

DEVELOPMENT AND OPERATIONAL UTILISATION OF QUANTUM GRAVITY SENSORS

Bruno Desruelle, Muquans, now Exail

Exploring the Dark Side of the Universe 2024 June 5th, 2024

Table of contents

GRAVITY MEASUREMENT WITH COLD ATOMS
FROM THE LAB TO THE REAL WORLD
APPLICATIONS OF QUANTUM GRAVIMETERS

Gravity measurement with cold atoms

Operating principle : ballistic free fall measurement

Preparation of the atom cloud Free fall Interrogation of the atom cloud

Stimulated Raman transition

6

Stimulated Raman transition (2)

Matter wave interferometry

Matter wave interferometry : practical implementation

From the lab to the real world

Scientific background

- > First theoretical proposition : Bordé (1989)
- First demonstration : M. Kasevich and S. Chu (1991)
- First convincing comparisons with classical gravimeters : S.Merlet and F. Pereira (2009)

Bordé, Physics Letters, A140, 10-12 (1989) Kasevich and Chu, PRL 67, 2 (1991) Z Jiang et al 2012 Metrologia 49 666

A huge technological challenge

- Intelligent laser system:
 - -Several wavelengths
 - -Accurate optical frequency
 - -Spectral agility
 - -Complex sequence
- Ultra high vacuum environment, non magnetic
- Low noise electronics
- Complex software : real time, large data volume
- Outdoor operation
- Transportability
- Reliability
- Cost effectiveness.....
- Compatible with industrialization

Our key innovation : the pyramidal reflector

2008, CNRS patent, Arnaud Landragin and Philippe Bouyer : Cold atom interferometry sensor

Disruptive laser technologies

Generation of 780 nm with frequency doubling of 1560 nm

- => Access to telecom components :
- Extreme optical performances
- completely fibered technology => no optical alignment
- Robustness (Telcordia qualified)
- Reliability

14

- Micro optical benches:
- Fibered inputs & outputs
- Telcordia qualified
- Wide range of optical functionalities

Compensation of ground vibrations

• The gravimeter measures the relative acceleration between the free-falling atoms and the sensor head:

 $a_{measured} = g + vibration noise$

• Vibration rejection : correlation with a high performance accelerometer

Field Absolute Quantum Gravimeter

> Fully integrated

- Home-made electronics, software, vacuum...
- Integrated supervision and monitoring
- Robust and compact design

> High performance

- Continuous absolute gravity measurements over months
- Resolution 1 μ Gal = 10 nm.s⁻² (~10⁻⁹g)

> User friendly

- Easy to install and operate
- Intuitive software
- Remote operation

Applications of quantum gravimeters

Markets and applications

Monitoring of the Earth:

- Volcanology

- Seismology

Sustainable management of underground resources :

- Geothermics & Hydrology
 - Oil & gas
 - Mining industry

Subsurface imaging :

- Civil Engineering
- Void, tunnel and cavity detection

Volcano monitoring: the NEWTON-g project

L. Antoni-Micoller et al., Geophys. Res. Lett., vol 49, issue 13 (2022) Carbone, D.,et al, Gas buffering of magma chamber contraction during persistent explosive activity at Mt. Etna volcano, Commun Earth Environ 4, 471 (2023).

> AQG installed on Mt Etna in July 2020

- 2800 m elevation
- 2.7 km from summit craters

> Hard conditions

- Volcanic tremor / eruptions => seismic noise
- Temperature changes
- Corrosive and dusty atmosphere
- Difficult access (impossible in winter)
- Unstable off-grid power supply

Onboard quantum gravimeter

> Quantum gravimeters :

- long-term surveys
- no need for calibration on ground
- High resolution

> Pioneering results by ONERA in France

• Seaborne and airborne demonstrations

> In-house development under way

- High performance quantum gravimeter
- Compatible with DriX Ocean USV
- Long-term autonomous gravity mapping

GIRAFE quantum gravimeter

exail

Bidel et al., Nat. Commun 9, 627 (2018)

Towards a Quantum Inertial Measurement Unit

> Classical sensors

- High dynamic range, linear
- Continous, high frequency
- Bias + drifts

Quantum sensors

- Accurate, low bias
- High sensitivity
- Low dynamic range (non linear)
- Dead times

> We need to handle

- Rotations and accelerations
- Random orientations
- Multiple axes
- Data fusion (hybridizing classical and quantum sensors)

Large scale Matter wave interferometers (ELGAR, European Laboratory for Gravitation and Atom-interferometric Research)

- Motivation : measure Gravitational Waves in the infrasound band (0.1–10 Hz)
- 2D array of quantum gravity gradiometers :
 - 32 km arm length
 - 80 sensors along each arm
- Targeted performances : Strain sensitivity of $3.3 \times 10^{-22} \text{ Hz}^{-1/2}$ at the peak Frequency of 1.7 Hz limited by atom shot noise

Space quantum sensors

Environmental and climatic stakes

CARIOQA (Cold Atom Rubidium Interferometer in Orbit for Quantum Accelerometry)

- Mission: demonstrate the operation of a Quantum Accelerometer on a satellite.
- Scientific data feedback: performance validation and Thermosphere modelling.

Conclusion

- Quantum gravity sensors commercially available
- Several key advantages with respect to other techniques.
- Strong technical expertise to build reliable and high performance instruments, suited for use on the field.
- Intense R&D activity for preparation of next generation instruments
- Differential quantum gravimeter.
- Onboard gravimeter.
- Space quantum accelerometer.
- High maturity technology available for other applications of quantum technologies