Searches for 0vββ decay with bolometric detectors

Giovanni Benato EDSU Tools 2024 Île de Noirmoutier, June 2-7, 2024

ονββ decay

 $\beta\beta$ decay signature

- Continuum for $2\nu\beta\beta$ decay
- Peak at $Q_{\beta\beta}$ for $0\nu\beta\beta$ \rightarrow Only necessary and sufficient signature!
- Additional signatures from event topology, pulse-shape discrimination, multi-channel readout, daughter tagging, ...

 $0v\beta\beta$ rate

$$(T_{1/2}^{0\nu\beta\beta})^{-1} = G_{0\nu} \cdot |M_{0\nu}|^2 \cdot |f|^2 / m_e^2$$

- $T_{1/2}^{0\nu\beta\beta} = 0\nu\beta\beta$ halflife
- G_{0v} = phase space (known)
- M_{ov} = nuclear matrix element
- f = new physics term

Experimental fauna

Liquid scintillators

- High efficiency
- Easily scalable
- Poor resolution
- KAMLAND-Zen, SNO+

Time Projection Chambers

- Event Topology
- Enriched/depleted runs
- Multiple isotopes
- nEXO, NEXT, PandaX-III, LZ, DARWIN

Germanium detectors

- Excellent energy resolution and background
- Granularity
- Single isotope
- LEGEND, CDEX

Bolometric detectors

- Excellent energy resolution
- Multiple isotopes
- Granularity
- CUORE, CUPID family, AMoRE

Experimental fauna

GS

Istituto Nazionale di Fisica Nucleare

S

Bolometric detectors

- Crystal absorber coupled to phonon or temperature sensor
 →ΔT ∝ # of phonons ∝ deposited energy
- ΔT of the order of 0.1 mK \rightarrow must be operated at 10-30 mK
- Slow response (from µs to s)
- Many materials suitable as an absorber \rightarrow can study $0\nu\beta\beta$ decay on multiple isotopes
- Energy resolution in [5,20] keV range
 →in most cases, dominated by thermal noise
 and a yet unidentified energy-dependent term
- No dead layer
 →sensitive to surface contamination of surrounding passive materials

Backgrounds

- Cosmic rays
 - \rightarrow Go underground, and install a muon veto
- ²³⁸U and ²³²Th contamination in detector and passive materials
 - \rightarrow Strict protocols of material selection and cleaning
 - \rightarrow Massive Pb and Cu shielding against external $\gamma {}^{\prime}s$
 - \rightarrow Particle identification to actively suppress α background
 - \rightarrow Time-dependent analysis to identify subsequent events from the same decay chain
- Neutrons
 →Passive shielding
- Anthropogenic radioactivity
 →Usually not so worrisome
- Pileup of $2v\beta\beta$ decay events
 - \rightarrow Affects only crystals with ^{100}Mo due to large decay rate

Scintillating bolometers

- Scintillation process depends on density of energy deposition and hence on particle type →LY dependence
 - \rightarrow Time profile dependence
- Dual readout technique necessary for next-generation experiments
 →Heat for optimal energy resolution
 - \rightarrow Scintillation for particle discrimination
- Detection of scintillation light performed with secondary bolometer →Ge or Si crystal wafer instrumented with thermal sensor
- Light detector cannot touch the main absorber to avoid thermal cross-talk →Light collection sub-optimal

Phonon readout technologies

Neutron-Transmutation-Doped Ge thermistors

- Neutron-doped Ge chips
- Slow response time (>ms)
- Huge dynamic range
- Easy mass production
- Affordable for heat and light
- Applicable to any absorber

Metallic Magnetic Calorimeters

- Metallic paramagnetic sensor transducing temperature rise into a magnetic flux change
- Read-out with SQUID
- Fast (µs)
- Large dynamic range + good resolution

Transition Edge Sensors

- Fast response time (µs)
- Great for low-threshold measurements
- Small dynamic range

S

G

- Difficult mass production
- Not directly applicable to all crystals

Neganov Trofimov Luke amplification

- Create E-field in semiconductor crystal to drift electron-hole pairs
- Phonon emission by e-h pairs
- Well demonstrated with NTDs

CUORE

- 988 TeO₂ crystals
 - \rightarrow 742 kg of detector mass
 - \rightarrow 206 kg of isotope
 - \rightarrow No particle discrimination
- Natural abundance (34%)
- Passive Pb and borated PE shieldings
- Largest dilution refrigerator ever operated
- Stable operation singe 2019
- Accumulated exposure
 > 2 ton·yr

CUORE

G S

CUPID-0

- 26 **ZnSe** crystals (24 enriched at 95% in ⁸²Se)
- Light detectors: Ge wafers + NTDs
 - \rightarrow Particle discrimination through pulse shape of light signal
- Phase I with reflector foil to maximize light collection: 9.95 kg·yr
- Phase II without reflector foil: 5.74 kg·yr
- Energy resolution ~22 keV FWHM
- $T_{1/2}^{0\nu\beta\beta}(^{82}Se) > 4.6 \cdot 10^{24} \text{ yr} @ 90\% \text{ c.i.}$
- $T_{1/2}^{-2\nu\beta\beta}(^{82}Se) > [8.69 \pm 0.05(stat)^{+0.09}_{-0.06}(syst)] \cdot 10^{24} \text{ yr}$

