
Causal Set Theory
as a tool for new discoveries

Stav Zalel

EDSU 2024



Causal Set Theory 

• An approach to quantum gravity in which spacetime is fundamentally 
discrete

• Consistent with stringent experimental bounds on local Lorentz 
invariance

• Historically, geared towards phenomenology

• Now, it’s a new tool for searching for fundamental spacetime 
discreteness in the Early Universe



Plan

• What’s a causal set?

• Spacetime as a causal set
Lorentz invariance and non-locality

• Causal sets as a tool for new discoveries

• The discrete cosmological collider
Computing cosmological correlators on a causal set
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𝑦

• Lattice sites connected by edges, implicitly directed up.

    If there is a path upwards from 𝑥 to 𝑦 we write 𝑥 ≺ 𝑦 .

• Lorentzian causal structure: 

The past of a lattice site 𝑥 are all the points 𝑦 such that 𝑦 ≺ 𝑥.

The future of a lattice site 𝑥 are all the points 𝑦 such that 𝑦 ≻ 𝑥.

If a pair of points 𝑥 and 𝑦 are such that there is no directed path 
from one to the other then 𝑥 and 𝑦 are spacelike to each other.

• Hasse diagram: only the minimal number of edges required to 
encode the causal structure are drawn. Nearest neighbours 
are those directly connected by an edge.

• Locally finiteness / discreteness:
given a pair of points 𝑥 and 𝑦, the number of points 𝑧 such that
𝑥 ≺ 𝑧 ≺ 𝑦 is finite, i.e. the cardinality of all intervals is finite.
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A causal set which can be approximated by a 
portion of 1+1 Minkowski

• Spacetime is fundamentally discrete and 
takes the form of a causal set.

• The partial order encodes the causal 
structure.

• Number-volume correspondence: the 
spacetime volume in a spacetime region 
is proportional to the number of 
elements the region contains.

• Continuum spacetime emerges as large-
scale approximation / through coarse-
graining.
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portion of 1+1 Minkowski



A causal set is approximated by a 
continuum through an embedding which 
distributes points evenly and preserves 
the causal structure.

Spacetime as a causal set

A causal set which can be approximated by a 
portion of 1+1 Minkowski

A causal set with 3200 elements 
approximated by dS2. 2007.03835



Spacetime as a causal set

A causal set which can be approximated by a 
portion of 1+1 Minkowski

A causal set with 3200 elements 
approximated by dS2. 2007.03835

A regular lattice picks a preferred frame



Spacetime as a causal set

A causal set which can be approximated by a 
portion of 1+1 Minkowski

A causal set with 3200 elements 
approximated by dS2. 2007.03835

A regular lattice picks a preferred frame

• Random

• Coordinate 
independent

• Preserves 
number-volume 
correspondence



The discrete-continuum correspondence

A causal set (𝐶, ≺) is well-approximated by a continuum (𝑀, 𝑔) 

if there exists a faithful embedding of 𝐶 in 𝑀,
i.e. there exists a map 𝑓 ∶  𝐶 →  𝑀 which,

1. preserves the causal order: 𝑎 ≺  𝑏 ⇔ 𝑓(𝑎) ∈ 𝐽− 𝑓(𝑏) ,      

2. the points 𝑓(𝐶) are distributed in 𝑀 according to the Poisson 
distribution at some fixed density 𝜌,

3. the discreteness scale, 𝑙 = 𝜌−
1

𝑑 , is small compared to any curvature 
length scale in 𝑀.  



The discrete-continuum correspondence
• Sprinkling: the process of generating a 

causal set from a continuum.
• This process is Lorentz invariant, only 

uses the invariant volume measure.

600 points sprinkled into 2d Minkowski 
diamond. Minz, 2021
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• Non-locality: infinitely many nearest 
neighbours arbitrarily far away.
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• No notion of Cauchy hypersurface / 
initial value problem

• Quasi-local action, d’Alembertian…

• Meso-scale where non-locality 
becomes relevant but the continuum 
approximation is still valid

Non-locality: a challenge and an opportunity

Planck scale Cosmological  scale

Meso-scale



Causal Sets as a tool for new discoveries
Cosmological constant
• An order-of-magnitude prediction for the value of the 

cosmological constant

• Detailed studies of the Everpresent Λ cosmological model

Quantum cosmology and the origins of our Universe
• A tool for asking meaningful questions about what happened 

before the Big Bang singularity

• Realising branching universe scenarios, e.g. Smolin’s CNS

Swerves
• Deviations from geodesic motion

Cosmological collider physics

Sorkin, SILARG VII, 1990

Das, Nasiri and Yazdi, 2304.03819
                                         2307.13743

Dowker and SZ, 2212.01149
Bento, Dowker and SZ, 2109.10749

Dowker and SZ, 1703.07556

Dowker, Philpott and Sorkin, 0810.5591



The cosmological collider

• Key idea: the high-energy, high-curvature 
environment in the Early Universe is an 
ideal laboratory in which to search for 
new fundamental physics – including QG!

• Goal: to translate the signals that could 
be measured by upcoming sky surveys 
(e.g. primordial non-Gaussianity) into 
concrete properties of the fundamental 
physics which produced them in the 
Early Universe. 

• Challenge: to import QFT techniques 
from flat to cosmological (continuum) 
spacetimes.



The discrete cosmological collider
• Can we compute cosmological correlators on 

a causal set background? Yes! We can also 
define an S-matrix.

• A new tool for cosmological collider physics, 
can produce predictions to compare against 
cosmological data to test for spacetime 
discreteness.

• Can also help with developing techniques for 
continuum cosmological spacetimes, for 
instance defining a unique vacuum state.

• May offer a novel regularization of the 
continuum, since there are no UV 
divergences on a causal set.

Albertini, Dowker, Nasiri and SZ, 2402.08555

Afshordi et al, arXiv:1205.1296
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• Can we compute cosmological correlators on 

a causal set background? Yes! We can also 
define an S-matrix.

• A new tool for cosmological collider physics, 
can produce predictions to compare against 
cosmological data to test for spacetime 
discreteness.

• Can also help with developing techniques for 
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instance defining a unique vacuum state.
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QFT on flat 
spacetime

QFT on 
cosmological 
spacetimes

QFT on a 
causal set



The diagrammatic expansion

Ω 𝜙𝐻 𝑥 𝜙𝐻 𝑦 Ω =

Example: 2pt function 𝑥 ≻ 𝑦 in 𝜙4,   
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• each internal vertex is connected to at 
least one external vertex by a directed 
path,

• no edges directed outwards from an 
external vertex,

• no closed directed cycles

Albertini, Dowker, Nasiri and SZ, 2402.08555

cf. continuum rules by Dickinson et al., arXiv:1312.3871



• Causal Set Theory is an approach to 
quantum gravity in which spacetime is 
fundamentally discrete.

• It’s a tool for new discoveries of non-
local and Lorentz-invariant physics.

• New developments are enabling us to 
make concrete predictions, including 
for cosmological collider physics.

Summary
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