ 10¹⁸ yr
- Comprehensive background model yielding fundamental information for the design of CUPID

 \rightarrow Background index:

 $[2.7^{+0.7}]_{-0.6}$ (stat)^{+1.1} _{-0.5}(syst)] \cdot 10⁻³ counts/keV/kg/year

 $G \mid S$ $\mathbf S$

CUPID

 $\overline{\mathbf{s}}$

- Li₂¹⁰⁰MoO₄ crystals for 240 kg of ¹⁰⁰Mo
- To be installed in CUORE cryostat
- Ge light detectors with Neganov-Trofimov-Luke amplification to enhance signal-to-noise ratio \rightarrow Reject α particles and 2ν $\beta\beta$ pile-up events
- Expected background: 10^{-4} counts/keV/kg/yr
- Expected energy resolution: 5 keV
- \bullet Discovery sensitivity: Τ_{1/2}^{0νββ} = 10²⁷ yr \rightarrow Cover inverted-ordering region

AMoRE

- Various Mo-based crystals read-out with MMCs
- AMoRE-pilot: 1.9 kg of $^{48\text{depl}}\text{Ca}^{100}\text{MoO}_4\text{@YangYang}$ →Background ~0.5 counts/keV/kg/yr
- AMoRE-I: 4.6 kg of $^{48\text{depl}}$ Ca $^{100}\text{MoO}_4$ + 1.6 kg of Li $_2^{100}\text{MoO}_4$ with improved muon veto and passive shielding \rightarrow Background reduced by an order of magnitude
- AMoRE-II: 100 kg of 100 Mo in new cryostat @ Yemilab \rightarrow Background goal 10⁻⁴ counts/keV/kg/yr \rightarrow Sensitivity T $_{1/2}^{\quad \ \, 0\lor\beta\beta}\sim10^{27}$ yr

EDSU Tools 2024 — June 2-7, 2024

 $G \mid S$

How to go beyond next-generation

- \bullet Discriminate single β 's from passive materials from $\beta\beta$ events occurring in the crystal bulk \rightarrow Discriminate surface vs bulk event
- Identify external γ rays \rightarrow Active shielding
- \bullet New isotopes with high Q-value

CROSS

- Main idea: coat crystal surfaces to enable bulk-vs-surface discrimination via pulse shape analysis
	- \rightarrow Allow to suppress both α and β particles
	- \rightarrow Could be applied to non-scintillating crystals
- Bonus idea: add light detector with Neganov-Trofimov-Luke (NTL) amplification to enhance signal-to-noise ratio
- R&D measurements @Canfranc demonstrated performance of surface-vs-bulk discrimination both with NTDs and NbSi thin-film sensors
	- \rightarrow Scalability to large crystals to be proved
- NTL amplification demonstrated to be scalable →Adopted by CUPID

BINGO

- Main idea: the crystals should be surrounded exclusively by active material
	- \circ Light detectors acting as active veto against α and β from detector holder (copper)
	- Active veto against γ's from cryostat
- Detector structure successfully tested
- Active γ veto under advanced characterization
- Dedicated cryostat under commissioning in Modane

γ

 $G \mid S$ S

TINY

- Goal: investigate feasibility of bolometric search of 0νββ decay on:
	- \circ ⁷⁶Zr with ZrO $_{\rm 2}$ scintillating crystals using NTD readout
	- \bigcirc $^{150}\!$ Nd with NdGaO $_3$ crystals using high-impedance NbSi TES \rightarrow Particle discrimination via pulse shape on TES
- TINY proof-of-concept
	- Natural crystals to demonstrate detector technology
	- Already competitive wrt NEMO-3
- TINY-baseline
	- \circ 5 × 400g ⁷⁶ZrO₂ crystals
	- \circ 5 × 400g 150 NdGaO₃ crystals
	- \circ Background goal: 10^{-3} counts/keV/kg/yr

How do we go even further?

Event topology

- Discriminate bulk vs surface events by further developing CROSS technology
- Discriminate single-site ββ events from e.g. multi-Compton γ events with e.g. athermal phonon sensors
- **Energy resolution**
	- Understand mechanism that dominates energy resolution in bolometers
- Precision measurements with multi-isotope approach
	- R&D on new crystals is fundamental to validate any future evidence of 0νββ decay
	- \circ Developing an effective enrichment technique for ⁴⁸Ca could be pivotal for precision measurements

