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Causal Set Theory

* An approach to quantum gravity in which spacetime is fundamentally
discrete

e Consistent with stringent experimental bounds on local Lorentz
Invariance

* Historically, geared towards phenomenology

* Now, it’s a new tool for searching for fundamental spacetime
discreteness in the Early Universe



Plan

* What’s a causal set?

* Spacetime as a causal set
Lorentz invariance and non-locality

e Causal sets as a tool for new discoveries

* The discrete cosmological collider
Computing cosmological correlators on a causal set
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A causal set is a locally finite partial order,
or an irregular Lorentzian lattice.

* Lattice sites connected by edges, implicitly directed up.
Y If there is a path upwards from x to y we writex < y .

* Lorentzian causal structure:
The past of a lattice site x are all the points y such that y < x.
The future of a lattice site x are all the points y such that y > x.

If a pair of points x and y are such that there is no directed path
from one to the other then x and y are spacelike to each other.

* Hasse diagram: only the minimal number of edges required to
encode the causal structure are drawn. Nearest neighbours
are those directly connected by an edge.

* Locally finiteness / discreteness:
given a pair of points x and y, the number of points z such that
X x < z < yisfinite, i.e. the cardinality of all intervals is finite.



Spacetime as a causal set

Spacetime is fundamentally discrete and
takes the form of a causal set.

The partial order encodes the causal
structure.
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Spacetime as a causal set

A causal set is approximated by a
continuum through an embedding which
distributes points evenly and preserves
the causal structure.
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Spacetime as a causal set

A regular lattice picks a preferred frame
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Spacetime as a causal set

A regular lattice picks a preferred frame
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e Random

e Coordinate
independent

* Preserves
number-volume
correspondence

A causal set with 3200 elements
approximated by dS, 2007.03835
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The discrete-continuum correspondence

A causal set (C, <) is well-approximated by a continuum (M, g)
if there exists a faithful embedding of C in M,

i.e. there existsamap f : € —» M which,

1. preserves the causal order:a < b © f(a) € J7(f(b)),

2. the points f(C) are distributed in M according to the Poisson
distribution at some fixed density p,
1

3. the discreteness scale, [ = p 4, is small compared to any curvature
length scale in M.



The discrete-continuum correspondence
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diamond. Minz, 2021
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* Non-locality: infinitely many nearest .
neighbours arbitrarily far away.




The discrete-continuum correspondence
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neighbours arbitrarily far away.



Non-locality: a challenge and an opportunity

* No notion of Cauchy hypersurface /
initial value problem
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e Quasi-local action, d’Alembertian...

* Meso-scale where non-locality

becomes relevant but the continuum
approximation is still valid
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Causal Sets as a tool for new discoveries

Cosmological constant
* An order-of-magnitude prediction for the value of the
cosmological constant Sorkin, SILARG VII, 1990

* Detailed studies of the Everpresent A cosmological model
Das, Nasiri and Yazdi, 2304.03819

. o . 2307.13743
Quantum cosmology and the origins of our Universe

* A tool for asking meaningful questions about what happened

before the Big Bang singularity Dowker and SZ, 2212.01149
Bento, Dowker and SZ, 2109.10749

* Realising branching universe scenarios, e.g. Smolin’s CNS

Dowker and SZ, 1703.07556
Swerves

* Deviations from geodesic motion ... philpott and sorkin, 0810.5591

Cosmological collider physics



The cosmological collider

* Key idea: the high-energy, high-curvature
environment in the Early Universe is an
ideal laboratory in which to search for
new fundamental physics — including QG!

* Goal: to translate the signals that could
be measured by upcoming sky surveys
(e.g. primordial non-Gaussianity) into
concrete properties of the fundamental
physics which produced them in the
Early Universe.

* Challenge: to import QFT techniques
from flat to cosmological (continuum)
spacetimes.

-~




The discrete cosmological collider

e Can we compute cosmological correlators on
a causal set background? Yes! We can also
define an S-matrix. Albertini, Dowker, Nasiri and SZ, 2402.08555

* A new tool for cosmological collider physics,
can produce predictions to compare against
cosmological data to test for spacetime
discreteness.




The discrete cosmological collider

e Can we compute cosmological correlators on
a causal set background? Yes! We can also

define an S-matrix. Albertini, Dowker, Nasiri and SZ, 2402.08555

* A new tool for cosmological collider physics,
can produce predictions to compare against
cosmological data to test for spacetime
discreteness.

e Can also help with developing techniques for
continuum cosmological spacetimes, for

instance defining a unique vacuum state.
Afshordi et al, arXiv:1205.1296

* May offer a novel regularization of the
continuum, since there are no UV
divergences on a causal set.

O

€T i

QFT on flat QFTona
spacetime causal set

L

QFT on
cosmological
spacetimes



The diagrammatic expansion

Albertini, Dowker, Nasiri and SZ, 2402.08555

Example: 2pt function x > y in ¢*,
H H _ F
QU DP DIV = s——9 A
: : A
* each internal vertex is connected to at + ( ) _ ARxZAFZZAFyz
least one external vertex by a directed z v 2 ~
path,
* no edges directed outwards from an n g 2 P
external vertex, e P z AF_AF ARyZ
* no closed directed cycles ~
cf. continuum rules by Dickinson et al., arXiv:1312.3871 -+ g 2 y)
T y E (—10) Z AszAFzzARyz
Z
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Summary

e Causal Set Theory is an approach to
guantum gravity in which spacetime is

fundamentally discrete.
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* It's a tool for new discoveries of non-
local and Lorentz-invariant physics. SO

’.

* New developments are enabling us to

make concrete predictions, including
for cosmological collider physics. 00— PS
£
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