Tools in Effective Field Theories of (Massive) Gravity

Île de Noirmoutier 3 Juin 2024

Imperial College London Claudia de Rham

💩 OUARKS 🔮 LEPTONS 🔮 BOSONS 🌒 HIGGS BOSON

Join Noirmoutier Sandcastle Competition

Effective Field Theory

Join Noirmoutier Sandcastle Competition

High-energy completion

Constraints from UV Completion

Starting with the assumption of a healthy Wilsonian UV completion (string theory or other)

Set up classes of IR constraints

Precise statements at the level of $2 \rightarrow 2$ scattering amplitude (complement S-matrix bootstrap program)

Alberte

Carrillo-Gonzalez

Chen

Franckfort

Heisenberg

Held

Klapanek

Kozuszek

Margalit

Melville

Momeni

Wiseman

Causality Bounds

Unresolvable support outside

front velocity light cone

Pozsgay

Rumbutis

Tokareva

Tolley

Zhang

Zhou

CoM Energy

Low-energy EFT

- Unitary (optical theorem)
 Lorentz invariant (crossing symmetry)
 CALISAL (analyticita)
- CAUSAL (analyticity)
- ✓ Local (Froissart Bound)

 $\mathcal{A} : 2 - 2 \text{ elastic amplitude}$ $2 \operatorname{Im} = \sum_{X} \left| \sum_{X} x \right|^{2} \ge \left| \sum_{X} \right|^{2}$

Positivity bounds (applied to low-energy scattering amplitude)

$$\left. \frac{\mathrm{d}^2 \mathcal{A}(s,t)}{\mathrm{d}s^2} \right|_{t=0} > 0$$

 $s < 4m^2$

Pham and Truong 1985 Ananthanarayan, Toublan and Wanders, 1994 Adams et. al. 2006

Applications to **SMEFT**

New Physics Beyond the Standard Model

 $\mathcal{L}_{BSM} = \mathcal{L}_{SM}^{(4)} + New Physics \equiv new modes with mass <math>M \gtrsim \Lambda \gtrsim TeV$

Quickly leads to a huge parameter space

e.g. SMEFT up to dim-6 operators given in 1008.4884 includes 59 operators+ B-violating

Becomes even more challenging at higher order (44,807 dim-8 operators...)

From Grzadkowski, Iskrzyński, Misiak&Rosiek 1008.4884

SMEFT

Zhang & Zhou, 2020

Adding Gravity

Causality \longleftrightarrow analyticity Locality, Froissart Bound with Gravity??? Unitary (optical theorem)
 Lorentz invariant (crossing symmetry)

✓ CAUSAL (analyticity)

✓ Local (Froissart Bound)

positivity bounds

Direct application to cosmology is more subtle due to:

- absence of S-matrix
- lack of Lorentz invariance/crossing symmetry
- ambiguous connection with analyticity
- gravitational exchange pole

Directions in progress:

 Cosmological bootstrap on correlators (only perturbative)
 No constraints from UV completion (analyticity, non-perturbative UV unitarity still need to be formulated)
 Arkani-Hamed, Baumann, Lee & Pimentel, 1811.00024 Baumann, Duaso Pueyo, Joyce, Lee & Pimentel, 1910.14051, 2005.04234

see Sleight & Taronna for Bootstrapping Inflationary Correlators in Mellin Space, 1907.01143, 2007.09993

Direct application to cosmology is more subtle due to:

- absence of S-matrix
- lack of Lorentz invariance/crossing symmetry
- ambiguous connection with analyticity
- gravitational exchange pole

Directions in progress:

- Cosmological bootstrap on correlators (only perturbative)
- Alternative approach is to focus on approximate S-matrix with broken boosts
 Full formalism still under development

CdR & Melville 1703.00025 Grall & Melville 2102.05683+2022+

See also recent work by Creminelli, Janssen & Senatore, 2207.14224 assuming conformal invariance in 3d

Direct application to cosmology is more subtle due to:

- absence of S-matrix
- lack of Lorentz invariance/crossing symmetry
- ambiguous connection with analyticity
- gravitational exchange pole