G S

INFN

Giovanni Benato EDSU Tools 2024 – June 2-7, 2024

CUPID-Mo

- 20 Li₂MoO₄ crystals enriched at 97% in ¹⁰⁰Mo
- 20 Ge wafers instrumented as light detectors
- Total exposure: 2.16 kg·yr
- $T_{1/2}^{0\nu\beta\beta} > 1.8 \cdot 10^{24} \text{ yr} @ 90\% \text{ c.i.}$
- $T_{1/2}^{-2\nu\beta\beta} = [7.07 \pm 0.02 \text{ (stat.)} \pm 0.11 \text{ (syst.)}] \cdot 10^{18} \text{ yr}$
- Comprehensive background model yielding fundamental information for the design of CUPID

 \rightarrow Background index:

 $[2.7^{+0.7}_{-0.6}(stat)^{+1.1}_{-0.5}(syst)] \cdot 10^{-3} counts/keV/kg/year$

G S

CUPID

- $\text{Li}_2^{100}\text{MoO}_4$ crystals for 240 kg of ^{100}Mo
- To be installed in CUORE cryostat
- Ge light detectors with Neganov-Trofimov-Luke amplification to enhance signal-to-noise ratio \rightarrow Reject α particles and $2\nu\beta\beta$ pile-up events
- Expected background: 10⁻⁴ counts/keV/kg/yr
- Expected energy resolution: 5 keV
 - Discovery sensitivity: $T_{1/2}^{0\nu\beta\beta} = 10^{27}$ yr
 - ${\rightarrow} \text{Cover}$ inverted-ordering region

AMore

- Various Mo-based crystals read-out with MMCs
- AMoRE-pilot: 1.9 kg of ^{48depl}Ca¹⁰⁰MoO₄ @ YangYang
 →Background ~0.5 counts/keV/kg/yr
- AMoRE-I: 4.6 kg of ^{48depl}Ca¹⁰⁰MoO₄ + 1.6 kg of Li₂¹⁰⁰MoO₄ with improved muon veto and passive shielding
 →Background reduced by an order of magnitude
- AMoRE-II: 100 kg of ¹⁰⁰Mo in new cryostat @ Yemilab \rightarrow Background goal 10⁻⁴ counts/keV/kg/yr \rightarrow Sensitivity T_{1/2}^{0v $\beta\beta$} ~ 10²⁷ yr

EDSU Tools 2024 – June 2-7, 2024

GS

14

How to go beyond next-generation

- Discriminate single β 's from passive materials from $\beta\beta$ events occurring in the crystal bulk \rightarrow Discriminate surface vs bulk event
- Identify external γ rays
 →Active shielding
- New isotopes with high Q-value

CROSS

- Main idea: coat crystal surfaces to enable bulk-vs-surface discrimination via pulse shape analysis
 - \rightarrow Allow to suppress both α and β particles
 - \rightarrow Could be applied to non-scintillating crystals
- Bonus idea: add light detector with Neganov-Trofimov-Luke (NTL) amplification to enhance signal-to-noise ratio
- R&D measurements @Canfranc demonstrated performance of surface-vs-bulk discrimination both with NTDs and NbSi thin-film sensors
 - \rightarrow Scalability to large crystals to be proved
- NTL amplification demonstrated to be scalable
 →Adopted by CUPID

BINGO

- Main idea: the crystals should be surrounded exclusively by active material
 - \circ Light detectors acting as active veto against α and β from detector holder (copper)
 - $\circ \quad \mbox{Active veto against } \gamma \mbox{'s from cryostat}$
- Detector structure successfully tested
- Active γ veto under advanced characterization
- Dedicated cryostat under commissioning in Modane

TINY

- Goal: investigate feasibility of bolometric search of $0\nu\beta\beta$ decay on:
 - \circ ⁷⁶Zr with ZrO₂ scintillating crystals using NTD readout
 - 150 Nd with NdGaO₃ crystals using high-impedance NbSi TES \rightarrow Particle discrimination via pulse shape on TES
- TINY proof-of-concept
 - Natural crystals to demonstrate detector technology
 - Already competitive wrt NEMO-3
- TINY-baseline
 - \circ 5 × 400g ⁷⁶ZrO₂ crystals
 - \circ 5 × 400g ¹⁵⁰NdGaO₃ crystals
 - \circ Background goal: 10⁻³ counts/keV/kg/yr

How do we go even further?

• Event topology

- Discriminate bulk vs surface events by further developing CROSS technology
- \circ Discriminate single-site $\beta\beta$ events from e.g. multi-Compton γ events with e.g. athermal phonon sensors
- Energy resolution
 - Understand mechanism that dominates energy resolution in bolometers
- Precision measurements with multi-isotope approach
 - \circ R&D on new crystals is fundamental to validate any future evidence of $0\nu\beta\beta$ decay
 - Developing an effective enrichment technique for ⁴⁸Ca could be pivotal for precision measurements