Directions in progress:

- Cosmological bootstrap on correlators (only perturbative)
- Approximate S-matrix with broken boosts

 Constrain Wilson coefficients defined around Minkowski vacuum and translate into constraints around cosmological backgrounds (requires adiabatic assumptions)

 $1904.05874,\,1905.08816,\,1906.11840,\,1908.08644,\,2103.06855,\,2103.11195,\,\ldots$

Will show a quick example

Direct application to cosmology is more subtle due to:

- absence of S-matrix
- lack of Lorentz invariance/crossing symmetry

quick example

- ambiguous connection with analyticity
- gravitational exchange pole

Directions in progress:

- Cosmological bootstrap on correlators (only perturbative)
- Approximate S-matrix with broken boosts

Constrain Wilson coefficients defined around Minkowski vacuum

Use Infrared causality as a proxy for positivity

Worked developed with Carrillo Gonzalez, Chen, Jaitly, Margalit, Pozsgay, Tolley & Zhang

Constraining Models DE/MG

Example of DE/MG: quartic Horndeski with parameters $C_{B,M,T}$

 $\mathcal{L} = M_{\rm Pl}^2 G_4(X) R + \Lambda^4 G_2(X) + \frac{1}{H_0^2} G_{4,X}(X) \left((\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right) + \mathcal{L}_{\rm matter}(\psi, g)$

$$c_{M} = -\frac{2\dot{X}}{HM^{2}\Omega_{\text{DE}}} (G_{4,X} + 2XG_{4,XX}), \quad \text{Effective Planck Mass}$$

$$c_{B} = \frac{8X}{M^{2}\Omega_{\text{DE}}} (G_{4,X} + 2XG_{4,XX}), \quad \text{"Braiding" (scalar/tensor mixing)}$$

$$c_{T} = \frac{4X}{M^{2}\Omega_{\text{DE}}} G_{4,X}, \quad \text{Speed of GWs} - 1$$

 $M^2 = 2 \left(G_4 - 2X G_{4,X} \right)$

Constraining Models DE/MG

Example of DE/MG: quartic Horndeski with parameters $C_{B,M,T}$

Constraining Models DE/MG

Example of DE/MG: quartic Horndeski with parameters $C_{B,M,T}$

Constraints on Low-energy Models

Example of Dark Energy model (quartic Horndeski) with parameters $c_{B,M,T}$

Constraints on Low-energy Models

Example of Dark Energy model (quartic Horndeski) with parameters $c_{B,M,T}$

Note: To be taken with a pinch of salt

Only makes sense if assume can connect back to Minkowski

with Melville and Noller, 2103.06855

Applications to EFT of Cosmology

- Direct application to cosmology is more subtle due to:
- absence of S-matrix
- lack of Lorentz invariance/crossing symmetry
- ambiguous connection with analyticity
- gravitational exchange pole

Directions in progress:

- Cosmological bootstrap on correlators (only perturbative)
- Approximate S-matrix with broken boosts
- Constrain Wilson coefficients defined around Minkowski vacuum

• Use Infrared causality as a proxy for positivity

 $\Delta T = \Delta T^g + \Delta T^{\rm EFT}$

CoM Energy

Gravitational EFTs

✓ Unitary (optical theorem) ✓ Lorentz invariant (crossing symmetry) ✓ CAUSAL (analyticity) ✓ Local (Froissart Bound) positivity bounds (sub)luminal sound speed

Small Superluminality – without gravity

As soon as a "*substance*" allows the tiniest superluminal speed, nothing prevents us from stacking it so as to end up with a significant/observable "time advance"

No Gravity

As soon as a "*substance*" allows the tiniest SL, nothing prevents us from stacking it so as to end up with a significant/observable "time advance"

With Gravity

Anything living on the spacetime *inexorably* curves the geometry. There is a limit to "stacking"

Not always meaningful violation of causality

Goldstone Boson without Gravity

Goldstone Boson with Gravity

Positivity vs Causality

Carrillo Gonzalez, CdR, Pozsgay, Tolley, 2207.03491

c = 1

Tools for EFT of (massive) Gravity

- Positivity bounds applied on low-energy EFTs can probe unknown UV contributions. Connection between UV and IR is made thanks to analyticity demanded from causality & non-perturbative unitarity.
- Application to SMEFT already proven powerful.
 Generalization to bounds beyond 2-2 would be instrumental
- Applications to gravitational EFTs & EFT of Cosmology is more subtle
- **Causality bounds** applied directly at the level of the low-energy EFT can provide powerful complementary bounds
- Applicable to EFT of Gravity, Cosmology and generalizable beyond 2-2

Causality: Towards new Opportunities

While powerful, current positivity bounds have not yet reached their full potential

EFT of photons

4-point tree-level scattering amplitude arising from this theory can be parame

$$egin{aligned} \mathcal{A}_{++++} &= f_2 \left(s^2 + t^2 + u^2
ight) + f_3 stu + f_4 \left(s^2 + t^2 + u^2
ight)^2 \ \mathcal{A}_{++--} &= g_2 s^2 + g_3 s^3 + g_4 s^4 + g_4' s^2 tu \ \mathcal{A}_{+++-} &= h_3 stu \ f_2 &= 2 \left(4 c_1 + c_2
ight) \,, \ g_2 &= 2 \left(4 c_1 + 3 c_2
ight) \ f_3 &= -3 \left(c_3 + c_4 + c_5
ight) \,, \ g_3 &= -c_5 \,, \ h_3 &= -rac{3}{2} c_3 \,, \ f_4 &= rac{1}{2} c_6 \,, \ g_4 &= rac{1}{2} (c_6 - c_8) + c_7 \,, \ g_4' &= -rac{1}{2} (c_7 + c_8) \,. \end{aligned}$$

Positivity vs Causality in EFT of photons

With Carrillo Gonzalez, Jaitly, Pozsgay, Tokareva, 2208.12631

Positivity vs Causality in EFT of photons

With Carrillo Gonzalez, Jaitly, Pozsgay, Tokareva, 2208.12631

Positivity vs Causality in EFT of photons

With Carrillo Gonzalez, Jaitly, Pozsgay, Tokareva, 2208.12631

Constraints on Dark Energy

Example of Dark Energy model (quartic Horndeski)

 $\mathcal{L} = M_{\rm Pl}^2 G_4(X) R + \Lambda^4 G_2(X) + \frac{1}{H_0^2} G_{4,X}(X) \left((\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right) + \mathcal{L}_{\rm matter}(\psi, g)$ $X = -\frac{1}{2\Lambda^4} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$ $\Lambda^2 = H_0^2 M_{\rm Pl}^2 \sim 10^{-3} \text{eV}$

$$c_{M} = -\frac{2\dot{X}}{HM^{2}\Omega_{\text{DE}}} (G_{4,X} + 2XG_{4,XX}), \quad \text{Effective Planck Mass}$$

$$c_{B} = \frac{8X}{M^{2}\Omega_{\text{DE}}} (G_{4,X} + 2XG_{4,XX}), \quad \text{"Braiding" (scalar/tensor mixing)}$$

$$c_{T} = \frac{4X}{M^{2}\Omega_{\text{DE}}} G_{4,X}, \quad \text{Speed of GWs} - 1$$

 $M^2 = 2(G_4 - 2XG_{4,X})$

with Melville and Noller, 2103.06855

Constraints on Dark Energy

Example of Dark Energy model (quartic Horndeski)

 $\mathcal{L} = M_{\rm Pl}^2 G_4(X) R + \Lambda^4 G_2(X) + \frac{1}{H_0^2} G_{4,X}(X) \left((\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right) + \mathcal{L}_{\rm matter}(\psi, g)$

Assume a Λ CDM background. Linear perturbations controlled by 4 background functions (including kineticity related to G_2)

$$c_{M} = -\frac{2\dot{X}}{HM^{2}\Omega_{\text{DE}}} (G_{4,X} + 2XG_{4,XX}), \quad \text{Effective Planck Mass}$$

$$c_{B} = \frac{8X}{M^{2}\Omega_{\text{DE}}} (G_{4,X} + 2XG_{4,XX}), \quad \text{"Braiding" (scalar/tensor mixing)}$$

$$c_{T} = \frac{4X}{M^{2}\Omega_{\text{DE}}} G_{4,X}, \quad \text{Speed of GWs} - 1$$

Constrained performing a Markov chain Monte Carlo analysis, using:

- Planck 2015,
- CMB lensing and low- ℓ polarisation data,
- SDSS/BOSS BAO
- SDSS DR4 LRG matter power spectrum shape
- redshift space distortion constraints from BOSS and 6dF

Constraints on Dark Energy

Example of Dark Energy model (quartic Horndeski)

 $\mathcal{L} = M_{\rm Pl}^2 G_4(X) R + \Lambda^4 G_2(X) + \frac{1}{H_0^2} G_{4,X}(X) \left((\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right) + \mathcal{L}_{\rm matter}(\psi, g)$

Assume a Λ CDM background. Linear perturbations controlled by 4 background functions (including kineticity related to G_2)

$$c_{M} = -\frac{2\dot{X}}{HM^{2}\Omega_{\text{DE}}} (G_{4,X} + 2XG_{4,XX}), \quad \text{Effective Planck Mass}$$

$$c_{B} = \frac{8X}{M^{2}\Omega_{\text{DE}}} (G_{4,X} + 2XG_{4,XX}), \quad \text{"Braiding" (scalar/tensor mixing)}$$

$$c_{T} = \frac{4X}{M^{2}\Omega_{\text{DE}}} G_{4,X}, \quad \text{Speed of GWs} - 1$$

In addition, these parameters can be bounded using positivity bounds

with Melville and Noller, 2103.06855

Constraints on Dark Energy

$$\mathcal{L} = M_{\rm Pl}^2 G_4(X) R + \Lambda^4 G_2(X) + \frac{1}{H_0^2} G_{4,X}(X) \left((\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right) + \mathcal{L}_{\rm matter}(\psi, g)$$

$$c_{M} = -\frac{2\dot{X}}{HM^{2}\Omega_{\text{DE}}} (G_{4,X} + 2XG_{4,XX}), \quad \text{Effective Planck Mass}$$

$$c_{B} = \frac{8X}{M^{2}\Omega_{\text{DE}}} (G_{4,X} + 2XG_{4,XX}), \quad \text{"Braiding" (scalar/tensor mixing)}$$

$$c_{T} = \frac{4X}{M^{2}\Omega_{\text{DE}}} G_{4,X}, \quad \text{Speed of GWs} - 1$$

Positivity Bounds from $\varphi \varphi \to \varphi \varphi$

$$\mathcal{A}^{\varphi\varphi\to\varphi\varphi} = \frac{\bar{G}_{2,XX}}{\Lambda^4} \left(s^2 + t^2 + u^2 \right) - \frac{\bar{G}_{4,X}}{\bar{G}_4\Lambda^4} \left(su + st + ut \right) + 3! \frac{\bar{G}_{4,XX} + \bar{G}_{4,X}^2 / \bar{G}_4}{H_0^2 \Lambda^4} stu$$

$$\bar{G}_{2,XX} \ge -\bar{G}_{4,X} \frac{\bar{G}_{2,X}}{\bar{G}_4}, \quad \bar{G}_{4,XX} + \frac{\bar{G}_{4,X}^2}{\bar{G}_4} \le 0 \quad \varphi \varphi \longrightarrow \varphi \varphi$$

Positivity Bounds from $\varphi\psi\to\varphi\psi$

 $\bar{G}_{2,XX} \ge -\bar{G}_{4,X} \frac{G_{2,X}}{\bar{G}_4}, \quad \bar{G}_{4,XX} + \frac{G_{4,X}^2}{\bar{G}_4} \le 0 \quad \varphi \varphi \longrightarrow \varphi \varphi$